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Abstract In industrial quality inspection of colour texture
surfaces, such as ceramic tiles or fabrics, it is important to
maintain a consistent colour shade or tonality during pro-
duction. We present a multidimensional histogram method
using a novelty detection scheme to inspect the surfaces.
The image noise, introduced by the imaging system, is found
mainly to affect the chromatic channels. For colour tonality
inspection, the difference between images is very subtle and
comparison in the noise dominated chromatic channels is er-
ror prone. We perform vector-ordered colour smoothing and
extract a localised feature vector at each pixel. The resulting
histogram represents an encapsulation of local and global
information. Principal component analysis (PCA) is per-
formed on this multidimensional feature space of an auto-
matically selected reference image to obtain reliable colour
shade features, which results in a reference eigenspace. Then
unseen product images are projected onto this eigenspace
and compared for tonality defect detection using histogram
comparison. The proposed method is compared and evalu-
ated on a data set with groundtruth.

Keywords Colour tonality - Surface inspection - Image
noise analysis - Vector directional processing - Multidimen-
sional histogramming

1 Introduction

Automatic visual inspection for texture and colour abnor-
malities has application on a variety of flat surfaces e.g.
wood, steel, wafer, ceramics and other products, and is
highly demanded by industry in order to replace the sub-
jective and repetitive process of manual inspection. For ex-
ample, in ceramic tile production, chromato-textural prop-
erties of the final product can be affected by a variety of
external factors that are difficult to control, such as colour
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pigments, humidity and temperature. Thus, online monitor-
ing and feedback control of the whole production line may
be necessary. Aside from inspecting fextural faults, such as
cracks, pin holes, undulations, mis-registration and misprint,
inspecting chromatic defects in terms of overall visual im-
pression is also a significant production quality factor. The
variation of colour characteristics from tile to tile is known
as the colour tonality or colour shade problem. Any changes
in the colour shade, however subtle, will still become sig-
nificant once the tiles are placed together. Such assessment
of tile surfaces for constant colour tonality is one of the key
problems in the manufacturing process; it is also tiresome
and difficult when inspection is carried out manually. The
problem is compounded when the surface of the object is
not just plain-coloured, but textured. In short, colour shade
irregularities on plain or textured surfaces are regarded as
defects and manufacturers have long sought to automate the
identification process.

Numerous studies on tile defect detection are available,
such as [1-4]. For example, in [1], Kittler et al. presented a
method for detecting random texture tile defects consisting
of K-means clustering of the image and perceptual merg-
ing of clusters in Luv space into a stack of binary images to
represent each final cluster. This was followed by morpho-
logical analysis to obtain blobs, on which statistical mea-
sures were computed to represent the texture. The over-
all method was computationally very expensive but worked
well.

Investigating colour tonality in particular, Baldrich et al.
[5] also segmented the tile image into several stacks using a
K-means approach. Then statistical measures were used to
represent local and global colour information and segment
chromatic and shape characteristics of blobs within each
stack. However, this was designed for a specific family of
grainy tiles and may not be applicable to other types of ran-
domly textured tiles. In [6], Lumbreras et al. used wavelet
transforms to assess different colour channels and various
decompositions schemes to find appropriate features in or-
der to sort tiles into perceptually homogeneous classes. The
feature vectors were classified to the nearest class by using
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Fisher’s linear discriminant function. Similar work has been
reported in [7], using wavelet analysis in RGB channels.
Penaranda et al. [8] computed the first and second histogram
moments of each channel of the RGB colour space as colour
and texture descriptors to classify tiles according to visual
perception. The most relevant work to us on the consistency
of product colour tonality has been by Boukouvalas et al.,
for example in [9, 10]. In [9], the authors presented spatial
and temporal constancy correction of the image illumination
on the surfaces of uniform colour and two-colour patterned
tiles. Later in [10], they proposed a colour histogram based
method to automatically grade colour shade for randomly
textured tiles by measuring the difference between the RGB
histograms of a reference tile and each newly produced tile.
By quantising the pixel values to a small number of bins for
each band and employing an ordered binary tree, the 3D his-
tograms were efficiently stored and compared. Several mea-
sures were investigated to perform the histogram compari-
son. Normalised cross correlation (NCC) was found to be
the most appropriate one as it gave the most consistent per-
formance and also had a bounded range, which allowed the
a priori definition of thresholds for colour shade.

Colour histograms have proved their worth as a sim-
ple, low level approach in various applications, e.g.
[10-12]. They are invariant to translation and rotation, and
insensitive to the exact spatial distribution of the colour pix-
els. These characteristics make them ideal for use in ap-
plication to colour shade discrimination, irrespective of the
texture pattern. The colours on textured (tile) surfaces are
usually randomly or pseudo-randomly applied. However, the
visual colour impression of the decoration should be con-
sistent from tile to tile. In other words, the amount of ink
and the types of inks used for decoration of individual tiles
should be very similar in order to produce a consistent colour
shade, but the spatial distribution of particular inks is not
necessarily fixed from one tile to the next (see Fig. 1). Thus,
colour histogram based methods are highly appropriate for
colour shade inspection tasks.

Principal component analysis (PCA) [13] has been
widely used in data transformation and reconstruction, e.g.
image compression, reconstruction and synthesis [14, 15],
and also in pattern classification [16, 17]. In [18], the au-
thors derived multivariate texture features from a small local

Fig. 1 An example of ceramic tiles with different colour shades. From
left: The first two images belong to the same colour shade, the last one
is an example of off-shade

window and applied PCA to generate eigenfilters for a textile
defect detection application. Classification was based on the
Mahalanobis distance of the filter responses and that of a ref-
erence textile image. More recently, Bharati and MacGregor
[19] generated multivariate image data from the greylevel
image of steel surfaces by shifting the pixel grid in different
directions and stacking them together. Then feature vectors
were extracted from each pixel location and PCA was ap-
plied to find principal components and corresponding eigen-
values. Classification was based on the feature spaces de-
rived from the eigenvalues.

In this paper, we present a multidimensional histogram
approach to inspect colour tonality defects on randomly tex-
tured surfaces. In particular, we are interested in discrimi-
nating subtle tonality difference, which conventional meth-
ods, such as [9, 10], find difficult to detect. Also, the tonality
inspection is treated as a novelty detection problem rather
than a classification task, as in [5—8], where both the normal
and abnormal samples are pre-defined. However, in reality
defects are usually unpredictable. Another motivation is to
develop a more accurate approach, particularly for textured
designs.

The proposed method combines local colour distribu-
tion with global colour distribution to characterise the colour
shade properties as part of the histogrammed data. The tiles
used were captured by a line-scan camera and manually clas-
sified into “standard” and “off-shade” categories by experts.
A reference tile image is selected from a small set of good
samples using a voting scheme. Initially, a vector directional
processing method is used to compute the local common
vector (LCV) amongst pixels in the RGB space. This is first
used to eliminate local noise and smooth the image. Then,
a nine element feature vector is computed for each colour
pixel in the image composed of the colour pixel itself, its
LCV and its local colour variance measured against the lo-
cal common colour. To minimise the influence of noise, PCA
is performed in this 9D feature space. The first few eigen-
vectors with the largest eigenvalues are selected to form the
reference eigenspace. The colour features are then projected
onto this eigenspace and used to form a multidimensional
histogram. By projecting the colour features of an unseen
tile onto the same reference eigenspace, a reconstructed im-
age is obtained and histogram distribution comparison can
be performed to measure the similarity between the new and
the reference tiles.

After presenting our approach in Sect. 2, we demonstrate
in Sect. 3 how the reconstructed image shows much less
noise in the chromatic channels. Implementation details and
comparative results are presented in Sect. 4 and the paper is
concluded in Sect. 5.

2 Proposed approach

Normal and abnormal randomly textured colour shades can
exhibit only very subtle differences not easily visible to the
human eye. Figure 1 shows a particularly difficult example
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where the left and centre tiles belong to the same colour
shade class and are considered normal samples, while the
right tile is an “off-shade” example and should be detected
as a defect.

2.1 Noise analysis

The problem of noise, which can be introduced in the imag-
ing system chain and at the printing stage, requires spe-
cial attention beyond facilitating uniform spatial lighting
and temporal consistency during image capture. Noise in-
terference will inevitably enlarge the intra-class variations
and make it more difficult to distinguish subtle colour shade
differences. The tiles collected in this application were im-
aged by a 2,048 pixel resolution “Trillium TR-32” RGB
colour line-scan camera. The acquired image size varied
from 600 pixel x 800 pixel to 1,000 pixel x 1,000 pixel
corresponding to the physical size of the tiles.

To examine the nature of the noise in the image acqui-
sition process, we performed PCA directly on the image in
RGB colour space. The pixel colours were then projected to
the three orthogonal eigenvectors and finally mapped back to
the image domain to obtain one image for each eigenchan-
nel. An example of this is shown in Fig. 2 for the leftmost tile
in Fig. 1. The first eigenchannel presents the maximum vari-
ation in the RGB space, which in most cases is the intensity.
The other two orthogonal eigenchannels mainly show the
chromatic information. The last eigenchannel is dominated
by image noise. The vertical lines are introduced mainly by
spatial variation along the line-scan camera’s scan line and
the horizontal lines are introduced by temporal variations,
ambient light leakage and temperature variations.

Clearly, the noise is present in all the image channels,
but can dominate in certain chromaticity channels more than
others. The noise poses a minor effect on the intensity chan-
nel which usually has the largest variation for tile images.
Direct comparison in the chromatic channels is likely to be
error prone. For colour histogram based methods, each bin
has identical weight and the image noise can make the distri-
bution comparison unreliable when colour shade difference
is small, as inter-class difference can be demolished. For
most tile images, the actual colours only occupy a very lim-
ited portion of the RGB space. In other words, the variations

Fig. 2 Image noise analysis showing the three eigenchannels. The
noise is highly visible in the third channel. The images have been
scaled for visualisation purposes

in chromaticity are much smaller than those of brightness.
However, it can still overwhelm the chromaticity. A variety
of smoothing or diffusion methods can be used to explicitly
minimise the negative effect of chromatic noise. We found
vector directional smoothing [20] to be an effective and ro-
bust approach for this purpose. We adopt its underlying prin-
ciples to compute the LCV, which is later also used as an ad-
ditional component of our colour feature set to characterise
surface shade.

Other noise can be introduced at the printing stage where
subtle temporal inconsistency usually occurs. Further, tem-
poral variations in the imaging system can also contribute
to intra-class differences. Thus, more robust colour features,
other than RGB alone, are necessary to characterise the
colour shade. Vector directional processing can reduce the
chromatic noise effect, but on its own it is still not suffi-
cient to distinguish subtle colour shade difference (this will
be illustrated in Sect. 4). In this work, we use the LCV as
the local salient chromatic feature, along with local statis-
tics and pixel RGB colours themselves as an overall colour
shade feature vector. Then, PCA is performed on these fea-
ture vectors to obtain reliable chromatic features for colour
shade inspection.

Next, we detail the procedure for performing vector di-
rectional processing and obtaining the LCV.

2.2 Vector directional median and LCV

Following the work in [20], as shown in Fig. 3, a colour is
represented as a vector in the 3D RGB space with the three
primaries, R, G and B, defined by the axes. The triangu-
lar plane connecting the three primaries in the RGB cube
is known as the Maxwell triangle. The intersection point,
marked as “x” in Fig. 3, of a colour vector with the Maxwell
triangle gives an indication of the chromaticity of the colour,
i.e. its hue and saturation, in terms of the distance of the
point from the vertices of the triangle [21]. As the position
of the intersection point only depends on the direction of the

/ et Maxwell triangle
Blue jZ--

Fig. 3 Perspective representation of the RGB colour cube
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colour vector and not the magnitude, the direction then rep-
resents the chromaticity. The angle between any two colour
vectors, e.g. between f] and f5 in Fig. 3, represents the chro-
maticity difference between them. So, the directional me-
dian of the set of vectors f1, f2, ..., f, within a window
on the image can be considered as the vector that minimises
the sum of the angles with all the other vectors in the set.
The median is insensitive to extremes; as the vector direction
(chromaticity) determines the colour perception, the noise
due to the imaging system can be approximately suppressed
using this median vector.

Let f(x) : R? — R™ be the image, a map from a
continuous plane to the continuous space R"”. For a colour
image, m = 3. A window W € R” with a finite num-
ber of pixels is implied in calculating the directional me-
dian. The pixels in the processing window W are denoted as
{gi,i = 1,2,...,n}. The element f(g;), hereafter referred
to as f; for convenience, is an m-dimensional vector in the
space of R™. Thus, the vectors in W define the input set
{fi,i = 1,2,...,n}. Let o; be the sum of the angles be-
tween the vector f; and each of the vectors in the set. Then,

ai =Y Alfi. fi), i=12....n

j=1

(0

where 0 < A(f;, fj) < /2 specifies the angle be-
tween vectors f; and f; in a colour image. Generally,
0 < A(fi, fj) < m. In the case of colour images, 0 <
A(fi, fj) < m/2. Then, the ascending order of all the as
gives

ay e =S S S o) 2)
The corresponding order of the vectors in the set is given by
fO=fP=<sfW<<f® (3)

The first term in (3) minimises the sum of the angles
with all the other vectors within the set and is considered as
the directional median. Meanwhile, the first k terms in (3)
constitute a subset of colour vectors which have generally
the same direction. In other words, they are similar in chro-
maticity, but they can be quite different in brightness, i.e.
magnitude. However, if they are also similar in brightness,
we need to choose the vector closest to f (). By considering
the first k£ terms f(i), i =1,2,..., k(i.e. the ones with clos-
est directionality to the median), we define a simple measure
so that the difference between any pair of vectors in the set
is computed as

“4)

where A denotes the magnitude of a vector. Thus, when
the magnitudes vary significantly in the subset f@) i =
1,2, ..., k, the first term of (4) will dominate and the vector
of median brightness will be selected. On the other hand, if
the vectors in the subset have similar brightness, the second
term of (4) will help select the LCV vector as the vector that

| A pony +min( iy, i) AGD, £O)

Fig. 4 Vector directional smoothing using a 5 x 5 window: (top row)
original tile image and enlarged detail marked in white; (bottom row)
smoothed image again with the enlarged detail showing the effect of
smoothing

has the least sum of chromaticity differences to other vec-
tors. However, for computational efficiency, we select the
LCV from the first k£ terms as the one that possesses the
median brightness attribute with approximately similar ac-
curacy. The value of & was empirically chosen as % Alter-
natively, an adaptive method [22] can be used to determine
its value. Thus, the LCV is computed in a running local win-
dow to smooth the image. An example of this is shown in
Fig. 4. The LCV will also then be used as a component of
the colour feature vector applied for shade comparison as
detailed in the next section.

2.3 Distribution comparison in eigenspace

Comparing global colour distributions between a reference
tile and an unseen tile alone is not always enough, as subtle
variations may be absorbed in the colour histograms. The
evaluation of local colour distribution becomes a necessity.

2.3.1 Setting up the reference

A reference tile is selected using a simple voting scheme
(details in Sect. 4). For any pixel g; with its colour vector
fi, its brightness is represented by the magnitude A; and its
direction (chromaticity) is determined by the two angles f;
and y; (that it makes with two of the axes in the RGB cube
as shown in Fig. 3). Thus, we form a nine element colour
feature vector

(&)

comprising the magnitude and directions of the colour pixel
itself, its LCV denoted as (AO, ,80, yo) and the variances

0 40 0 x B T
xt=[)\17,315V17)\l,,3,a)’1301,Ul,U,]
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of the local colours in brightness (al.)‘) and chromaticity

(al.ﬂ , oiy) measured against the LCV. The basis for this repre-
sentation is that it is designed to encapsulate the local infor-
mation at pixel level, which in turn can be used in a global
multidimensional histogramming framework for the entire
image.

Let X = {x; € RP,i = 1,2,...,q} be asetof g p-
dimensional vectors, which are feature vectors derived from
the colour tile image. Let w and /4 specify the dimensions
of the image. Then ¢ = w x & and p is the dimension of

the feature space. Let x = % Y ,ex X be the mean vector of

X. The feature matrix X is then mean-centred by deducting
the mean vector x. Next, PCA is performed to obtain the
eigenvectors (principal axes) denoted by ¢; € R”.

Singular value decomposition (SVD) [23] can be used to
obtain these principal components. The matrix of eigenvec-
tors are then given as £ = [e1,e2,...,¢e,] € RP*P. The
columns of E are arranged in descending order correspond-
ing to the eigenvalues w;,i = 1,2,..., p.Only j, j < p,
eigenvectors with the largest eigenvalues are needed to rep-
resent X to a sufficient degree of accuracy determined by
a simple threshold 7, T = Y/, w;/ Y/, w;, with corre-
sponding eigenvectors, E; = [ey, e, ..., e;]. The thresh-
old T is usually empirically selected so that statistically sig-
nificant features are retained. Thus, the resulting number
of eigenvectors j is different from one type of texture to
another. We refer to the subset thresholded with T as the
reference eigenspace Py g;, where our colour features are
well represented and surfaces with the desired shade should
have a similar distribution. Characteristics not included in
Pz E j are small in variation and likely to be redundant noise.
Colour feature comparison is now possible to be performed
in this eigenspace for unseen tiles. The reference set-up is
completed by projecting the original feature matrix X onto
the reference eigenspace @z g;:

’r_ B _ T =
X'=PCAX, ¥z ,) = ET (X —xJ14) (6)

where J 4 isa 1 x p unit matrix consisting of all 1s, result-
ingin X’ = {x; eR/,i=1,2,..., q}. Also, we can recon-
struct the tile image from this eigenspace through backward
projection of a matrix X' € @z g ; onto the original feature
space:

% S Ay l =
X=PCA(X,Q)3,E/.)=EJ'X +XxJ14 @)
2.3.2 Verifying new surfaces

For a novel tile image, the same feature extraction proce-
dure is performed to obtain the colour feature matrix Y.
However, Y is then projected onto the reference eigenspace
s g, resulting in Y ieY = 1’—6’1)4(Y, @5 £;). Note PCA
is not performed on Y. This projection provides a mapping
of the new tile in the reference eigenspace where defects
will be expected to stand out. Finally, multidimensional his-
togram comparison is performed to measure the similarity

between X’ and Y’ in the reference eigenspace @3 g ;- In
[10], Boukouvalas et al. found that for comparing distribu-
tions of such kinds the NCC measure performs best as it is
bounded in the range [—1..1] and easily finds partitioning
which assigns only data with acceptable correlation to the

same class. For pairs of quantities (s;,7;),i = 1,2,...,n,
then,

Yils;i —8)(ri —r1
Nee - Zili =i =7) )

VEilsi =52V Eii )2

where s and 7 are the respective means. The NCC represents
an indication of what residuals are to be expected if the data
are fitted to a straight line using least squares. When a corre-
lation is known to be significant, NCC lies in a pre-defined
range and the partition threshold is easy to choose. Direct
multidimensional histogram comparison is computationally
expensive, however for tile images, the data usually only oc-
cupies a small portion of the feature space. Thus, only those
bins containing data are stored in a binary tree structure. Un-
like [10], we found it unnecessary to quantise the histogram,
thus preserving further accuracy.

3 Method summary and comments

The proposed method is now summarised with the aid of
Fig. 5. The whole procedure comprises two stages: a train-
ing stage and a testing stage. The goal of the training stage
is to select the best representative of all the training images
whose corresponding eigenspace and multidimensional his-
togram will be treated as the reference data in the testing
stage. The inspection starts with the selection of a reference
tile using a voting scheme. First, a small number of good
samples are each treated as a reference tile and compared
with each other. Vector directional processing (as detailed in
Sect. 2.2) is used to compute the LCV. Then a nine element
feature vector is extracted for each pixel, followed by PCA.
Those eigenvectors with the largest eigenvalues (thresholded
using T') are used to form the reference eigenspace. Colour
features are then projected onto this eigenspace as in (6),
which results in a multidimensional histogram for each tile
image. NCC is performed to examine the similarity. Thus,
for each tile image, we have a similarity measure, quantified
by NCC, against each of the other tile images in the train-
ing set. The one with the least sum of NCC measures will be
treated as the “golden sample”. In a practical scenario, this
stage would be carried out on the first few good tiles manu-
ally selected on the production line. It also allows a threshold
on the NCC value to be chosen to classify normal/abnormal
colour shades. A simple approach is to set the threshold us-
ing the NCC value range for the reference tile in the train-
ing stage. Let Rycc denote this range for the reference tile.
Then the threshold is selected as Tycc = 1 —y Rycc . Here,
we empirically choose y = 1.2. Alternatively, if a relatively
larger number of training samples are available, the thresh-

old can be Tycc = uncc — yoncc where (uncce, oncce)
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Fig. 5 Flow chart of proposed method

Fig. 6 Image reconstruction: (fop) the original image, its reconstruction and their MSE difference; (bottom) the three eigenchannels of the
reconstructed tile. The last channel shows texture structure, instead of being dominated by noise (cf. Fig. 2)

are the mean and standard deviation of the NCC values for onto the reference eigenspace derived from the “golden sam-
the reference tile and y = 2, 3 in common practise. ple” using (7). Finally, the NCC measure can be applied as

Figure 5 also illustrates the testing stage, in which at an indication of the similarity between the test image and
first, the LCV and feature vector of an unseen, novel tile im-  the reference, which is then used in comparison to Tycc to
age are extracted as in (5). These features are then projected classify the tile.
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For comparison and to demonstrate the function of Egs.
6 and 7, we can reconstruct the tile image by mapping
the colour features in the eigenspace back to the RGB
space. Taking the leftmost image in Fig. 1 as the refer-
ence image providing X', the reconstructed colour features

— .
are X = PCA(X', <I>);,Ej). Then taking the first three fea-

ture elements [A;, B;, yi]T, converting to RGB representa-
tion [r;, g;, b;]T and mapping back to the image domain
gives the reconstructed tile image, as shown in Fig. 6(top-
centre) along with the mean square error (MSE) between
the original and the reconstructed images, in Fig. 6 (top-
right). This clearly shows the noise associated with the less
significant eigenvalues. Next, noise analysis in the recon-
structed image is performed (as in Sect. 2.1 and in Fig.
2) showing that its third channel is much less noisy (bot-
tom row of Fig. 6). The reconstruction shows that reli-
able, salient colour features are obtained by the proposed
method.

Figure 7 shows another example of a different type of
tile pattern, which has a little less intensity variation and
a bit more chromatic variation than the running example
case used so far. The first row shows a good sample that

Fig.7 Another example of tile image: (fop row) the original tile image,
the reconstructed tile image and the difference between them using
MSE; (middle row) the three eigenchannels of the original tile image;
(bottom row) the three eigenchannels of the reconstructed tile image

is a reference tile X, the reconstructed image X which is
projected back from its own (reference) eigenspace @z g,
and the reconstruction MSE error map, respectively. The
second row shows the three eigenchannels of the original
tile image. The textural information of the last eigenchan-
nel is swamped by the image noise. However, the eigen-
channels of the reconstructed tile image, shown in the third
row, clearly exhibit the textural structure in less noisy de-
tail. The tile image shown in Fig. 8, for example let it be
an unseen tile image Y, is in fact an off-shade defect case
of the normal shade example in Fig. 7. The reconstruction,
shown in the top-centre, is based on the reference eigenspace
@3 g, derived from the reference tile image in Fig. 7, i.e.

Y = I(JC—A(Y/ , @x,E;). We can see that the eigenchannels
of the reconstructed tile image are much less consumed by
image noise. However, as we would like, the MSE shows
that the reference eigenspace is not an ideal representation
of this off-shade tile image as its distribution in the 9D fea-
ture space differs from that of the reference tile image. Thus,
the NCC measure stands a good chance to discriminate the
difference.

: ..

Fig. 8 Reconstruction of an off-shade tile image: (fop row) the orig-
inal off-shade tile image, the reconstructed tile image based on an
eigenspace derived from a normal shade tile image and the difference
between them using MSE; (middle row) the three eigenchannels of the
original off-shade tile image; (bottom row) the three eigenchannels of
the reconstructed tile image
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4 Implementations and results

Our test data comprises eight tile types, totalling 456 tiles,
with known groundtruth obtained from manual classification
by experts. Within each set, one-third of tiles are standard
colour shade and two-thirds off-shade. We compare the pro-
posed method with a standard histogram-based method, with
and without using vector directional preprocessing.

The inspection starts with the selection of a reference tile
using a voting scheme amongst the best of the first few tiles
in the production run (visually confirmed to be of high qual-
ity) as described in Sect. 3. The threshold Tycc is chosen
during this process as the criteria for colour shade variation.

Results are quantified using specificity to show how ac-
curately good tiles are classified, sensitivity to show how ac-
curately defective tiles are classified and accuracy as the cor-
rect classification rate of all tiles. They are defined as:

spec.(%) = P‘Q:g % 100
sens.(%) = N‘Qg’vg x 100 )
accu. (%) = % x 100

where P is the number of normal tiles, N is the number
of tiles with colour tonality defects and the subscripts “t”
and “g” denote the results by testing and groundtruth respec-

tively.

Table 1 Testing results of colour histogram methods (values are per-
centages)

RG B colour space

Tile type  Specificity ~ Sensitivity ~ Accuracy
1 93.8 96.9 95.8
2 90.0 95.0 93.3
3 95.0 95.0 95.0
4 90.0 87.5 88.3
5 93.8 84.4 87.5
6 90.0 80.0 83.3
7 90.0 87.5 88.3
8 80.0 72.5 75.0
Overall 90.1 87.2 88.2

We first applied RGB colour histogram based method
similar to that described in [10]. The colour images were
projected onto the RGB space to produce the 3D histogram.
For efficiency, each bin of the histogram was converted into
a unique integer so that the 3D histogram can be economi-
cally stored in a binary tree. The selection of template sam-
ples, the training and testing stages were the same as de-
scribed in Sect. 2.3. Table 1 shows the results of the RGB
colour histogram based method, providing an average accu-
racy of 88.2%. We then applied the proposed algorithm in-
cluding the vector directional smoothing, but only using the
(Ai, Bi, yi) representation of the colour pixels instead of the
full 9D feature vector in (5). Hence, the global histogram
comparison is based on the distribution of magnitudes and
vector directions only. The results are presented in Table 2.
Different window sizes were tested, from 3 x 3 t0 9 x 9
with the best results achieved using a window size of 5 x 5
at 91.2% accuracy. Smoothing the colour images proved to
be beneficial as it decreased the negative effects introduced
by noise in chromaticity. When we used the full 9D feature
vector of our proposed method, significantly better tonality
defect detection results were obtained as shown in Table 3.
By incorporating the local colour information and compar-
ing the dominant colour features using a high-dimensional
histogram based method, an overall accuracy of 94.7% is
achieved using a 7 x 7 window. Since the textures in the dif-
ferent tile types are of a various nature in terms of coarseness
and density, clearly each may perform better with a particu-
lar window size. Here we conclude that on average and in the
interest of computational expense at a marginally less accu-
rate rate of 93.9%, a window size of 3 x 3 can be employed
throughout. The results of tile set 8§ were consistently lower
than those of others for all the three methods. This is due to
the nature of the texture printed on these tiles which have
slightly larger intra-class variations. Using multiple ‘golden
samples’ may improve the performance.

For practical implementation this technique needs to run
at approximately 1 s/tile. Currently, the bottleneck in our
system is in the LCV computation. Optimised 3D histogram-
ming using ordered binary trees requires just less than 1 s
per 1,000 pixel x 1,000 pixel tile. The proposed method
requires a computational time in the order of 20 s/tile at

Table 2 Testing results of vector directional smoothing (values are percentages)

Window size

23 5x5  Tx7  9x9
Tile type  Specificity ~ Sensitivity =~ Accuracy  Accuracy  Accuracy  Accuracy
1 100 96.9 97.9 100 97.9 97.9
2 95.0 95.0 95.0 95.0 95.0 95.0
3 100 97.5 98.3 98.3 96.7 96.7
4 100 80.0 86.7 90.0 90.0 90.0
5 93.8 87.5 89.6 89.6 87.5 87.5
6 90.0 90.0 90.0 91.7 91.7 91.7
7 95.0 92.5 93.3 90.0 90.0 90.0
8 80.0 72.5 75.0 76.7 75.0 76.7
Overall 94.1 88.8 90.6 91.2 90.4 90.6
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Table 3 Testing results of comparison in feature eigenspace (values are percentages)

Window size

33 5x5  7x7  9x9
Tile type  Specificity =~ Sensitivity =~ Accuracy  Accuracy Accuracy Accuracy
1 100 100 100 100 100 100
2 95.0 97.5 96.7 96.7 96.7 96.7
3 100 95.0 96.7 98.3 100 100
4 95.0 92.5 93.3 93.3 91.7 91.7
5 100 96.9 97.9 97.9 97.9 97.9
6 95.0 92.5 93.3 91.7 933 93.3
7 95.0 90.0 91.7 93.3 91.7 91.7
8 85.0 82.5 83.3 83.3 88.3 86.7
Overall 95.4 93.1 93.9 94.1 94.7 94.5

present: 0.98 s for its histogramming, 18 s for LCV compu-
tation and smoothing and 0.94 s for NC C computation. This
was computed on an AMD Athlon XP Processor (1.4 GHz)
with 512M memory. However, the computation time can
be greatly reduced using dedicated hardware and optimised
software, e.g. implementing the accelerating coding scheme
as mentioned in [22] the computation costs for finding the
LCVina7 x 7 window can result in a saving of 82% with-
out compromising accuracy.

5 Conclusions

We presented an automatic colour shade defect detection al-
gorithm for randomly textured surfaces. The shade problem
is defined here as visual perception in colour, not in texture.
We revealed the chromatic noise through eigenchannel anal-
ysis and proposed a method to overcome it using local and
global colour information and PCA analysis on a new rep-
resentative colour feature vector. The chromatic channels of
the reconstructed image were found to be much less domi-
nated by noise. A window size as small as 3 x 3 gives an
overall accuracy of 93.9%. However, the increase in accu-
racy comes at a computational cost which is hoped will be
overcome through more optimised code and faster hardware
and memory.

While we present our work with respect to ceramic
tiles, the proposed method should be applicable to other flat
colour textured surfaces where the tonality issue is of impor-
tance, for example, wood and textiles.
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