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Abstract: We propose a robust approach to annotating independenthingiobjects captured by head mounted stereo
cameras that are worn by an ambulatory (and visually imgaureer. Initially, sparse optical flow is extracted
from a single image stream, in tandem with dense depth mapen,Tusing the assumption that apparent
movement generated by camera egomotion is dominant, flo@gmonding to independently moving objects
(IMOs) is robustly segmented using MLESAC. Next, the modetldef the feature points defining this flow
(the foreground) are obtained by aligning them with the epaps. Finally, a bounding box is scaled pro-
portionally to this mode depth and robustly fit to the foregrd points such that the number of inliers is
maximised.

1 INTRODUCTION in close to real time while simultaneously estimating
the depth. Fortunately, since the speed of the user is

notating moving objects using head mounted stereo @S & car, the translational component of the egomo-
cameras worn by an ambulatory or stationary person.tion can be neglected. Moreover, the user will be
The work is carried out in the context of a large, mul- a@ware of their own cadence and trajectory, thus ac-
tifaceted and EU-funded project (CASBhPwhich curate estimates of true camera egomotion are unnec-
aims to develop a multi-sensor system capable of in- €SSary. .However, it is stlllichall.englng tq efficiently
terpreting basic characteristics of some primary ele- differentiate apparent motions induced in the scene
ments of interest in outdoor scenes (i.e. in city streets) Py camera movement from that originating from real
and transforming them into a sound map for blind Movementin the environment.
users as a perception and navigation aid. Pauwels and Hulle (Pauwels and Hulle, 2004)
One of the key tasks is to effectively detect mov- propose a M-estimator based robust approach to ex-
ing objects, which may pose a danger to the user, tracting egomotion from noisy optical flow. Tracked
and estimate their distance and relative motion. Un- points whose trajectory do not originate in the focus
like, for example, in autonomous vehicle navigation of expansion (FOE) are deemed to belong to indepen-
(de Souza and Kak, 2002; Leonard, 2007), where thedently moving objects. This assumption fails for ob-
camera egomotion can be estimated based on auxjects traveling in front of the camera towards the FOE.
iliary measurements, e.g. using speedometers, ourln (Badino, 2004), a method for deducing egomotion
cameras can undergo arbitrary motion to six degreein a moving vehicle using a mobile stereo platform
of freedom (dof). Such egomotion introduces sig- is described. They utilise a combination of 3D point
nificant relative motions for all objects in the scene, correspondences, and a smoothness of motion con-
which makes it difficult to detect independent mov- straint to deduce vehicle motion. In (Ess et al., 2007),
ing objects and even more difficult in order to do so the ground plane and pedestrians are simultaneously
extracted using stereo cameras mounted on a trolley.
Iwww.casblip.upv.es Although they show impressive results, appearance



based detection is not sufficient enough for the pur- process. This tracker preferentially annotates high
poses of our application. Other work that deal with entropy regions. As well as facilitating tracking,
the problem of segmenting independent motion with this also ensures that values taken from the depth
camera egomotion include (Rabe et al., 2007), (Yuan maps in the vicinity of the KLT points are likely
etal., 2007) and (Yu et al., 2005). to be relatively reliable as it is probable that good
Depth estimation or disparity computation is of- correspondences have been achieved for these
ten carried out based on the assumption that depthregions.
discontinuity boundaries collocate with intensity or Points corresponding to independently moving
colour discontinuity boundaries. The search for this objects are segmented using MLESAC (Torr and Zis-
collocation is based on intensity similarity match- serman, 2000) (Maximum Likelihood Sample Con-
ing from one image to the other, which includes sensus), based on the assumption that apparent move-
stages such as matching cost computation and aggrement generated by camera egomotion is dominant.
gation, disparity computation and refinement. Op- Outliers to this dominant motion then generally cor-
timisation plays an important role in disparity esti- respond to independently moving objects. Bounding
mation (Gong and Yang, 2007). Recent comparative boxes are fitted iteratively to the segmented points un-
studies, such as (Scharstein and Szeliski, 2002), haveder the assumption that independently moving objects
shown that graph cut (Veksler, 2003) and belief prop- are of fixed size and at different depths in the scene.
agation (Felzenszwalb and Huttenlocher, 2006) are  Segmented points are aligned with depth maps to
two powerful techniques to achieve accurate disparity ascertain depths for moving object annotation. The
maps. However, both are computationally expensive mode depth of these points is used to scale a bounding
and require hardware solutions to achieve near realbox which is robustly fit to the segmented points, such
time performance, e.g. (Yang et al., 2006). that the number of inliers are maximised. To segment
In section 2, we first provide an overview of the more than one object, the bounding box algorithm is
proposed method, and then elaborate each of its stageseapplied to the ‘bounding box outliers’ produced in
in some subsections. Then, experimental results arethe previous iteration. This needs to be done judi-
reported in section 3, followed with conclusionin sec- ciously, as these outliers may be misclassified back-
tion 5. ground points that are distributed disparately in the
image. However, if a bimodal (or indeed multimodal)
distribution of foreground depths is present, objects
2 PROPOSED APPROACH will be segmented in order of how numerously they
are annotated at a consistent depth. In the currentreal-
time implementation of the navigation system, bound-
ing boxes are only fitted to the object which is most
numerously annotated at a consistent depth. This is,
almost without exception, the nearest object. Only
processing the nearest object simplifies the sound map
provided to user, thus providing only the most rel-
evant information and making the audio feed easier
to interpret. For example, in a scene where there are
two objects present at different depths, the one with
the greater number of tracking points will be robustly
identified first, assuming both sets of tracking points
“‘demonstrate similar variance in their depth values.

The primary aim here with respect to generic object
detection is to identify objects moving independently
in the scene. We are not concerned with the specific
class of objects, but just to extract sufficient informa-
tion for a later cognitive module to interpret if the mo-
tion of the object can pose a danger to the visually-
impaired user. This is achieved by tracking a sparse
set of feature points, which implicitly label moving
objects, and segmenting features which exhibit mo-
tion that is not consistent with that generated by the
movement of the stereo cameras. Sparse point track
ing has previously been applied successfully to mo-
tion based segmentation in (Hannuna, 2007). Dense . .
depth maps are simultaneously extracted, yielding lo- 2.1 Depth estimation
cations and 3D trajectories for each feature point.
These depth maps are also required for input into aIn order to estimate the distance of objects from the
later stage of the CASBIIP project (the sonification user in an efficient manner, a stereo grid with two
process to generate a sound map), so they do notincucameras is used since it is generally faster than sin-
extra computational burden compared to using sparsegle camera temporal depth estimation. The intrinsic
depth maps. and extrinsic parameters of the two cameras are pre-
The Kanade-Lucas-Tomasi (KLT) (Shi and computed using a classic chart-based calibration tech-
Tomasi, 1994) tracker is used to generate this sparsenique (Zhang, 1998). Sparse depth estimation, e.g.
set of points in tandem with the depth estimation correlation based patch correspondence search and



reconstruction, is usually computationally efficient.
However, it is not desirable in our application since
it often results in isolated regions even though they
may belong to a single object which makes it difficult
to sonify. In recent years, there has been considerable
interest in dense depth estimation, e.g. (Scharstein
and Szeliski, 2002). We have experimented with sev-
eral methods, including belief propagation (Felzen-
szwalb and Huttenlocher, 2006), dynamic program-
ming (Birchfield and Tomasi, 1999), sum of absolute
difference with winner-take-all optimisation (Kanade,
1994), and sum of squared differences with iterative
aggregation (Zitnick and Kanade, 2000).

Although recent comparative studies, such as Figure 1: Fusion of depth map with image segmentation.
(Scharstein and Szeliski, 2002), suggest that scanlst row: the original left image and graph cut based seg-
line based dynamic programming does not perform as mentat|0n Using COlOUr an_d raw depth informatipn; 2nd
well as more global optimisation approaches, on our row: orl_glnal depth estimation a_md result after anisotropi
outdoor dataset it appears to be a reasonable trade> moothing based on segmentation.
off between computational efficiency and quality (see
subjective comparison in Fig. 2 in the Results sec-
tion). Note that our outdoor images are considerably
different from those benchmarks widely used in com-
parative studies. It is very common for our data to
contain disparities of up to 60 pixels out of 320 pixels,
which is significantly larger than most standard ones.
Additionally, the variation of disparities is large, i.e.
for most of the frames the disparity covers most lev-

to handle untextured areas. For further details, the
reader is refered to (Birchfield and Tomasi, 1999).
However, due to the nature of the 1D optimi-
sation, streaking artifacts inevitably result, as well
as temporal inconsistency, known as flicking effects.
Since the stereo cameras are constantly moving and
the scene often contains moving and deforming ob-

els from 0 to 60. A typical dynamic programming jects, enforcing temporal consistency does not nec-

approach is the scanline-based 1D optimisation pro- essarily improve results. A median filter across the

cess. We follow (Birchfield and Tomasi, 1999) to de- S¢@N lines is used to reduce the spatial inconsistency.
fine the cost function to minimise while matching two More advanced approaches, such as (Bobick and In-
scanlines as: tille, 1999), can be used, however, at a computational

cost we can not afford. Others, such as (Gong and
V= NoKo — NmKr + Z d(xi, i), Q) Yang, 2007), require dedicated hardwa_re splutions.
T We also adopt a fusion approach using image seg-

whereN, and Ny, are the number of occlusions and mentation based on the assumption that depth dis-

matches respectively,, and kK, are weightings for cpntinuity _oft_en co_IIo_catt_es with discontinuity in re-
occlusion penalty and match reward respectively, and gional statistics. Similar ideas have been recently ex-

functiond(.) measures the dissimilarity between two plored, e.g. (Zitnick and Kang, 2007). However,
pixelsx; andy;. For this dissimilarity measure, one we use a post-usion approach instead of depth esti-

that is insensitive to image sampling is used: mation frc_Jm_ over-segm_entatién S_moothing_ is per-
formed within each region to avoid smudging across

d(xi,yi) = min{d_(xi,yi,|L,|R),d_(yi,Xi,|R,|L)}, (2) the region boundaries. An example result is shown
in Fig. 1. This segmentation is based on graph cuts

wheredis defined as: (Felzenszwalb and Huttenlocher, 2004), which offers
- i N the potential of multimodal fusion of depth, colour

d(xi.yi I, IR) = mn . IL06) = TR, (3) components and sparse optical flow to obtain more

=2)=y=i-2) coherent segmentation. We are currently also in-

wherel (%) andIr(y;) are intensity values fox; in vestigating Mean Shift segmentation (Comaniciu and

the left scanline ang; in the right scanline respec- Meer, 2002) to determine if a faster throughput can be

tively, andir is the linearly interpolated function be- 2Image segmentation is also required as part of a sub-
tween.the. sample p(_)lnts of the right scanll_ne. The system in our CASBIiP project, not discussed in this paper,
matching is also subject to a set of constraints, suchyo, assistance to partially sighted users. Hence, the com-
as unique and ordering constraint which simplifies dy- putational overhead of fusing depth information and image
namic programming, and ‘sided’ occlusion constraint segmentation is affordable.



achieved without compromising accuracy. With regard to model parametrization, the direct
linear transformation (DLT) may be used to calcu-
late a matrix,H, which transforms a set of poinis

from one image to a set of corresponding poixits

in another image. In order to fully constrath, four
point correspondences are required (Hartley and Zis-
To determine the motion of an object of interest, we serman, 2001) (which are not collinear). If the four
use a robust approach to first determine which KLT points selected are background points, then the trans-
points correspond to the background region. Specifi- formation matrix deduced will describe the motion of
cally, homography is repeatedly used to parameterisethe background. The transformation

a provisional model based on the trajectory of a subset

2.2 DEDUCING BACKGROUND
MOTION MODEL

!

of randomly selected points over a sliding temporal Xi = Hx;, 4)
window and the most likely model retained. Outliers can also be expressed in the form:
to th_e mos_t likely mod(_al correspond to independently ¥'i x Hx; = 0, (5)
moving object annotation. _ .

The robust technique used here is MLESAC (Torr Where x is the vector cross product+ If the j-th
and Zisserman, 2000) and is outlined in Algorithm 1. TOW of the matrixH is represented bly)" andx'; =
This method attempts to determine the parameters of (X-¥,W) ", this may be simplified to:
the background’s motion model, using the smallest - - T hl
possible subset of that data. Samples are drawn ran- ( 0 —wxi X ) h2 | =0. (6)
domly and used to generate a provisional model. The wixt 0" —xix| h3 '
most likely parameter vector, assuming the outliers A

are randomly distributed, is retained. For each provi-
sional model, it is necessary to iteratively determine
the mixing parameter, (expected proportion of in-
liers), which yields the highest likelihood. Our use of
MLESAC as opposed to RANSAC (random sample
consensus) (Fischler and Bolles, 1981) is more ex-
pensive, but avoids the need for a predefined inlier
threshold when determining a consensus.

Algorithm 1 Robustly identifying dominant model
X; represents the KLT points for the current frame
WinDiamrepresens the radius of the sliding tem-
poral window
X! represents the subsetXf tracked successfully
for current temporal window
Mprov represents the current model
Mpest represents the best model
N is the number of samples required for dominant
model to be selected with 0.95 probability

Identify X!
for j — 1..N do
Randomly selecs samplesX® from X!
CalculateM proy, USINGX® \yinpiam aNAX?®
Evaluate the likelihood. prov, for Mproy
|f Lprov > Lbestthen
Lpest < I-prov
Mbpest < Mprov
Recordoutliersassociated withpest
end if
end for
RecordMpegtand its’ associatedutliers

DecomposingdA, with SVD, produces the follow-
ing factorization:

A=UDVT. 7)
The columns oV, whose corresponding elements
in D are zero, form an orthonormal basis for the
nullspace oH (Press et al., 1992). In other words,
they provide a value fdn, which satisfiegAh = 0.

2.3 FITTING A BOUNDING BOX

We assume that the outliers to the background model
primarily represent the foreground object. The di-
mensions of the bounding box are determined by mul-
tiplying the foreground points’ mode depth by a scal-
ing factor which has been empirically determined. We
utilise the mode, as opposed to the mean, as itis more
robust to outliers and allows the possibility of isolat-
ing more than one object if the objects’ depths corre-
spond to a multimodal distribution.

The box is fitted to the foreground points using
RANSAC as summarised in Algorithm 2. For every
frame, the object’s centroid is estimated using three
randomly selected foreground points. The bounding
box is then fitted to the foreground points, based on
this estimation and the number of points lying within
the bounding box. Itis appropriate to use RANSAC in
this case as the threshold is determined by the bound-
ing box size.

It would be possible to simply use a single fore-
ground point to estimate the object’s centroid, but us-
ing a greater number allows for more variety in the



Figure 2: 1st row: stereo images and depth estimation basetymamic programming using 1D optimisation; 2nd row:
results obtained from belief propagation, sum of absolifferdnces with winner-take-all optimisation, and sum gfiared
differences with iterative aggregation.

Algorithm 2 Robustly bounding fitting In addition to fitting a bounding box to the anno-
Xout Fepresents the KLT points which are outliersto tation, aligning KLT points with depth maps can gen-
the dominant modeMpest erate relative velocity estimates as motion in the im-
CoGyrov represents the current centroid for the age plane may be scaled according to the moving ob-
bounding box jects distance to that plane. Furthermore, it could po-
CoGuest represents the centroid yielding the great- tentially allow the system to determine if objects are
est number of inliers approaching the user. Alignment is relatively simple
N is the number of samples required for dominant Since as the cameras are calibrated, the original im-
model to be selected with 0.95 probability ages and the depth maps can be rectified and aligned

based on calibration parameters.
Calculate mode depth o6
Scale bounding box size proportionally to mode
depth and weighted average of centroid estimations3 RESULTS
for previous frames.

In Fig. 2 we illustrate a comparison of several depth
estimation techniques, e.g. belief propagation, sum
of absolute differences with winner-take-all optimi-
sation, and sum of squared differences with iterative
aggregation. We selected the method presented in

for j «— 1..N do
Selects random samples(S,; from Xout
CalculateCoGprov: the centroid o3,
Count the number of inliergproy, for CoGprov

I Pprov > Ppestthen (Birchfield and Tomasi, 1999) for reasonable accu-
Pbest <~ Pprov racy as a trade-off for computational efficiency for
en d?fOG“eStH Pprov reasons as described in section 2.1.

Fig. 3 illustrates the annotation and bounding box
fitting process. From left to right the images show:
the KLT points, the points segmented into domi-
nant motion (red) and outliers (blue), the depth map
aligned with these segmented points, with bounding
box fitted and the right shows the final annotation.
centroid’s position. However, using more points re- Note that the depth map is smaller as it only includes
quires more iterations in the RANSAC algorithm, so portions of the scene captured by both cameras. This
3 are selected as a compromise. The bounding box’sprocess is also illustrated in Fig. 4. Note that depth
size and location tends to jitter due to the random maps are produced concurrently with the sparse point
sampling and inconsistency with regard to features segmentation.
annotated by the KLT tracker. Hence both quantities Figures 5, 6 and 7 are examples of the algorithm’s
are smoothed by utilising a weighted average of their output. In each figure every fourth frame is shown
current and previous values. starting top left and finishing bottom right. Pairs of

end for
Use weighted average @foGyes and previous es-
timations and record associated inliers




Figure 3: Left to right: sparse point tracking, foregrouratkground segmentation and alignment with depth map, aatl fin
annotation.
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Figure 4: Flow chart illustrating bounding box algorithndanelationship with depth map extraction

images represent each frame of the sequence with theobjects in the scene to report audio warnings to blind

upper image illustrating the segmentation and depth users. Furthermore, our system is designed to be lib-

maps and the lower the final annotation. eral in determining hazardous objects as it is impor-
tant to report a safe object as unsafe, than vice versa.
Hence, it is deemed reasonable for our bounding box

4 DISCUSSION to be larger and a less accurate tight fit.

The system currently runs at a rate of around 8fps
on a 2.39GHz laptop with 3GB RAM working on 5> CONCLUSIONS

320x 240 images, when dealing with a single dom- N
inant object only; hence further refinement is neces- A robust approach to annotating independently mov-

sary to be able to handle multiple objects in real-time. ing objects using h_eqd _mounted stereo cameras has

We have come across no previous works with sim- bee_n proposed. This is intended f_or use as_part of an
ilar setups to ours, which deal with hazard detection in audlo-feed_back system for reporting p(_)ten_tlally haz-
the outdoors using wearable cameras for blind users a_rdous ObJeCt.S to a blind user navigating in on_Jtdoor
to compare our results with. There are other works cityscape _settmgs. Gene'r.|c Ob.JeCt dete_ct'lon_ IS per-
with a similar application in mind, e.g.: (Andersen formed, without any specific object classmcatlo'n, t_o
and Seibel, 2001) in which a system is very briefly ensure fast enough performance to _a||0W practicality
described for users with low vision, rather than no vi- of use. The system offers near real-time pgrformance
sion at all, thus relying on some user ability to see and gnd IS robu;t enough to tolerate the unpredictable mo-
interpret the scene; and (Wilson et al., 2007) in which tions assomatgd with hegd mOL_Jnted stereo cameras.
a tactile-input wearable audio system is described. Future work will focus on improving performance us-

Also, comparisons are not easy to establish as other™d accelerated feature tracking on the GPU.
systems have proprietary software and hardware or

require significant software redevelopment. There are

also advanced works on pedestrian detection or vehi-Acknowledgements

cle detection, but these are mainly highly fine-tuned

towards those specific classes of objects, whereas oufThis work was funded by EU-FP6 Project CASBIiP
work is simply looking for any unspecified moving no. 027083 FP6-2004-IST-4.



Figure 5: Every fourth frame of car approaching the cameatapth maps and original frames are paired vertically).

Figure 7: Every fourth frame of a person walking in the samedtion as camera egomotion (depth maps and original frames
are paired vertically).
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