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Abstract

Establish consistent correspondences between different objects is a classic problem in com-

puter science/vision. It helps to match highly similar objects in both 3D and 2D domain. In

the 3D domain, finding consistent correspondences has been studying for more than 20 years

and it is still a hot topic. In 2D domain, consistent correspondences can also help in puzzle

solving. However, only a few works are focused on this approach. In this thesis, we focus

on finding consistent correspondences and extend to develop robust matching techniques in

both 3D shape segments and 2D puzzle solving. In the 3D domain, segment-wise matching is

an important research problem that supports higher-level understanding of shapes in geometry

processing. Many existing segment-wise matching techniques assume perfect input segmen-

tation and would suffer from imperfect or over-segmented input. To handle this shortcoming,

we propose multi-layer graphs (MLGs) to represent possible arrangements of partially merged

segments of input shapes. We then adapt the diffusion pruning technique on the MLGs to find

consistent segment-wise matching. To obtain high-quality matching, we develop our own vot-

ing step which is able to remove inconsistent results, for finding hierarchically consistent cor-

respondences as final output. We evaluate our technique with both quantitative and qualitative

experiments on both man-made and deformable shapes. Experimental results demonstrate the

effectiveness of our technique when compared to two state-of-art methods. In the 2D domain,

solving jigsaw puzzles is also a classic problem in computer vision with various applications.

Over the past decades, many useful approaches have been introduced. Most existing works

use edge-wise similarity measures for assembling puzzles with square pieces of the same size,
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and recent work innovates to use the loop constraint to improve efficiency and accuracy. We

observe that most existing techniques cannot be easily extended to puzzles with rectangular

pieces of arbitrary sizes, and no existing loop constraints can be used to model such challeng-

ing scenarios. We propose new matching approaches based on sub-edges/corners, modelled

using the MatchLift or diffusion framework to solve square puzzles with cycle consistency.

We demonstrate the robustness of our approaches by comparing our methods with state-of-art

methods. We also show how puzzles with rectangular pieces of arbitrary sizes, or puzzles with

triangular and square pieces can be solved by our techniques.
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Acronyms

DP Diffusion Pruning

EMD Earth Mover’s Distance

HKS Heat Kernel Signature

HSV colour space of Hue Saturation Value

ICP Iterative Closest Point

LAB colour space defined by International Commission on Illumination

LFD Light Field Descriptor

MGC Mahalanobis Gradient Compatibility

MLG Multi-layer Graph

MRI Magnetic Resonance Imaging MST Minimum Spanning Tree

PCA Principle Component Analysis

PSD Positive Semi-definite

QP Quadratic Programming

RGB colour space of Red Green Blue

SDP Semi-definite Programming

SFM Structure From Motion

SHED Shape Edit Distance

SIFT Scale-invariant Feature Transform

SSD Sum of Squared Distance
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1. Introduction

(a) Vertex/point-to-vertex/point correspondence (b) Region/segment-to-region/segment correspon-
dences

Figure 1.1: An example of correct/good/meaningful correspondences: the two ver-
tices/segments been matched are located at the similar positions or regions on the two
shapes/meshes. In (a), two vertices are located at the top of the objects, which is a correct
correspondence (shown in the blue line). In (b), candle body is matched to the flame, which is
a incorrect correspondence (shown in the red line).

Finding correspondences is a classic problem in 2D/3D analysis domain[1]. As shown in Fig-

ure 1.1a, a correspondence can be visualised as a line that indicates the matching information

between two objects. Consistent correspondences show the similar topological/geometrical

information from the two objects (the blue lines in Figure 1.1b), and a bad/inconsistent one

indicates wrong matched information from objects (the red line in 1.1b).

Based on the objects that are linked/matched, we can category the finding of correspon-

dences into two sections: point-wise registration and segment-wise shape matching. The reg-

istration techniques are focused on the point-wise matching of individual objects, such as a

pair of vertices. The segment-wise matching techniques are computing regions, such as the

matching between a set of vertices to another set of vertices.

1.1 Point-wise Registration

Registration techniques are based on correspondences to align different objects under the same

coordinate system. The objects that have aligned can be in whether 3D or 2D. The goal of 3D

registration is to compute how to align and overlap one 3D object (such as 3D model or mesh)
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1.1. Point-wise Registration

Figure 1.2: The goal of 3D registration is to find the alignment between different 3D models
[2, 3]. The models can be point cloud, polygon mesh, or other kinds of format. Recent works
are focused on deformable models alignment.

on another one. This alignment can be in both rigid (no deformation between 3D objects)

or non-rigid (deformable 3D objects). The goal of 2D registration is to combine different

2D objects (such as a set of images) to construct a scene, such as MRI (Magnetic Resonance

Imaging) scans.

1.1.1 3D Surfaces Registration

In the past 20 years, various 3D surfaces registration techniques have been developed. [4, 5]

introduce the classic ICP (Iterative Closest Point). The iteratively computed closest point is the

constraint for correspondence alignment between two rigid surfaces. Variant works followed

this approach with improved performance in speed or accuracy [6, 7]. Later, [8] introduces

non-rigid ICP for non-rigid surface by adding in a registration error metric. Other works, such

as [9] have followed this approach. [10] introduced the classic spectral analysis technique. It

uses pairwise information of input correspondences to build affinity matrix and then run eigen-

decomposition to find eigenvectors. The values in the largest eigenvector are used to evaluate

the confidence of each input correspondence. Input correspondence with high confidence will

be selected as output matching. This approach has been widely used in 3D non-rigid registra-

tion [2, 11].

Divert from spectral analysis diffusion analysis is also based on eigenvectors and is used

for computing correspondences. It has good local-consistency preservation which allows us

to infer the globally consistent correspondences. [3] demonstrated good performance of using

3



1. Introduction

diffusion pruning in point-based shape matching. It involved local-consistency constraint in

affinity matrix construction. Furthermore, there is a designated pruning algorithm with local-

consistency to ensure good outputs. During the pruning, the new candidate correspondence

will only be accepted if it does not conflict with each already accepted correspondences, and

if it fits local-consistency constraint. [12, 9] have followed diffusion pruning and show good

performance in solving the point-wise matching problem.

Different from local consistency, cycle-consistency is also an important constraint in cor-

respondence computing. Figure 1.3 shows two different definitions of cycle-consistency. First,

cycle-consistency can be formed as a multi-way incomplete flow of correspondences between

all input objects. In Figure 1.3a there is no direct correspondences between node 2 and node 3.

However, they have been linked/matched through node 1. Second, the closed cycle-consistency

is defined by a complete dual-flow between all input objects. The dual-flow can be considered

as a forward-backwards matching between each pair of objects. In Figure 1.3b, each pair of

nodes have been matched by two correspondences in a forward-backwards manner. Closed

loops ensure stronger cycle-consistency than open loops. The cycle-consistency computa-

tion requires a collection of correspondences as input and a designated objective function to

evaluate the displacement between input correspondences and form cycle-consistency outputs

[13, 14]. Another approach is using mathematical modelling to find cycle-consistent corre-

spondences from inputs [15, 16].

1.1.2 2D Images Registration

2D Image registration is a popular research domain. The goal of 2D registration is to com-

bine/group different images into one complete image or scene by computing the correspon-

dences between images (for example, the registration of multimodal images). In the medical

industry, MRI and CT (Computed tomography) scans are essential for doctors’ diagnosis. The

scans output a set of images that are required to reconstruct to form a complete image/scene

of the object, which is supported by computing 2D registration between each scanned image
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1.1. Point-wise Registration

(a) Multi-way cycle-consistency with open
loops

(b) Two-way cycle-consistency with closed loops

Figure 1.3: An example of cycle-consistency.

(a) Align/merge two images into one for finding a
complete scene of the view [19].

(b) Align image pieces to form the original image
[20].

Figure 1.4: The goal of 2D image registration is to use the alignment of different images to
construct a new scene/image.

[17]. In the past 20 years, the usage rate of 2D image registration has significantly increased

in clinical practice [18]. Multimodal images registration also benefits other domains, such as

combine aerial photos to form a map [19], and mosaic imaging.

Register images can also help in solving jigsaw puzzles. In 1964, [21] introduces the

first work that is using a computer to solve the jigsaw puzzle problem. It computes the 2D

registration between puzzle pieces (each puzzle piece can be considered as an image) to find

the best alignment and solve the puzzle. In the early stage, works of using a computer to the
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1. Introduction

solve jigsaw puzzle problem are using the shape as the only constraint. There was no pattern

on the puzzle pieces. Today, techniques for solving jigsaw puzzle are focused on how to use

shredded image pieces to recover the original image/pattern. These works use the colour (the

colour of each pixel on each puzzle piece) as the constraint to find the similarity between puzzle

pieces. Then use a designated grouping/placement technique to find the correct placement of

each puzzle piece to solve the puzzle.

There are two types of placement techniques: the global approach [22] and the greedy ap-

proach [20]. The global approach places the pieces by a global optimisation function which

based on the similarity between each pair of pieces. The greedy approach based on the sim-

ilarity between pieces to group the most similar pieces, and then group the next most similar

pieces until all pieces are placed. The recent works of solving puzzles are focused on greedy

approaches.

1.1.3 Applications

Point-wise registration techniques have been widely applied in both 3D and 2D to solve prob-

lems of object recognition, model reconstruction, multimodal registration.

Object recognition is essential in many industries, such as the processing of medical data,

facial recognition, and object retrieval. Registration techniques output high accurate images to

help object recognition in medical imaging and benefit doctors’ diagnosis, such as better under-

standing of patient’s organ [23, 24] and better imaging of MRI scans [25]. Facial recognition

can detect and recognise a human face from different angle of views and variant illumination

environment. It can be used to identify a person with interest from camera footage, cognitive

assistance, and security problems [26, 27]. Object retrieval can identify a certain object (such

as a 3D model or a semantic definition) from a collection of various similar objects. It can help

the understanding of 3D scenes such as identify a tree from a landscape photo [28], and find a

3D model from data sets to achieve 3D models classification [29].

Model reconstruction is based on incomplete information (such as partially 3D scanned
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1.2. Segment-wise Shape Matching

data of a 3D model) to generate a complete 3D model. It is useful in the field of cultural

heritage, engineering. The model reconstruction helps the understanding of real-world ar-

chitecture and archaeology, and the recover ancient archaeology relics[30]. In the engineer-

ing domain, model reconstruction can help reverse engineering [31] and rapid manufactur-

ing/prototyping [32] in industries production.

Multimodal registration can combine different image to form a complete object. As men-

tioned in the section 1.1.2 Multimodal registration is important and useful in processing med-

ical data such as MRI and CT scans, map generation, and mosaic imaging. Multimodal regis-

tration can also help in solving jigsaw puzzle, which is important in archaeology research [33].

The broken ancient relics can be quickly restored by using puzzle solving techniques. Still,

puzzle solving techniques can also be applied in recovering the shredded files or evidence for

the police procedural.

1.2 Segment-wise Shape Matching

Segment-wise matching techniques are designed for understanding objects by matching parts

of objects. Psychological research shows that people are using the shape of parts and their

structural/spatial information to recognise and understand a 3D object [34]. For example, as

shown in Figure 1.5 a lamp can be decomposed into a stand, several sticks, and a cap. We use

the shape of these decomposed parts to identify their functions, and then we can infer it is a

lamp. Another example, the function of military camouflage is to split the object into irregular

shapes, to confuse enemy reconnaissance.

1.2.1 Registration Approach

Segment-wise matching techniques are based on point-wise registration methods. As men-

tioned in the section 1.1.1, spectral analysis [10] is a classic technique in solving the registra-

tion problem, and it is also popular in solving the segment-wise matching problem. [35] takes

symmetric shape segments (such as a pair of hands or arms) with their spatial/structural in-

7



1. Introduction

(a) A lamp can be decom-
posed into different parts in
human understanding.

(b) Matching similar parts can help the recognition and under-
standing between different shapes.

Figure 1.5: The shape recognition and understanding of mankind are based on shape decom-
position.

formation as input, then uses spectral analysis to find consistent correspondences between the

symmetric segments. [36] introduces SHED, which is also using spectral analysis for finding

consistent segment-wise matching between input shapes. They use pre-segmented shapes with

segments spatial/structural information as input and then use a designated iteratively approach

to find the most consistent and reliable correspondences. Based on these confident correspon-

dences, they can further compute the classification of input shapes.

The techniques introduced above are heavily based on spatial/structure information of input

segments, which is an important constraint in the segment-wise matching domain. In the 3D

registration domain, the usage of point-wise distance (such as the shortest path between a pair

of vertices of a mesh) is a popular constraint for finding consistent matching between objects.

Segment-wise matching also requires distance to evaluate the consistency between a pair of

segments. Since it is difficult to define the distance between a set of vertices and another set

of vertices, the spatial/structural information between segments can be used to evaluate the

consistency between them.
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1.2. Segment-wise Shape Matching

1.2.2 Hierarchical Approach

In recent works, since spatial/structural information is an essential constraint in the segment-

wise matching domain, the hierarchical approach has become popular in solving segment-wise

matching problem. [37] shows that they based on the spatial/structural to recursively decom-

pose the input shapes into parts, and then how to use deformation to compute the segment-wise

matching. [38] based on the deformation between segments to compute their spatial/structural

information, and then use them to compute the topological variants for finding consistent

segment-wise matching. In these works, the spatial/structural information can be considered

as a constraint that has limited a specific searching space of finding segment-wise matching.

1.2.3 Applications

Segment-wise matching is useful in shape analysis, which includes shape segmentation, shape

matching, shape retrieval and classification.

Segment-wise matching is useful in archaeology research. [39] shows the matching be-

tween pieces of ancient artefacts can indicate the relationship with the existing ones for further

study. Still, segment-wise matching can also handle broken objects, which means it can be

applied in ancient artefacts and documents recovery. Similar applications can also help the

research of palaeontology domain.

Segment-wise matching can improve the performance of segmentation techniques, which

can further help in other applications in the different industries (such as the processing of

medical data). For example, [40] introduces a segmentation technique with cycle-consistency

segment-wise matching to find globally confident segments. Good segments can help medical

imaging and benefits doctors’ diagnosis.

Another application of segment-wise matching is shape classification and retrieval. [36]

introduces a shape classification technique by using segment-wise matching to determine the

distance/similarity between input shapes. [41] introduces how to use segment-wise matching

and spatial/structural information to retrieval shapes. Shape classification and retrieval are
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1. Introduction

important for the management of nowadays online 3D model warehouse.

1.3 Motivation

1.3.1 Problem Observations

In this section, we are going to discuss the problems we have observed from existing works

and what hypothesis/research questions we have made. We found three problems in both 3D

and 2D domain. We use our hypothesis to answer each problem that we have found. For the

first problem and its corresponding hypothesis, we show a detailed solution in Chapter 3. In

Chapter 4 and 5 we show detailed solution for our second and third problem/hypothesis.

1.3.2 Problem 1: Over/Imperfect Segmentation

Figure 1.6: Matching results from

combining [36] and [13]. Only the

bases of lamps are correctly matched.

The first problem we have observed is that

imperfect/over-segmentation is challenging existing

shape matching techniques. In our early experi-

ments we have combined [36] and [13] to test cycle-

consistent segment-wise matching. [36] shows good

performance of segment-wise matching and [13] has

demonstrated cycle-consistent point-wise correspon-

dences can be found based on reasonable input

matching. We replaced the point-wise matching part in [13] by using the segment-wise match-

ing technique from [36]. We hope to find high-quality cycle-consistent correspondences be-

tween shape segments from our modified technique of [13]. However, the results are not con-

sistent, see Figure 1.6.

We realised that the graph distance caused incorrect results. In [36], it takes shape segments

as input and builds a graph to represent the spatial relation of the original shape. Divert from the

10



1.3. Motivation

(a) Segments and spatial graph of shape 1 (b) Segments and spatial graph of shape 2

Figure 1.7: An example of over/imperfect segmentation. The more segments lead to larger
spatial graph of segments.

point-wise matching in [13] segment-wise matching has a low range of distance distribution. It

leads to high sensitivity of correspondences computing in [13]. Still, over/imperfect segmenta-

tion also leads to large graph distance variation between a pair of similar inputs. For example,

in Figure 1.7, the shape 1 has been over segmented (two shapes are identical). In Figure 1.7a

the shape has more segments and will generate a graph that larger than the graph in Figure 1.7b.

In Figure 1.7a, the graph distance/shortest path between cap and base is significantly longer

than the distance between cap and base in Figure 1.7b. Around the over segmented regions in

Figure 1.7a the graph distances are also more multiplex than Figure 1.7b. As a result, these

unreliable graph distance caused correct matching results.

We make our first hypothesis to handle this issue.

• Can a technique that handles moderate topological changes in the underlying segment

graphs improve matching results?

• Can merged segments help improve the accuracy of segment-wise matching with incon-

sistent (over-/imperfectly) segmented inputs?

• How can we develop a representation that facilitates matching of merged segments, and

11
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(a) Merge segments from shape 1 (b) Merge segments from shape 2

Figure 1.8: An example of merging: by combining input segments we can generate new merged
segments. The merged segments help in finding the meaningful matching with a hierarchical
understanding between over/imperfect segmentation regions. For example, in (a) the merged
segment (1,2,3) can match to segment 1 in (b).

a technique for robust segment-wise matching?

We use a merging procedure to generate MLGs (multi-layer graph) for solving over/imperfect

segmentation problem in shape matching. As shown in Figure 1.8, based on the spatial graph

of input segments, and we merge segments to generate new layers that contain new 3D seg-

ments/shape parts. The merged segments are either spatially adjacent segments or segments

that have shared faces (two segments are touching each other). To match consistent regions in

MLGs, we can use diffusion pruning from [3] since it has good local-consistency in matching

problems. The detailed method explanation and experiment results are shown in Chapter 3.

1.3.3 Problem 2: Variously Shaped Jigsaw Puzzle Pieces

Solving jigsaw puzzle is also an old problem in computer science/vision since. Table 1.1

shows a brief survey of existing puzzle solving works. In 1964 [42] shows the first work that

uses a computer to solve a nine pieces jigsaw puzzle. Since then, variously works have been

introduced to solve jigsaw puzzles. In the early stage, researchers were computing how to

assemble pieces (the assembly stage) since there is no pattern on each puzzle piece. They use

the shape as the constraint to compute the similarity between input puzzle pieces. By using the

geometry information of the edge on each piece, the placement information can be computed.

12
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Paper Year Shape Colour Square Pieces Unknown Rotation Loop Constraint Puzzle Pieces
[42] 1964 Yes No No No No 9
[43] 1988 Yes No No No No 104
[44] 1991 Yes No No No No 24
[45] 1994 Yes No No No No 54
[46] 1998 Yes Yes No No No 54
[47] 2001 Yes No No No No N/A
[48] 2003 Yes Yes No No No 23
[49] 2006 Yes Yes No No No 7
[50] 2006 Yes Yes No No No 21
[51] 2008 Yes Yes No No No 320
[52] 2009 No Yes Yes No No 100
[22] 2010 No Yes Yes No No 432
[53] 2011 No Yes Yes No No 108
[54] 2011 No Yes Yes No No 3300
[20] 2012 No Yes Yes Yes No 9600
[55] 2012 No Yes Yes Yes No 432
[56] 2013 No Yes Yes No No 432
[57] 2013 No Yes Yes No No 22834
[58] 2014 No Yes Yes Yes Yes 9801
[59] 2015 No Yes Yes Yes No 22834
[60] 2015 Yes Yes N/A No No N/A
[61] 2016 No Yes Yes Yes Yes 3300
[62] 2016 No Yes Yes Yes No 22834
[63] 2016 No Yes Yes Yes No 100
[64] 2018 No Yes Yes Yes Yes 9801

Table 1.1: A simple survey of existing puzzle solving techniques.

For example, in figure 1.9a, if a piece has only two curved edges, then it is a corner piece.

In Recent works, puzzle pieces are in squares with the same size. Still, pieces are coloured

so that they can form a pattern. Same size square pieces have equivalent straight edges and

there is no other information that can be used in similarity computation except the colour. In

the correct pattern, each piece has only one correct placement. It means square pieces are

more challenging than traditional pieces in puzzle solving. It is why the recent works are using

colour as the constraint to solve puzzles. Today, only a few techniques can handle rectangular

pieces and most recent works are only available for square pieces with a fixed edge length.

The second problem we have observed is that recent works can only handle square pieces
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(a) A corner piece (b) A piece at border (c) A inner piece with blanks
(convex regions)

(d) A inner piece with tabs
(convex regions regions)

Figure 1.9: Using geometry information in puzzle solving.

with the same size. As shown in Figure 2.1 and discussed in section 2.2.3, current works use

the whole edge of each puzzle piece to compute similarity scores. Thus, the colour matrices

should have the same dimensions. It leads to a fixed number of pixels on piece edges, which

means the same size of puzzle pieces.

We make our second hypothesis:

• Can we develop a more flexible technique that is based on partial information from a

whole edge for puzzle solving of rectangle pieces of arbitrary sizes?

As shown in Figure 1.10a, our input puzzle has rectangular pieces with different sizes. If

we break/subdivide the whole edge into sub-edges, we can ensure the length of sub-edges (the

number of pixels in each sub-edge) is constant. Based on the sub-edges, it is possible to solve

puzzles with differently shaped pieces. To the best of our knowledge, there is no existing work

that can solve puzzles with rectangular pieces with different edge length. [65] is the only work

that closes to our goal. It demonstrated a method that can handle pieces like Brick Walls, where

each rectangular piece has a different height and a fixed width, shown in Figure 1.10b. The

Brick Walls pieces are still less challenge than our case since in Figure 1.10a we have different

length of both height and width in each piece.
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(a) Rectangular pieces with different edge-length of
both height and width

(b) Brick Wall pieces have a fixed length of
width[65]

Figure 1.10: In (a) we use sub-edge (orange lines) instead of the whole edge (red lines) to
ensure the same edge-length for similarity measurement between puzzle pieces. We can handle
edge-length variation in both height and width, which is more challenging than (b).

1.3.4 Problem 3: Solving Jigsaw Puzzles with Shape Matching Techniques

The third problem we have observed is that 3D shape matching techniques can also be applied

in solving jigsaw puzzles. We have noticed that the second step (assembling) can be considered

as a matching problem in terms of high-quality correspondences. Still, matching techniques

can be adapted in both 3D and 2D domain. For example, functional maps [66] produces good

results in 3D shape analysis [67, 68, 69] and [70] shows functional maps can also be adapted in

2D image processing domain with good performance. To the best of our knowledge, only a few

works are using cycle-consistency as a constraint in puzzle solving, and diffusion framework

has not been considered. Thus, by using an appropriate 3D shape matching technique, we can

assemble puzzle pieces in a novel way.

As mentioned in Chapter 1.1.1, cycle-consistency is a useful constraint for the problem of

matching multiple objects. For example, in Figure 1.3, given three objects A, B and C, cycle

consistency enforces matchings from A to B, and from B to C such that C to A is also mean-

ingful. In puzzle solving the piece-wise similarity computation with backwards-difference es-

timation is also related to two-way cycle-consistency [54, 59]. The loops constraint in [58, 64]

can be considered as a designated four-way cycle-consistency for assembling puzzle pieces.
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We make our third hypothesis.

• Can we use cycle-consistency as the constraint to compute piece-wise correspondences

for puzzle solving?

From our experiments, under some extreme cases, the existing works only have 30% preci-

sion rate in similarity scores. Cycle-consistency ensures that we can locate and match globally

confident edges of puzzle pieces, to serve/benefit assembling step and avoid incorrect results

from local noise. Local consistency can also perform good edge-wise matching results by en-

sures the accuracy of each correspondence. For global case, we hope by using MatchLift [16]

we can find globally cycle-consistent pieces from noisy input. The reason for using MatchLift

is that it has up to 50% error tolerance of input data. It is a robust and open source technique

for cycle-consistency computation. For local case, in [3] diffusion framework shows good

local-consistency, and we hope it can find good matching between puzzle pieces.

1.4 Contributions

To our first hypothesis our contributions are:

• We propose a multi-layer graph (MLG) representation to capture detailed geometric,

topological and hierarchical information from the input and merged segments of shapes.

• We propose a matching technique to obtain geometrically, topologically and hierarchi-

cally consistent matching results with over/imperfectly-segmented inputs. From our ex-

periments, it outperforms [36] quantitatively and qualitatively in our user study.

• To the best of our knowledge, this is the first technique which can obtain meaningful

merged-to-merged segment-wise correspondences. This has not been considered before

in the literature.

To our second hypothesis our contributions are:
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• We innovate to use corner-wise correspondences for the puzzle solving task — we

demonstrate its usefulness for square puzzle solving, and illustrate one example of how

it can be adopted for rectangular pieces of arbitrary sizes.

• We propose a loop discovery technique for puzzle solving by modelling it as a cycle

consistent correspondence problem, which allows to use the MatchLift framework [16]

for puzzle solving.

To our third hypothesis our contributions are:

• We innovate to use sub-edge-wise correspondences for the puzzle solving task — we

demonstrate its usefulness for puzzle solving of square pieces, rectangular pieces with

different size, and pieces of squares and triangles.

• We propose a two-way cycle-consistency discovery technique for puzzle solving by

modelling it as a local-consistent correspondence problem, which allows us to use the

diffusion analysis [3] to infer the global-consistent correspondences for puzzle solving.

1.5 Thesis Structure

In Chapter 1, we have introduced the background of consistent matching problem in both 2D

and 3D domains, and we have discussed the three problems that we have observed from existing

works and we show our hypothesis to handle each problem. Our contributions are shown in

section 1.4.

In Chapter 2, we discuss related works in two categories, shape matching and puzzle solv-

ing. We introduce shape matching related works in section 2.1. We first introduce the popular

constraints for solving shape matching problem, and then we show variant works in 3D shape

matching. The puzzle solving related works are introduced in section 2.2. We first introduce

similarity measurement techniques of puzzle pieces, and then we show how to place each puz-

zle piece by using piece-wise similarity information.
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In Chapter 3, we explain our MLGs approach to answer the first problem that we have

found. We introduce our merging technique and our pruning technique. Then, we evaluate our

proposed method in both rigid and non-rigid data sets, and we show that the MLGs approach

is better than state-of-art works by comparing our method with them. We also summarise our

limitations and show our short term future work.

In Chapter 4, we show how to use cycle-consistency in puzzle solving and answer our

second and third problem (we mainly focus on the third problem). We first introduce MatchLift

in details, and then we show how to model puzzle pieces into MatchLift framework. We

evaluate our proposed method in different experiments, and we compare our proposed method

with state-of-art work. Still, we summarise our limitations and show short term future work.

Chapter 5 shows how to use the diffusion framework in puzzle solving and our technique

can handle variously shaped puzzle pieces, this chapter also answers the second and third

problem. First, we show our EMD based puzzle pieces similarity measurement. Then, we

model puzzle pieces into diffusion framework and we prune inconsistent results by using our

cycle-consistent pruning procedure. Our experiments show that the combination of cycle-

consistency and diffusion analysis can produce good results. In the end, we show our limitation

and short term future work.

Chapter 6 shows our long term future work and the conclusion of this thesis. Section 6.1

will discuss our future works in long term only, since we have addressed the limitations and

the short term future works in the section 3.7, 4.7, and 5.4. Finally, section 6.2 will summarise

the thesis.
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Related Works
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Since 3D shape matching and 2D puzzle solving can be modelled as correspondences problem,

our work covers both domains. Thus, we use section 2.1 and section 2.2 to introduce the

background of 3D shape matching and puzzle solving, respectively.
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2.1 Registration and Shape Matching

Our method involves several categories of global geometry features and distances 2.1.1, regis-

tration in 2.1.2, hierarchical analysis of shape topology in 2.1.3, segment-wise shape matching

in 2.1.4, and cycle-consistency in 2.1.5. We first introduce notable works in each category, then

we summarise and discuss existing works in 2.1.6.

2.1.1 Global Geometry Features and Distances

There are many shape features and distance measurements developed over the past decades.

We mention some important features and distances, and those that are particularly relevant in

this section. We would like to refer readers to recent surveys [71, 1].

Geometry features have been used as the constraint to evaluate the similarity between 3D

shapes. Light Field Descriptor [72] is one of the notable geometry descriptors. It is based on

a set of 2D images of the input shape (captured from different angles) and uses image-based

features for measuring shape similarity. [73] introduces a 3D shape histogram approach with

sampled points on meshes to determine shape similarity. [74] further extends 3D shape his-

tograms into A3/D1/D2/D3/D4 descriptors with different random sampling-based measures.

[75] uses eigenvalues from PCA to determine shape distribution features (such as linearity,

sphericity, omni-variance, change of curvature). These distribution-based features may be un-

reliable in some instances (e.g. the left base and right cap have similar scores in Fig. 3.6).

Heat Kernel based descriptors such as Heat Kernel Signature (HKS) [76] use heat diffusion on

meshes to define point-based features. Persistent-HKS [77] extends HKS and can be used as a

descriptor for partial matching of non-rigid shapes.

Distances have also been used as a constraint in shape matching to limit distance/topological

variant. Geodesic distance has been widely used in solving the shape matching problem, which

is defined by the shortest path between two points on a mesh. Early works have confirmed

that geodesic distance has good performance in preserving original distance information under

a large surface/shape/articulations deformation or isometric transformation [78, 79, 80]. To
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obtain geodesic distance, different approaches have been developed, such as Bellman–Ford al-

gorithm, Floyd-Warshall algorithm, Dijkstra’s Algorithm, or others. [76, 77, 54, 59, 65] shows

that the norm is a popular way to estimate the distance between two vectors. Different from a

traditional point-to-point distance, Mahalanobis distance [81] computes the distance between

one point and a distribution. It is not sensitive to scale changing and it can be used to compute

unbalanced or multivariate data sets. For computing two distributions, Earth Mover’s Distance

or EMD [82, 83] is a choice. Based on the given distance between individual objects, EMD

computes the distance between two multi-dimension distributions from objects.

2.1.2 Registration

Shape registration and point-based matching is an important research area with a long his-

tory [71]. The research challenges are to develop robust and accurate techniques to handle

shapes undergoing different transforms (rigid) and deformations (non-rigid), including near-

/non-isometric deformations [84]. The rigid registration techniques optimise correspondences

alignment to globally place/align two shapes without deformation. For example, ICP (iterative

closest point) is a popular algorithm in rigid transformation[4, 5]. It uses the closest point as

the constraint to iteratively compute correspondence construction and correspondences align-

ment. Variant works are followed by this approach with improved performance in speed or

accuracy [6, 7]. The non-rigid registration techniques allow deformation between two shapes

to be aligned. It optimises local correspondences alignment on a pair of shapes. For exam-

ple, [85] uses designated energy functions to compute the local placement of correspondences

for shape alignment. Find subsets of sampled shape features can help form meaningful or

semantic matching [1]. There are further many existing works, e.g. [86, 87, 88, 89] rely

on sampled/key points on input shapes to compute correspondences, and then use designated

objective functions to analyse alignment/distortion errors and generate matching. One of the

notable techniques [90] uses deformation distortions to obtain semantic matching.

Compared to other techniques that require specific constraints (e.g. sphere topology [84]),
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one of the notable matching techniques [10] uses spectral analysis and has inspired many sub-

sequent and useful point-based matching and registration techniques, e.g. [2]. The spectral

pruning technique [2] assumes near-isometric deformation using global geodesic isometry.

However, when the deformation is large (becoming non-isometric deformation), the technique

does not perform well. [3] proposes a diffusion pruning (DP) technique to infer global consis-

tency from locally consistent matching. It has been shown to handle moderate non-isometric

deformation well [12]. Shape registration and matching have been studied for more than 20

years, a complete literature survey of shape registration and matching techniques is beyond the

scope of this thesis. We would like to refer readers to surveys (e.g. [71] and [1]).

2.1.3 Hierarchical Understanding

Some works solve the shape matching/synthesis problem using a hierarchical approach for

higher-level understanding. [91, 92, 93] use graphs encoded with probabilistic and topological

information to solve region-wise matching or shape synthesis problems. [56] converts input

shapes into component relationship graphs and then combines graph subsets with designated

symmetric functional arrangement for synthesising new shapes. [38] combines component

relationship graphs and deformation energy constraints to establish meaningful segment-wise

correspondences of input shapes. Binary decomposition approaches are also used to help with

hierarchical understanding. [94] introduces a novel shape representation in a binary hierar-

chical manner which cuts a shape from-whole-to-segment hierarchically. [37] finds the best

binary segmentation in a top-down manner, via matching along the object hierarchy and uses

recognition measures to handle structural variations and inconsistent initial segmentation. It

has better performance than [38]. The technique, however, may fail in fine-grained matching

because such cases lack the support of cross-layer information (see more discussion in Sec-

tion 3.7.) [95, 96] focus on merging shape parts to form a hierarchical graph representation of

part-functionality with geometry and topological information. Inspired by all these works, we

propose to build a multi-layer graph by merging adjacent nodes in a bottom-up manner. We do
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not define specific constraints (e.g. functional constraint [56] or binary segmentation [37]). The

search space we consider, compared to existing work, is arguably larger. To address this, we

further develop a robust matching technique to discover meaningful segment correspondences

even under inconsistent (over/imperfect) input segmentation.

2.1.4 Segment-wise Matching

A few works in the literature focus on segment-wise matching which we survey here. [35]

relies on HKS features for pre-segmentation. It uses spectral matching to find segment-wise

correspondences with a focus on symmetric/pairwise issues. However, it outputs pair-to-pair

correspondences and may lead to no matching if there are left-right symmetry issues. [38]

uses combinatorial tree search and a deformation energy constraint to establish meaningful

segment-wise correspondences. One shortcoming of this method is that it may not work on

fine-grained segmented shapes. [37] finds the best binary segmentation in a top-down manner,

and matches along the object hierarchy. It does not exploit matching from object hierarchies

and may result in some incorrect correspondences (see Figure 3.14a). SHED (Shape Editing

Distance) [36] takes shape segments and performs matching to define a better shape similarity

measure. It innovates to find both one-to-one and one-to-many segment-wise correspondences,

using both geometry and topology information. It forces full matching which means each

input segment must have at least one correspondence to another shape, which helps resolve

some ambiguities with perfect input segmentation. However, when the input segmentation is

inconsistent, incorrect matching may result.

2.1.5 Cycle-consistency

In recent years, various works have successfully applied cycle consistency to obtain globally

consistent matchings in the image domain. [97] achieve good performance in structure and

motion computation by using cycle consistency as the constraint to remove globally incorrect

geometric relations. [98] uses globally cycle consistent image data to handle the problem of
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duplicate structure instances in SFM (structure from motion). [70] uses cycle consistency to

solve co-segmentation problem in images domain. [14] shows a robust joint image alignment

technique which is based on the usage of cycle consistency. [99] uses cycle consistency to solve

image-to-image translation problem in computer vision. [100] shows a semantic image-wise

matching technique with cycle consistent features in the images.

Cycle consistency can also help in solving shape matching problem. [15] shows a semi-

definite programming (SDP) approach for solving the cycle consistent matching problem in the

3D shape matching domain. It shows that SDP can provide up to 50% error tolerance of pair-

wise matchings between input objects. Building on [15], [16] introduces MatchLift for solving

globally consistent matching in a general setting, with a tolerance rate of 1−Θ(log2 n/
√

n) to

random outliers.

2.1.6 Summary

Inspired by [16], we suggest that the puzzle solving can be cast in the MatchLift framework,

which helps discover loop correspondences. To do so, we use corners of pieces as the basic unit

while most existing techniques use the whole edges (e.g. MGC). It provides a flexible frame-

work for solving both square and rectangular puzzles of arbitrary sizes. The high tolerance to

input errors of our method (due to the MatchLift framework) helps improve the precision of

MGC matchings, making our method more robust for challenging inputs. We introduce the

details in Chapter 4.

To our knowledge, none of the existing techniques considers inconsistent (over-/imperfect)

input segmentation. Our technique is the first work to handle this challenge. Our novel idea is

to use a multi-layer graph to represent possible merging arrangement and carry out our match-

ing on such graphs. Together with a novel voting step (details will be explained in the section

3.5), our results are geometrically, topologically and hierarchically consistent (measured by

different user studies).
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2.2 Puzzle Solving

We discuss existing puzzle solving techniques in three sections. There are two steps in solving

jigsaw puzzles: first, compute similarity scores between any pair of puzzle pieces; second,

assemble puzzle pieces based on similarity scores. Section 2.2.1 discusses similarity measures

for piece matching. Section 2.2.2 summarises assembly techniques for puzzle solving. Finally,

Section 2.2.3 summarise the existing techniques.

2.2.1 Similarity Measurement of Puzzle Pieces

Pairwise similarity measures of puzzle pieces have been widely used for puzzle solving. [20]

introduced MGC, which is a dissimilarity metric. It computes Mahalanobis distance of colour

matrices gradients to determine the boundary similarity between puzzle pieces. Another no-

table work is SSD (Sum of Squared Distance) approach from [22]. It also uses the colour in-

formation of pixels at boundaries of each piece, and the similarity scores can be found by com-

puting squared distance between different colour values. SSD approach is available for various

colour spaces, such as RGB(Red Green Blue), HSV(Hue Saturation Value), or LAB(Lightness

Red/Green Blue/Yellow). [53, 57] uses SSD as the similarity measurement.

As described above, MGC and SSD have been widely used in solving puzzles. Still, some

works involved both MGC and SSD. [101] combines (by addition) MGC and SSD together

as piece-wise similarity measurement. It shows that the combined measurement has better

performance than MGC alone. Other works such as [58, 102] use original MGC/SSD as their

similarity measurement.

Various L norms are also popular in puzzle solving. [54, 59, 65] use Lq
p, L1, and L2 norm to

compute similarity scores between puzzle pieces, respectively. They convert the pixels of edges

into colour matrices. Each colour matrix contains colour channels, and each colour channel is

a vector and the elements inside of vector are colour values. Therefore, by using L norms the

distance between colour channels/vectors can be determined, which can be considered as the

similarity score between puzzle pieces. Using L norms or SSD have a similar computation
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pipeline. We use Figure 2.1 and section 2.2.3 to discuss the details.

2.2.2 Assemble Puzzle Pieces

Puzzle solving is a challenging problem due to the large search space. Many works use greedy

approaches for puzzle assembly from pieces [54, 20, 59, 102, 103]. In general, a greedy ap-

proach uses designated constraints (in terms of placement of pieces and similarity measure) to

find the correct assembled results. They often begin from a small, confident region and grad-

ually expand it by accepting new pieces. Since adjacent pieces are locally consistent, these

techniques often do not refine or rectify incorrect assembly results. The final assembled results

may not be globally consistent.

Greedy approaches with loop constraints show good performance. [58] introduces a novel

four-piece-loop constraint for finding small cycles. Each cycle can be considered as an as-

sembled region that contains four puzzle pieces. They first compute all pairwise MGC scores

as the similarity measure between puzzle pieces. Based on the MGC scores they find small

cycles. Next, they merge small cycles to build larger cycles, which form larger assembled re-

gions. [64] builds on the idea and hierarchically merges small cycles. When incorrect pieces

are matched, loop constraints provide a mechanism to examine piece neighbours and remove

inconsistent ones. It improves puzzle assembling results. [61] models puzzle assembly as a

linear programming (LP) problem. They iteratively optimise pieces and increase the size of

the assembled results. Each iteration of LP optimisation can be considered as a general loop

constraint optimisation. It shows that LP can perform better than [58].

Global approaches [47, 104, 22, 101] assemble puzzles by optimising a global objective

function. [55] shows to use quadratic programming (QP) to optimise piece placement globally.

[63] shows QP performs good assembled results even when there are missing puzzle pieces

from the input.
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Figure 2.1: Typical similarity measure between a pair of puzzle pieces. Pieces with different
edge-length are challenging for this approach.

(a) Flipped pixels ordering generates wrong result (b) ordering of pixels on an slope edge

Figure 2.2: When ordering of pixels is changed the similarity scores will no longer be stable
anymore.

2.2.3 Summary

Though loop constraints have been used in the literature, we observe that these techniques are

mostly tailored for solving square puzzles only. They are not flexible to extend and handle

rectangular pieces of arbitrary sizes. It inspires us to tackle this challenge, and the use of

corners and cycle consistency for puzzle solving. We show our proposed method in Chapter 4.
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2. Related Works

In the similarity measurement, the ordering of pieces might be a problem. Figure 2.1 shows

a left-right similarity measure example of two square pieces with nine pixels on each. For each

piece, existing works select all pixels of an edge and convert them into a colour matrix. In this

example, we use RGB colour space and there are three colour channels in each colour matrix.

Then they compute distance (such as L1 norm) between each pair of pixels that are from the

same colour channel with the same pixel index. Therefore, the top value of colour channel Ri

will not be computed with the middle/bottom value in colour channel R j (if we flip the pixel

indexing of Piece j then the top value of Ri will only be computed with the bottom value in

the R j). The same procedure will be applied to other RGB values in other colour channels to

generate channel-wise distances. The final left-right similarity score between the two pieces

will be computed by combining all channel-wise distances. One thing that should be noticed

is that the ordering of pixels. As shown in Figure 2.2a when the ordering of pixels are flipped,

the similarity measure will return an unstable score to indicate two identical edges are highly

dissimilar.

This ordering problem is not challenging square puzzle pieces, but it is tricky for pieces

with slope edges (such as the triangular pieces). As shown in Figure 2.2b, the slope edges need

a fixed ordering to label which pixel is the first one and where is the last pixel of an edge. In

our work, we convert colour values from the same colour channel into histograms, and then

we compute histograms distribution to measure the similarity score. This histogram approach

is not sensitive to pixels ordering. We show detailed information in Chapter 5.
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Consistent Segment-wise Matching

with Multi-layer Graphs
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3. Consistent Segment-wise Matching with Multi-layer Graphs

3.1 Introduction

Given two similar 3D meshes (for instance, two triangle meshes) with pre-defined segments,

3D segment-wise matching aims to establish meaningful correspondences of segments be-

tween the two meshes. It is an important problem as it helps with higher-level and hierarchical

understanding in geometry analysis [37]. It further impacts many downstream applications,

like defining better similarity measures between 3D models [36, 93, 35], functionality analy-

sis [105], surface registration [2] and structure-aware analysis [106].

A few notable techniques propose in recent literature. Many of them combine topological

and geometrical information to help solve the segment-wise matching problem. [36, 35] both

take input shape segments and build a component graph to capture the topological relation-

ship of segments. Together with the geometric similarity of segments, they adapt the spectral

technique [10] for matching. SHED (Shape Editing Distance) [36] innovates to consider one-

to-many matching while [35] focuses on the robust matching of non-isometrically deformed

segments and disambiguating symmetric segments. [38] also takes pre-defined shape segments

as input and builds a component graph to represent their topology. To solve the segment-wise

matching problem, they use deformation energy as an effective constraint to produce higher-

level semantic matching results. [37] builds a hierarchical component graph using a binary

partition technique. Their matching technique adopts a top-down approach and achieves good

results.

We observe two problems for the methods in the existing literature. First, most of these

techniques rely on input with consistent segmentation [36, 35, 38, 37]. When the input seg-

mentation is inconsistent (over-/imperfectly segmented), they often lead to incorrect corre-

spondences. For example in Figure 3.1, the two lamps are inconsistently segmented (one has

more segments than the other on the joint). [36] (Figure 3.1a) investigates one-to-many corre-

spondences and further requires full matching, i.e. every segment from one shape is matched
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3.1. Introduction

(a) SHED Matching Result (b) Our Bottom Layer Matching Result(c) Our Higher Layer Matching Result

Figure 3.1: Example matching of inconsistently (over/imperfectly) segmented shapes. In all
figures in this chapter, colour of segment indicates segment boundary only (not correct corre-
spondences). Instead, we use blue lines for correct correspondences and red lines for incorrect
ones (according to our user study). We further use polygons with the same colour to indicate
one-to-merged or merged-to-merged correspondences in our results. In this example, it is dif-
ficult to define a correct correspondence for the middle (purple) joint of the left lamp. In our
results we do not force full matching but leave it as unmatched to reduce incorrect matching.
Full matching techniques such as SHED produce incorrect matching between inconsistently
segmented regions.

to at least one segment in another shape. Affected by the different joint composition on the

right lamp, the topology (graph distance) of the underlying component graphs differs a lot. As

a result, [36] returns incorrect matchings (indicated by red lines). Second, correct segment-

wise matching also depends on global shapes and functionality. For example, in Figure 3.1b

the upper stick of the right lamp and the lower stick of the left lamp are over-segmented into

two segments. Ideally, the left lamp’s upper stick should be matched to all segments of the

upper stick on the right lamp. It requires merging of segments before a meaningful, consis-

tent segment-wise matching can be established (Figure 3.1c). These observations inspire us to

investigate the research questions in section 1.3.2

To address these questions, we propose to construct multi-layer graphs (MLGs) to represent

the input shapes with inconsistent segments. Inspired by [95], an MLG is a graph consisting

of nodes with input and merged segments which is built in a bottom-up manner by neighbour

merging. Different from [95], our merging technique uses many possible combinations based

on the connectivity (if two segments share common faces/vertices) of input segments. In this

way we achieve better capability with over-/imperfect input segmentation than [95].
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3. Consistent Segment-wise Matching with Multi-layer Graphs

Next we find consistent matching between MLGs by adapting the diffusion pruning (DP)

technique [3] and using both geometric and topological constraints. Inspired by spectral tech-

niques, DP computes matching results by inferring global consistency from the local matching.

It has been shown to be robust against moderate non-isometric deformation [3]. It would allow

us to handle moderate changes in graph distance due to over/imperfect input segmentation.

Further, different from existing techniques [36, 35] that apply spectral matching on com-

ponent graphs built from input segments only, we apply DP on the proposed multi-layer graphs

(MLGs) consisting of both input and merged segments. Compared to [36] which innovates

in one-to-many matching, our technique can offer both one-to-merged and merged-to-merged

correspondences. From our experiments, our technique produces better results than [36]. The

obtained matching results are also consistent across layers while existing top-down approach

[37] may fail (see Section 3.7).

To be consistent throughout this chapter, we use the term “components” for semantic parts

obtained from perfect segmentation that respect human intuition. “Segments” instead refer to

regions resulted from perfect or imperfect segmentation. Section 3.2 provides an overview

of our technique. Then we discuss the construction of MLGs from input shapes and initial

matching computation in Section 3.3. Section 3.4 explains diffusion pruning and how to adapt

it on MLGs. After that we vote the pruned results in Section 3.5. We evaluate our method in

Section 4.5. Finally, discussions and conclusions are presented in Sections 3.7 and 3.8.

To our knowledge, none of the existing techniques consider inconsistent (over-/imperfect)

input segmentation. Our technique is the first work to handle this challenge. Our novel idea

is to use a multi-layer graph to represent possible merging arrangement, and carry out our

matching on such graphs. Together with a novel voting step, our results are shown to be

geometrically, topologically and hierarchically consistent.
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3. Consistent Segment-wise Matching with Multi-layer Graphs

3.2 Method Overview

Figure 4.3 shows an overview of our proposed method for segment-wise matching with in-

consistent input segmentation. It involves four steps, namely multi-layer graph construction

(Section 3.3), discovery of anchor correspondences (Section 3.4), higher layer matching

(Section 3.4.2) and voting (Section 3.5).

Given two shapes with inconsistent segments, we build two hierarchical segment graphs

(referred to as multi-layer graphs, MLGs) to represent the original shapes. Each input segment

in a shape is assigned a graph node. All input segment nodes are grouped into one layer,

denoted as the bottom layer. A merging stage is then applied to the nodes in the bottom

layer to construct the MLG. It generates new nodes and new layers and is applied recursively

until all nodes are merged into one — the original shape. After we have built two MLGs, we

compute geometry similarities between nodes in the two MLGs for initial matching. Next, we

adapt the diffusion pruning technique to compute good matching. There are two stages: the

first pruning stage involves only the bottom layer in both MLGs. This is inspired by [36] as

SHED provides reasonable results with perfect segmentation. Only strong results are used as

anchors for the second pruning stage. For inconsistent input with large topological/geometrical

variation however, using only nodes in the bottom layer alone often does not provide acceptable

results. The second pruning further uses these anchors and involves more layers than previous

pruning computation. Finally, we apply our voting technique to extract and confirm highly

confident segment matching, using correspondences in higher layers.

3.3 Multi-Layer Graph and Initial Matching

Given a shape with predefined segments, we define the multi-layer graph (MLG) as a hierar-

chical representation. It covers possible merging arrangements of segments that are adjacent in

a shape. An MLG consists of nodes and edges. Nodes are further grouped into layers. Bottom

layer (layer 1) consists of input segment nodes whilst higher layers consist of nodes due to
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3.3. Multi-Layer Graph and Initial Matching
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3. Consistent Segment-wise Matching with Multi-layer Graphs

merging of two adjacent nodes in a lower layer. Nodes in internal layers are further connected

by edges indicating their adjacent connections (within layer) and where the nodes are merged

from (across this and lower layer). The highest layer consists of only one node. It represents

the entire shape where all segments are merged. We first define the construction of multi-layer

graph equipped with a specific volume constraint, and then discuss the initial correspondences.

3.3.1 Multi Layer Graph

Node Construction with Volume Constraint Precisely, let S = (V,E) be a 3D shape with

sets of vertices V , edges E and pre-defined input segments {S1,S2,S3, ...} where S =
⋃

Si is

the union of vertices ⊂V and edges ⊂ E in Si. Denote by N̄[l]
k the kth node in the lth layer of a

source shape MLG(S). We construct the nodes of MLG(S) recursively in a bottom-up manner:

N̄[l]
k =


Sk if l = 1

N̄[m]
i ∪ N̄[m]

j if N̄[m]
i ∩ N̄[m]

j 6= /0, i 6= j, Cl−1
vol ≤VOL(N̄[l]

k )< Cl
vol, m < l

(3.1)

In this way every input segment Si is assigned a node N̄[1]
i = Si and are grouped to form the

bottom layer (l = 1). Higher-layer nodes are created by merging all vertices and edges in

lower-layer nodes (in the same layer) only if they are adjacent. Two nodes are adjacent if they

share some vertices ⊂ V , edges ⊂ E in S such that N̄[l]
i ∩ N̄[l]

j 6= /0. Simply merging adjacent

nodes would lead to exponential growth in number of merged nodes. We thus define a volume

constraint Cl−1
vol < VOL(N̄[l]

k ) < Cl
vol to restrict the volume of a node in each layer. We define

the upper bound Cl
vol =

l
LVOL(S) for each layer l, where L is the maximum number (a user

defined parameter) of layers in MLG(S) and VOL(S) is the total volume of shape S.

Edge Construction Next, we define the edges of MLG(S). For every pair of nodes N̄[l]
i , N̄[l]

j

in the same layer l with shared vertices/edges (i.e N̄[l]
i ∩ N̄[l]

j 6= /0), a within-layer or “adjacency”

edge (N̄[l]
i , N̄[l]

j ) is established between them. Let N̄[l]
k = N̄[m]

i ∪ N̄[m]
j be an internal node which is

merged from two nodes N̄[m]
i and N̄[m]

j , where m < l. We establish two cross-layer or “part-of”
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3.4. Diffusion Pruning with Anchors

edges (N̄[m]
i , N̄[l]

k ) and (N̄[m]
j , N̄[l]

k ) between them. That is, the edge e ∈ EMLG(S), the edge set of

MLG(S), is defined as:

e =


(N̄[m]

i , N̄[l]
j ) if m = l, i 6= j, N̄[m]

i ∩ N̄[l]
j 6= /0

(N̄[m]
f , N̄[l]

k ) if m < l, i 6= j, f ∈ {i, j}, s.t. N̄[l]
k = N̄[m]

i ∪ N̄[m]
j

(3.2)

We have tried different weights for within-layer and cross-layer edges, and found empirically

that setting all edge weights to 1 can produce good results. We therefore use this for all sub-

sequent experiments due to simplicity. An example of the construction of nodes and edges in

MLG is shown in Figure 3.3.

3.3.2 Initial Matching

Next, we compute the geometric similarity score and generate initial correspondences. Our

proposed technique mainly uses LFD as it is more robust for small segments. In general,

local features can be used to obtain initial matching, but the results are likely to be globally

inconsistent. Our technique aims to produce consistent segment-wise matching results. We

have also tried several techniques and found that LFD [72] similarity scores perform well (even

for our non-rigid experiments as individual segments are relatively small and close to rigid).

We will use LFD similarity throughout this chapter. We pre-compute MLG(S) and MLG(T )

for two input shapes S and T . For each node N̄[u]
i in MLG(S) we pre-compute the K best

matching (in terms of LFD similarity scores) of node Ñ[v]
j in MLG(T ), as its initial matching

(shown as the yellow lines in Figure 3.3).

3.4 Diffusion Pruning with Anchors

Once the initial matching has been pre-computed, we adapt and apply diffusion pruning to ob-

tain consistent matching results. We equip our technique with two pruning stages (Figure 4.3).

The first stage considers input matching between nodes in the bottom layers of the two MLGs

only (i.e. correspondences between nodes N̄[1]
i and Ñ[1]

j ). We treat these first-stage matching
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3. Consistent Segment-wise Matching with Multi-layer Graphs

results, with high confident scores as anchors. In the second stage, we consider higher layers

matching (i.e. correspondences between nodes N̄[u]
i and Ñ[v]

j ) in the MLG hierarchy. There are

often a large number of nodes in the MLG. The first-stage anchors offer good constraints to the

second-stage matching results.

One of the matching problems with inconsistent input segmentation is that the underlying

connectivity graph often shows non-isometric inconsistency in term of topological distances.

The diffusion pruning technique [3] has been shown useful to obtain good point-wise corre-

spondences under moderate non-isometric shape deformation. We thus adapt it to our use

for segment-graph hierarchical matching. Given some initial correspondences, we construct

an affinity matrix to encode both geometry similarity and topological consistency of initial

matching. We then adapt the diffusion framework to generate confidence scores. Based on the

scores, inconsistent correspondences are pruned in a greedy manner. We would refer readers

to [3] for the mathematical and implementation details. Here, we focus on the adaptation for

our segment-wise matching task.

3.4.1 Affinity Matrix Computation

Given some segment-wise correspondences C, we build an affinity matrix M of size |C|× |C|.

M encodes both topological (MLG distance) and geometry (LFD) information. As shown in

Figure 3.3 each element in M(a,b) indicates the compatibility of two segment-wise correspon-

dences a = (N̄[u]
i , Ñ[v]

j ) and b = (N̄[n]
x , Ñ[m]

y ) (a,b ∈C).

Using local isometry to infer global consistency is a key concept in diffusion pruning [3].

For a pair of nodes N̄[u]
i and N̄[n]

x in the same MLG, we define the MLG distance d(N̄[u]
i , N̄[n]

x )

as the number of edges in the shortest path (in the MLG) between them. We use Dijkstra

algorithm to compute the shortest path and the time complexity will be O(log(N)× e), where

N is the number of nodes in the MLG and E is the number of edges in the MLG. The distance

models the topological (both adjacent and part-of) relationship between segments within the

MLG hierarchy. A local topological MLG region can be further defined around a node N̄[u]
i ∈
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3.4. Diffusion Pruning with Anchors

MLG(S) (similarly for nodes Ñ[v]
j ∈MLG(T )) in the MLG hierarchy as Rδ

N̄[u]
i

= {x|d(N̄[u]
i ,x)≤

δD} where δ ∈ [0,1] is a user defined threshold and D is the largest MLG distance in an MLG.

Given this, we can compute the element of matrix M. Let ma,b be the distance compatibility for

two segment-wise correspondences a,b ∈C. We follow the normalisation procedure in [2, 3]

to obtain Ma,b as follows:

Ma,b =


ma,b−c0

1−c0
, a 6= b, ma,b ≥ c0, 0≤ c0 ≤ 1

GeoSim(N̄[u]
i , Ñ[v]

j ), otherwise,

ma,b = min
(

d(N̄[u]
i , N̄[n]

x )

d(Ñ[v]
j , Ñ[m]

y )
,
d(Ñ[v]

j , Ñ[m]
y )

d(N̄[u]
i , N̄[n]

x )

)
,

N̄[n]
x ∈ Rδ

N̄[u]
i

and Ñ[m]
y ∈ Rδ

Ñ[v]
j

GeoSim(N̄[u]
i , Ñ[v]

j ) = |LFD(N̄[u]
i )−LFD(Ñ[v]

j )| (3.3)

Ma,b will take into account only segment-wise correspondences a and b with end-point nodes

fall into respective local topological MLG regions Rδ

N̄[u]
i

and Rδ

Ñ[v]
j

[3]. It further ensures c0 ≤

ma,b ≤ 1, i.e., ma,b be at least c0 isometrically consistent [2], and sparsifies M if it does not.

Different from [3], we further encode geometric similarity in the diagonal entries Ma,a where

GeoSim(N̄[u]
i , Ñ[v]

j ) is the dissimilarity score of their LFD features.

3.4.2 Diffusion Framework and Pruning

Matrix M encodes both local geometric similarity and local topological isometric consistency

information. The matrix is then normalised to a Markov probability matrix P to model the

Markov random walk for diffusion analysis.

P(a,b) =
K(a,b)

d(a)
,

d(a) = ∑
b

K(a,b),

∑
b

P(a,b) = 1
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3. Consistent Segment-wise Matching with Multi-layer Graphs

π(a) =
d(a)

∑b∈C d(b)
(3.4)

The normalised P(a,b) can be considered as a confident/probability score of the jumping

from correspondence a to b. After this, the stationary distribution π is computed as the confi-

dence score π(a) for a correspondence a. The function of the confidence score π(a) is similar

to the usage of eigenvector in [10, 2, 36], which shows the reliability/consistency of a corre-

spondence. However, in diffusion computing we do not compute eigendecomposition to obtain

π(a). The normalisation step is essential to infer the global consistency from local topological

isometric compatibility in MLGs. This framework is supported by the spectral graph theory

[3]. We sort all initial matchings with descending confidence scores and examine each of them

in a greedy manner [10, 2, 3].

In our algorithm, we apply diffusion pruning twice. In the first run, we only use bottom

layers to obtain good correspondences (anchors). In the second run, we involve more layers in

the two MLG(S) and MLG(T ). During the second pruning stage, we first accept anchors into

result correspondences, and then greedily add new consistent correspondences from higher

layers. The idea is supported by two observations. First, SHED [36] produces reasonable

results if the input contains perfect segments or there are some segments with high distinctive

geometric scores. Our technique is similar to SHED that uses spectral analysis and shows

similar behaviour, which means anchors are necessary for producing good results (explained

in the Figure 3.4). Second, given imperfect input segmentation, our technique can better handle

moderate non-isometric differences because of diffusion pruning. It can often find good and

consistent matching based on local regions using just bottom layer. Given these good anchors,

we can further constrain consistent outputs in the higher layers.

3.5 Voting and Final Output

Most of the results obtained in the previous step are useful. Still, some incorrect matching

may still be present due to the greedy pruning procedure. There are two further reasons. First,
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3.5. Voting and Final Output

our simple topological distance incorporates both adjacency and part-of relationships as one

measure and does not differentiate the two relationships. Second, nodes in higher layers of-

ten have similar shorter MLG distances, which easily lead to ambiguous matching. In our

final step, we would like to further confirm that the pruned segment-wise correspondences are

consistent throughout the MLG hierarchy. For example, a consistent segment-wise correspon-

dence should appear as “part of” some merged-to-merged segment-wise correspondences in a

higher layer. To confirm lower-layer correspondences using higher-layer ones, we develop a

voting-prune procedure which is discussed below.

Let Cd p be a set of segment-wise correspondences (e.g. Figure 3.4) obtained from our

adapted diffusion pruning step (Section 3.4.2). We first go through each correspondence a =

(N̄i, Ñ j) ∈Cd p and check against another correspondence b = (N̄x, Ñy) ∈Cd p where a 6= b. If

both N̄i ⊂ N̄x and Ñ j ⊂ Ñy, we increment a vote Vote(a) for a. A correspondence a from lower

layers which are consistent with higher layer correspondences will accumulate more votes.

Next, we sort all a ∈Cd p in descending order of Vote(a) and use higher confidence score π(a)

from DP to break the tie if possible. Figure 3.4 shows example values of Vote(a) and π(a) of

each correspondence at the top left and right corners of each subfigure respectively.

Our greedy hierarchical pruning step is then carried out using the sorted list. We first

accept the first a ∈ Cd p with the highest Vote(a) into the Cvote, and remove a from Cd p. For

each subsequent b = (N̄x, Ñy) ∈Cd p, we check ∀a = (N̄i, Ñ j) ∈Cvote if b satisfies either:

N̄i ⊂ N̄x and Ñ j ⊂ Ñy or N̄i 6⊂ N̄x and Ñ j 6⊂ Ñy

This step requires that the new segment-wise correspondence b is consistent with all ac-

cepted a ∈ Cvote or b is not seen before. We then move b from Cd p to Cvote. If b violates

both constraints, it means that b is an inconsistent correspondence. We simply prune it from

Cd p. Matchings highlighted in blue round boxes in Figure 3.4 are all accepted correspondences

Cvote. Matchings highlighted in red are inconsistent correspondences that are pruned. In our

implementation, we further use Cvote as anchors for DP (which sometimes improves the greedy
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3. Consistent Segment-wise Matching with Multi-layer Graphs

Algorithm 1: Voting Algorithm
Input: Cd p
Output: Cvote

1: procedure VOTING(Cd p)
2: for each a = (N̄i, Ñ j) ∈Cd p
3: Vote(a)← 0
4: for each b = (N̄x, Ñy) ∈Cd p \a
5: if N̄i ⊂ N̄x and N̄i ⊂ Ñy then
6: Vote(a)← Vote(a) + 1
7: end if
8: end for
9: end for

10: Cvote← /0
11: while Cd p 6= /0 do
12: b = (N̄x, Ñy)← argmaxa∈Cd p

Vote(a)

13: if ∀a = (N̄i, Ñ j) ∈Cvote
14: N̄i ⊂ N̄x and Ñ j ⊂ Ñy ∨
15: N̄i 6⊂ N̄x and N̄i 6⊂ Ñy then
16: Cvote←Cvote ∪b
17: end if
18: Cd p←Cd p \b
19: end while
20: return Cvote
21: end procedure

Figure 3.4: Voting of pruned results. The red ones
are removed by voting. Top left numbers are votes
and top right numbers are diffusion pruning confi-
dent scores.

(a) SHED Matching Result (b) Our Bottom Layer Matching Result(c) Our Higher Layers Matching Re-
sult

Figure 3.5: Refined matching by voting mechanism. All diffusion pruning results have been
visualized in Figure 3.4. There are incorrect matchings, for example, at the top right corner
head-body is matched to body-tail. After voting, these incorrect matchings are pruned (b-c).
As a comparison, the SHED result is shown in (a).

results), and run the voting-prune step again to obtain C′vote as the final output (Figure 3.5(b)-

(c)).

This voting step, together with diffusion pruning (Section 3.4.2), ensures that the accepted

correspondences are topologically and hierarchically consistent within MLGs, and their end-

point nodes are geometrically similar. The algorithm is detailed in Algorithm 1. Our time

complexity is O(|C|2 + |Cvote|nlogn).
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3.6. Evaluation

3.6 Evaluation

We evaluate our method on both rigid (man-made) and non-rigid shapes. The rigid data set

is downloaded from the SHED’s project page, which consists of four subsets, namely vases,

airplanes, lamps and candles. All rigid shapes are segmented by a weakly-convex segmentation

technique as mentioned in [36]. Our non-rigid set consists of wolf, human, horse, and centaur.

We use the consistent segmentation results from [40] and further manually over-segment those

shapes to provide initial inconsistent segmentations for our evaluation. With these inputs, we

use SHED [36] and our proposed technique to compute segment-wise correspondences, and

evaluate both techniques qualitatively (visual examples) and quantitatively (precision). The

reason for using SHED in our experiments is that SHED finds one-to-many correspondences

(which is similar to our merged-segment-wise correspondences). Still, [36] also released their

source code which benefits our experiments.

To our knowledge, there is no existing ground-truth dataset for segment-wise matching.

For high-level matching, there is a certain degree of human subjectivity involved. For example

in Figure 3.1b, the purple joint on the left lamp has only one segment, but there would be many

possible correct matching segments (e.g. all or one of the unmatched segments) on the right

lamp. Even a no matching as shown in Figure 3.1b-3.1c can be a correct choice. To provide a

fair evaluation, we recruited three volunteers (one sculptor, two musicians) from non-computer

science background to carry out the annotations. We informed all volunteers that their anno-

tations should be based on their own intuition of meaningful/reasonable correspondences with

respect to the shape and segments. In this way each correspondence produced by [36] and

our technique is given a correct or wrong label. We use a majority vote in cases where there

is a discrepancy. These are used to compute the precision and to indicate correct or incorrect

matchings in all figures. For all visualized figures, segment colours are only used to show

distinct boundaries of segments, rather than matching correctness. Blue (red) lines indicate

correct (incorrect) segment-wise correspondences. We further use colored polygonal lines to

indicate our one-to-merged / merged-to-merged segment-wise correspondence results.
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3. Consistent Segment-wise Matching with Multi-layer Graphs

(a) SHED Matching Result (b) Our Bottom Layer Matching Re-
sult

(c) Our Higher Layer Matching Re-
sult

Figure 3.6: Near-consistent segmentation matching result. Our method outputs meaningful
matching at upper and lower sticks. There is a large variation between the two bases and our
method does not match them.

(a) SHED Matching Result (b) Our Bottom Layer Matching Re-
sult

(c) Our Higher Layer Matching Re-
sult

Figure 3.7: Comparison results of candles with inconsistent segmentation. As shown in green
polygons our method can match body segments in a meaningful way.

3.6.1 Qualitative Evaluation

We have tried HKS [76] and persistent HKS [77] but they cannot produce distinct similarity

scores for MLG nodes. Similarly, PCA [75] and D1/D2 [74] distributions occasionally produce

incorrect scores. In this chapter we use LFD [72] to generate geometry similarity scores for

segments, since it performs well in our experiments.

3.6.1.1 Rigid Shapes

In this section we evaluate our method on rigid shapes. We first test our method on shapes

with near consistent input segmentation, and then with inconsistent input segmentation. Our

evaluation mainly focuses on inconsistent segmentation which is the focus of this chapter.
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Near-consistent Input Segmentation

In Figure 3.6 two lamps have similar input segmentation except some small over-segmented

pieces in the stand and cap joint. Figure 3.6a shows that SHED mismatches the base of the

left lamp to the right lamp’s cap. The mismatch is caused by a good geometry similarity score

due to D1/D2/volume computation between the base (left lamp) and cap (right lamp). Further,

both segments are located at the endpoints of their respective component graphs with similar

topological distances to the rest of the nodes. As both geometric and topological information

is very similar, SHED outputs an upside down matching. The volunteers consider the result

as a mismatch. Our technique shows reasonable correspondences, with many one-to-merged

segment-wise correspondences (Figures 3.6b-3.6c). For example in the left lamp, the small

red piece above the cap joint, and the small purple piece in the lower stand are merged with

respective larger piece in the matching results. Further, our technique is able to solve the

upside down ambiguity because the one-to-merged segment-wise correspondences offer better

geometric, topological and hierarchical consistency. The base is not matched because their

geometry (LFD features) differs a lot.

In Figure 3.7, we show another example where the upper candlestick is near-consistently

segmented, but the lower base is highly over-segmented. It is a challenging case because

the base contains six inter-connected segments making the component graph very complex.

Though SHED is able to obtain a one-to-many base-to-base matching, it also badly mismatches

both candlesticks to the bases. Our technique is able to discover candlestick matching in a

reasonable manner without any incorrect matching. It does not discover the one-to-merged

base matching because it requires merging of all six segments to form the base which is beyond

the number of layers we consider for the example (see Section 3.6.2).

Inconsistent Input Segmentation (Matching with large difference in number of nodes)

Figure 3.8 shows an example with large topological variation. The number of segments in

the left lamp is almost two times more than that of right lamp. SHED’s one-to-many results

are mostly good, but mismatches still appear. For example, the lower stick in the left lamp is
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3. Consistent Segment-wise Matching with Multi-layer Graphs

(a) SHED Matching Results (b) Our Bottom Layer Matching Re-
sults

(c) Our Higher Layers Matching Re-
sults

Figure 3.8: Lamp matching results with large topological variation. Our method can find
consistent matching with no mismatched correspondences.

(a) SHED Matching Result (b) Our Bottom Layer Result (c) Our Higher Layer Result (d) Our Higher Layers Result

Figure 3.9: Matching results of candles with inconsistent segmentation. For challenging seg-
ments our method matches them in higher layers to avoid incorrect correspondences. We show
all higher layers results in two sub-figures (c) and (d) for clarity purpose.

adjacent to the base, but it is mismatched to a node in the right lamp which is not adjacent to

the base. Our volunteers consider the matching incorrect.

Our technique considers merged nodes in higher layers. It finds consistent matching on the

left branch of the left lamp. Caps and bases are matched with two one-to-one correspondences,

whilst the main stick is matched with a merged-to-merged correspondence. In this way we

match all stick segments consistently, and avoid incorrect matching. Our technique does not

offer one-to-many matching and thus no matching is obtained for the right stick (which is plau-

sible). Our method may be extended to produce matching to the right lamp by first removing

matched nodes and re-applying our technique (as demonstrated in [12] for discovering point-

wise correspondences of multiple parts).
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3.6. Evaluation

(a) SHED Matching Result (b) Our Bottom Layer Result (c) Our Middle Layers Result (d) Our Higher Layers Result

Figure 3.10: Matching result comparison for shapes with large topological variation and loops.
We show all higher layers results in two sub-figures (c) and (d) for clarity purpose.

Inconsistent Input Segmentation (Matching with inconsistent input segments and loops)

Figure 3.9 shows another challenging candle example with inconsistent over-segments and

loops. SHED matches many segments incorrectly. These incorrect matchings are largely in-

fluenced by the topologically-adjacent correct matchings. However, by using geometric and

topological information alone, it is not sufficient to find good matching. Our technique discov-

ers many reasonable matchings with merged nodes in higher layers which are consistent with

human intuition. The loop handle is very challenging as it consists of many small pieces. Note

that both SHED and our technique cannot resolve symmetry issue. Therefore, both SHED and

our technique have some matchings that are controversial. For example, SHED returns many

one-to-many matchings in the loop handle (Figure 3.9a). Our technique obtains a matching

from the lower piece of the loop to the upper piece of the loop handle (in Figure 3.9b, and

similarly upper piece to lower piece matching in the loop in Figure 3.9c). Our volunteers in-

dependently consider them (both SHED’s and ours results) correct because they are part of the

handle (due to functionality). Having said that, our technique discovers the loop pieces in a

upside down, but consistent manner.

Inconsistent Input Segmentation (Matching with multiple loop structures)

Next, we focus on a more challenging example. Figure 3.10 shows the matching between two

lamps with highly inconsistent input segmentation. In particular, the crossbeam and T-shaped

segment (adjacent to the crossbeam) exist only in the right lamp. SHED tries to find one-to-

many matchings for all segments. Though it can find some good matchings, it also returns
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3. Consistent Segment-wise Matching with Multi-layer Graphs

(a) SHED Matching Result (b) Our Bottom Layer Re-
sult

(c) Our Higher Layers Re-
sult

Figure 3.12: Non-rigid matching comparison with consistent segmentation.

many incorrect ones (Figure 3.10a). Note that in the left stand (left lamp), the upper segment is

inconsistently matched to the left and right stand (right lamp). The results can be explained by

the segment graphs in Figure 3.11 as both segment graphs contain cycles. The crossbeam acts

as a shortcut edge and creates another shorter cycle. This shorter path significantly distorts the

topological distance on the segment graphs, leading to the inconsistent matchings in SHED.

Figure 3.11: Segment graphs of

two lamps.

Figure 3.10b shows that our technique obtains more

reliable one-to-one matchings in the right stand. For the

left stand, nodes are merged in the higher layers in the

MLG graph (green circles in Figure 3.11). One-to-merged

and merged-to-merged segment-wise matchings are re-

sulted (see also the brown, blue and purple polygons in

Figure 3.10c-3.10d). Since our technique looks for geo-

metrically, topologically and hierarchically consistent matching, the crossbeam is not matched.

The volunteers find our result reasonable.

3.6.1.2 Non-Rigid Shapes

In the literature, some segment-wise matching techniques do not support non-rigid shapes (e.g.

[38, 37]). We further evaluate if our technique can support them. We have tried some geomet-
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3.6. Evaluation

(a) SHED Results (b) Our Bottom Layer (c) Our Higher Layers

Figure 3.13: Non-rigid matching comparison with inconsistent segmentation.

ric features designed for non-rigid shapes (e.g. HKS [76], Persistent HKS [77]) but they do not

provide distinctive geometric measures. Therefore, we use LFD in these experiments. Both

SHED and our technique are built on top of component/segment graphs, and are not designed

to handle symmetry issue — both cannot differentiate left or right. In non-rigid shapes symme-

try is common. We thus consider matching say, left arm to right arm (or vice versa) as correct,

as long as the whole arm (every segments in the arm) is consistently matched. Such sym-

metry issues could be addressed by incorporating a symmetry detection technique to resolve

ambiguities.

Figure 3.12 demonstrates one human example with consistent input segmentation. In our

technique, the non-rigidly deformed hands are not matched due to no initial correspondences

(low LFD scores). LFD is defined mostly for rigid shapes only. In our result, hand and arm

merged-to-merged matching can be obtained in higher layers because initial correspondences

are available (merging hand and arm offer good LFD scores). We do not obtain matching for

lower legs because of the volume constraint defined in the MLG (see section 3.3) where the leg

(for the left human) is moved into higher layer for one of the shapes. It can be easily solved by

relaxing the topological consistency thresholds c0. We argue that our technique still performs

reasonably well in this example despite of the LFD issue.

Figure 3.13 shows a horse example with inconsistent input segmentation. Our technique is

able to obtain accurate matching under inconsistent input segmentation in legs and body. Note

that under symmetry, front legs to back legs matching in both SHED and our techniques are

considered correct. In Figure 3.13b our method outputs 1 incorrect result between tails. This
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3. Consistent Segment-wise Matching with Multi-layer Graphs

is caused by highly similar LFD scores. However, SHED often mismatches leg to tail or head.

The volunteers consider them incorrect.

3.6.2 Quantitative Evaluation

We further evaluate our technique on large rigid and non-rigid data sets. Our method outputs

matching of higher layers. There is no ground truth dataset, so volunteers have to manually

examine each output matching to compute precision rate — it is a time consuming process. It

is also not possible for us to enumerate all higher layer matching. For example, a shape with

14 segments can lead to 500+ internal nodes in the MLG depending on their topology. It is

simply too laborious and time-consuming to annotate all of them. Therefore we do not evaluate

on recall rate. Following [84] we randomly select pairs of shapes from each set and annotate

the output. The whole annotation process takes several weeks to finish among all three unpaid

volunteers. In our experiments, we use fixed parameters for all pairs in a set (similar to [36]).

For the rigid set, we use the following parameters for the adapted diffusion pruning to

compute anchors: local distance δ1 = 0.2 and LFD threshold is 0.8. The second run of diffusion

pruning uses δ2 = 0.8 and LFD threshold = 0.8. For both runs, the number of initial matching

for each node K is set to 7; the threshold in diffusion pruning is set as default c0 = 0.7 ([3]).

For the non-rigid set, the values of δ1 = 0.8 and δ2 = 0.2 and other parameters stay the same

as the rigid set.

The only parameter we adjust is the number of layers in MLG construction. We use eight

layers in lamp and plane sets, and four layers for vase and candle sets. The reason is that there

are too many internal nodes in the constructed MLGs with eight layers. Reducing the number

of layers to four still provides reasonable results. All shapes in non-rigid sets have eight layers.

All quantitative results are shown in Tables 3.1 and 3.2, and are based on 72 pairs of rigid

shapes and 20 pairs of non-rigid shapes. Our method outperforms SHED in all cases. For both

rigid (man-made) and non-rigid sets, our technique outperforms SHED in precision with lower

standard deviation. The lower standard deviation further shows the stability and robustness of
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Rigid MLG SHED pairs layers
lamps 85.2% 76.7% 30 8
vases 86.0% 63.0% 20 4

candles 86.2% 71.3% 11 4
planes 83.5% 60.8% 11 8

average 85.3%(1.2) 69.6%(7.4)

Table 3.1: Precision (std. dev.) on rigid (man-made) set.

Non-Rigid MLG SHED pairs layers
wolf 97.2% 59.0% 3 8

human 83.3% 62.7% 7 8
horse 85.3% 81.6% 6 8

centaur 90.9% 67.5% 4 8
average 87.5%(6.2) 68.8%(9.9)

Table 3.2: Precision (std. dev.) on non-rigid set.

our technique.

Our annotation focuses on the outputs of the two techniques. We plan to release the annota-

tion results and codes to the research community, for inspection, comparison and downstream

applications.

3.7 Discussion

(a) (b) (c) (d)

Figure 3.14: (a) image courtesy of [37]. (b)(c)(d) are our method matching results.

Here, we further provide a brief comparison of our technique with the state-of-the-art [37].

Figure 3.14a shows the matching result of two chairs (image courtesy of [37]). In the figure,

the red side panels are mismatched to the front panels between chairs. The technique proposed
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3. Consistent Segment-wise Matching with Multi-layer Graphs

(a) Results of changed δ (b) Results of changed c2 (c) Large difference in
shapes

Figure 3.15: Results from adjusting different parameters, compared to Figure 3.10. The δ1
used in (a) is 0.5 (anchor stage) and 0.7 (final stage) - note the symmetric issue, (b) uses the
same δ as (a) and further reduce threshold c2 to 0.2. (c2 is a threshold used in diffusion pruning
for greedy pruning.) Here, relaxing c2 leads to only higher layer matchings. (c) shows our
method performs poorly when the inputs have large topological and geometrical difference.

in [37] is a top-down matching technique assuming perfect input segmentations. The technique

seeks the best split along the component tree. To our knowledge, it does not use higher layer

matching to support lower layer matching which would have solved the mismatch.

We tried our technique on the same set of chairs by manually labelling the left (right) chair

into 10 (12) segments, according to the initial segmentation as shown in Figure 3.14a. We then

apply our technique using our two-stage diffusion pruning (DP) with a 2-layer MLG for each

chair. We only use 2 layers because the chair is highly complex with high connectivity for each

segment. If we use 3 or more layers, the number of internal nodes grows to 1000+ which is

too slow to compute. Due to the lack of high-layer nodes, we cannot apply our voting step.

However, simply using the proposed two-stage DP step yields perfect matching result (Figures

3.14b-3.14d). This answers our research question that considering merged nodes in the MLG

hierarchy can improve matching results. As the source code and data for [37] are not available,

further comparison is not possible. Having said that [37] cannot support non-rigid shapes, and

assume consistent input segmentations. Our technique is comparatively more flexible. It can

handle non-rigid shapes and inconsistent input segmentations.

There are limitations in our technique however. One issue is the sensitivity to the chosen

parameters. Figure 3.15 compares the results in Figure 3.10 with different parameters. In

Figure 3.15a, we tighten the δ1 threshold (i.e., use smaller local isometric disk). Though the

volunteers consider the results correct, it leads to more local matching and cannot avoid the

52



3.8. Conclusion

symmetry issue. In Figure 3.15b we further reduce c2 (a threshold used in [3] for the last

greedy pruning step), the matching results all shift to higher layers, with no bottom-layer one-

to-one correspondences found. Figure 3.15c further shows that our technique does not perform

well when the input shapes have large difference in topology and/or geometry.

Our current un-optimised code is too slow to handle shapes with a large number of input

segments. There is an exponential growth in the number of possible internal nodes in MLG,

with respect to the number of input segments. We constrain the MLG using volume, but it

can sometimes miss some matchings (e.g. the leg in Figure 3.12). In the future, we hope

to develop a more robust hierarchical representation than MLG to reduce the search space.

Another direction is to incorporate our bottom-up idea into a top-down approach [37]. Further,

our technique consists of quite a few parameters. Although most of them are fixed to default

settings, we plan to develop a more robust technique and make it more generic to a large variety

of input shapes and inconsistent segmentations.

In the future, we are going to use better geometrical features to enhance our matching tech-

niques. We also need to condense the size of MLG, which means a better merging technique is

necessary. Based on the simplified MLG we can further investigate the convergence property

of our technique.

3.8 Conclusion

In this chapter, we propose a novel segment-wise matching technique that can handle shapes

with inconsistent (over-/imperfect) input segmentation. Our idea is to greedily optimise match-

ings that are geometrically, topologically and hierarchically consistent. To do so, we develop

a multi-layer graph (MLG) representation to store the possible merging arrangement of seg-

ments. Apart from geometric and topological consistency, we explicitly seek consistency in

the hierarchical segment merging space. Experimental results demonstrate the effectiveness of

our technique when compared to two state-of-the-art methods.
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4.1 Introduction

Solving jigsaw puzzles is a classic problem in computer vision. In 1964, [21] introduced the

first algorithm for matching puzzle pieces. Since then, approaches have focused on using

shape and colour information [44, 45] for puzzle solving. Puzzle solving has great applica-

tions in many research areas, like forensics [107, 108] and archaeology [109, 110], to recover

documents or art works from small fragments.

(a) Assembled result by [20]. Red edges show incor-
rect matching pairs in greedy assembly.

(b) Correct assembled result obtained by our pro-
posed technique.

Figure 4.1: Comparison between [20] and our proposed technique on square puzzle solving.
The number on each edge shows the MGC similarity score between a pair of pieces.

Techniques to solve a jigsaw puzzle consist of two steps: i) computing constraints (e.g.

colour-based similarity between puzzle pieces) and ii) assembling puzzle pieces via some op-

timisation technique. Notable examples include [20] which introduces the novel Mahalanobis

Gradient Compatibility (MGC) measure to compute the similarity between puzzle pieces, and

a minimal spanning tree (MST) [111] approach to assemble similar pieces in a greedy manner.

Based on colour space normalisation, [22] proposes a global approach to assembling similar
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puzzle pieces. Their compatibility measure is based on a thin region (often 1 column of pix-

els of the edge) of each piece. These two measures are frequently used in subsequent works

for puzzle solving [58, 59, 103, 102]. More recently, the loop constraint [58, 61, 64] was

proposed to enforce cycle consistency when pieces are matched, and good performance was

demonstrated.

Figure 4.2: Rectangular pieces

with arbitrary sizes are challeng-

ing for edge-wise similarity mea-

sures and assembly techniques.

From the literature, we made two observations. First,

much of the previous work focuses on puzzles with square

pieces of the same size but they may not apply to puz-

zle solving with rectangle pieces of arbitrary sizes (Fig-

ure 4.2). The problem of solving such puzzles is arguably

harder with a larger search space because of the arbitrary

edge lengths. It challenges most of the existing edge-wise

similarity measures. Second, even though the loop con-

straint is powerful, we observe that many of the existing works assume some form of input

regularity, and either build loops explicitly from square pieces which would be slow, or use the

loop constraint by casting puzzle assembly in a sophisticated optimisation. These techniques

however are not easy to extend to arbitrarily shaped puzzle pieces. These observations motivate

the research question in section 1.3.3 and 1.3.4.

Instead of using the whole edges of pieces for puzzle assembly like in existing work, we

investigate if corners of puzzle pieces can be used. Next we cast the problem of discovering

loops in possible puzzle pieces as a cycle consistent correspondence problem [16]. Once we

identify good pairwise corner-wise correspondences, we adapt minimum spanning tree [20] for

puzzle solving. Our results show that the approach can improve the performance of [20] which

uses MGC alone.

We provide an overview of our method in Section 4.2, we show how we model corner-wise

matching in the MatchLift framework [16] for square puzzle solving in Sections 4.3 and 4.4.
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We evaluate our method in Section 4.5. Section 4.6 illustrates one example how puzzle with

rectangular pieces of arbitrary sizes can be solved. We discuss limitations and future work in

Section 4.7, and conclude in Section 4.8.

4.2 Method Overview

Figure 4.3 shows the pipeline of our technique for solving puzzles. The input image to our

method is first sliced and shuffled into (e.g. square) puzzle pieces. Our method further breaks

each puzzle piece into four (2-by-2) corners, by subdividing each edge of a piece into 2 sub-

edges (Figure 4.5, Section 4.3.2). Then we use MGC to compute the similarities between all

possible pairs of sub-edges. We treat these pairs as correspondences. Section 4.3.3 presents

how we use MatchLift to identify cycle consistent correspondences. Section 4.4 discusses how

we refine the respective MGC scores of correspondences identified by MatchLift, and finally

solve the puzzle using minimum spanning tree. Further, in Section 4.6, we discuss how we

extend our technique to solve puzzles consisting of rectangular pieces of arbitrary sizes. In this

chapter, we assume all pieces have known orientation with unknown position (so called Type I

puzzle problem [20]).

4.3 MatchLift and Puzzle Solving

MatchLift [16] is a convex optimisation technique to find cycle-consistent correspondences

from a set of noisy input. For example, for 3D reconstruction of a chair, it is critical to estimate

depth by computing reliable point-to-point correspondences across a collection of images of the

same chair from different views. Key point descriptors (such as SIFT) can generate correspon-

dences, but inconsistent correspondences cannot be avoided. [16] can identify cycle-consistent

correspondences across multiple images. The idea is to encode all pairwise correspondences

between images in a permutation matrix. Then it applies SDP (semi-definite programming)

with relaxed binary constraint and sparsity to enforce cycle consistency.
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4.3. MatchLift and Puzzle Solving

For example, as shown in Figure 4.4, we have n input objects and there are two correspon-

dences between object 1 and object 2. MatchLift has introduced a virtual augmented universe

m. The matching between two objects can be decomposed into two binary matching matrix X1

and X2, where the rows are indicating the object and the columns are indicating the augmented

universe m. For n input objects and we form all object-wise matching into matrixM (the diag-

onal elements are self-matching matrix and non-diagonal elements are object-wise matching),

this matching matrixM can be decomposed into

M= XX T ,where

X = (X1,X2, ...,Xn)

rank(M= m) (4.1)

The rank ofM is the size of augmented universe m, which means m cliques in the graph

partitioning. Furthermore, a confident correspondence can be discovered by using a low-rank,

PSD (positive semi-definite) programming to infer/approximate the input. The m can be es-

timated by using spectral technique in finding the largest drop between eigen-values of input

matching matrixMin. Therefore, the formulation can be further lifted one more dimension as,

m 1T

1 M

=

1T

X

[1 XT ]� 0 (4.2)

Then, they use the input matching Min to discover globally consistent matching M as

the output. The discovered matrix M should be close to the input matrix Min, and an L1

regularisation term is needed to reinforce the sparsity.

maximizeM∈Rn×n ∑
(i, j)∈G

〈
Min

i, j,Mi j
〉
−λ

〈
1×1T ,M

〉
,sub ject to,

Mii = Im, 1≤ i≤ n,

M≥ 0,
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

Figure 4.4: An example of MatchLift. M12 is the matching matrix of object 1 and object 2.

m 1T

1 M

� 0 (4.3)

Im is a self-matching matrix in theM. The control parameter λ can balance the compati-

bility between the input matching and e sparsity structure. The experiments in the [16] shows

that MatchLift is a parameter free formulation and it is not sensitive to the parameter λ . The

multiple iterations of eigendecomposition are needed for solving SDP in the MatchLift, which

means the time complexity for each iteration is O(m3).

In this chapter, we use MatchLift to find reliable cycle-consistent correspondences for puz-

zle solving. The cycle-consistent correspondences indicate a set of reliable similarity scores,

which will benefit the assembly stage in puzzle solving. In our modelling, we treat each corner

as an object (similar to one of the images in the chair reconstruction example), and pairwise

matching of sub-edges as correspondence between corners (similar to point-to-point correspon-

dences between images). Our contribution is to model piece matching in the puzzle problem as

a corner-wise cycle-consistent correspondence problem in the MatchLift framework. We show

that it can handle square and rectangular puzzles of arbitrary sizes.
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4.3. MatchLift and Puzzle Solving

Figure 4.5: An ordering scheme to generate correspondences of sub-edges between puzzle
pieces. We fix the position of pi and move p j around of pi.

4.3.1 Computing MGC Scores

Our technique builds on MGC scores [20] which we briefly discuss here. MGC is a gradient-

based compatibility measurement between puzzle piece edges (all pieces must have the same

size). For an edge, it first defines a matrix of colour distribution with dimensions px×3, where

px is the number of pixels of a piece edge with 3 colour channels (red, green, blue). For

a pair of edges on two square pieces, MGC determines a compatibility score by computing
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

Mahalanobis distance between their colour distribution matrices.

4.3.2 Modelling Puzzle Pieces by Corners

Next we introduce the sub-edge. Let P = {p1, ..., pn} be the set of all input puzzle pieces. For

each puzzle piece pi ∈ P, we break each edge into two sub-edges (for generating corners later).

Our method is also available for breaking each edge into other numbers of sub-edges (three,

four, five, or others). However, more sub-edges per edge will increase the timing in computing.

Based on our experiments, two sub-edges per edge produce good results. We then only break

each edge into two sub-edges. There are four edges of a square piece and in total eight sub-

edges per piece. We label each sub-edge in a fixed order as shown in Figure 4.5. We further

define ea(pi) as an operator to return the sub-edge from pi where 1 ≤ a ≤ 8. For each pair of

pieces pi, p j, we consider eight possible correspondences associated to the sub-edges of pi, p j

based on an ordering scheme as shown in Figures 4.5 (a)-(d). Beginning from the left two sub-

edges of pi and the right two sub-edges of p j, we define correspondences ck = (e1(pi),e5(p j))

and cl = (e2(pi),e6(p j)) (shown as tan coloured correspondences in Figure 4.5 (a)). Following

the ordering scheme, we can define eight correspondences for pi and p j, and we repeat the

procedure for all pairs of pieces to compute the set of input correspondences C. For each

correspondence ck ∈ C, where 1 ≤ k ≤ 8n(n− 1), we define the similarity between the two

sub-edges using MGC score. MGC scores have a large range (the maximum value might be

ten thousand times larger than minimum). We normalise them into [0,1]. After normalisation,

scores close to 1 mean two sub-edges are highly similar. Take ck for example, our measure is

thus sim(ck) = MGCnormalised(e1(pi),e5(p j)). Other cases can be similarly defined.

Next, we define the corners of pieces as units for puzzle solving. We use pα
i ∈ P to indicate

a corner on a piece, where α ∈ {I, II, III, IV}, as shown in Figure 4.5. For example, assuming

there are ten pieces in a puzzle, the corner II on the tenth piece is labelled as pII
10, and it

contains two sub-edges e2(p10), e7(p10). We define v(pα
i , pβ

j ), where α,β ∈ {I, II, III, IV}, as

the corner-wise similarity score of two corners pα
i and pβ

j . Since the orientation of input pieces
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4.3. MatchLift and Puzzle Solving

Figure 4.6: Example of matrix M with n puzzle pieces. All diagonal red blocks are self
matching between a pair of the same piece. Non-diagonal red blocks contain corner-wise
similarity measures of pieces.

is known (Type I puzzle), some corners are incompatible with each other such as pI
i and pI

j.

For incompatible corners, we set v(pα
i , pβ

j ) = 0. v(pα
i , pβ

j ) can be summarised as

v(pα
i , pβ

j ) =


sim(ck), if ck ∈C

0, otherwise,
(4.4)

We encode the corner-wise similarity in a block matrix as the input of MatchLift. Let

Mpi,p j be a 4×4 matrix, which is shown in Figure 4.6 (left). Given a puzzle with n pieces, we

can encode allMpi,p j blocks into a piece-wise similarity matrixM of dimension 4n×4n (i.e.

Mpi,p j ⊂M in Figure 4.6 (right)). It is arranged such that the non-diagonal blockMpi,p j ⊂M,

where i 6= j contains all corner-wise MGC scores m(pα
i , pβ

j ) ∈Mpi,p j between pieces pi and

p j. The diagonal elements m(pα
i , pα

i ) ∈ M represent self-matching between a pair of the

same corner pα
i and pα

i . We set those elements as 1. In summary, we define the element

m(pα
i , pα

i ) ∈M as
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

Figure 4.7: Yellow lines and circles indicate a four-cycle correspondences between four cor-
ners. White lines and circles are two-cycle correspondences between two corners.

m(pα
i , pβ

j ) =


v(pα

i , pβ

j ), i 6= j, v(pα
i , pβ

j ) ≥ t1

1, i = j, α = β

0, otherwise

(4.5)

and t1 is a user defined threshold to accept correspondences with good MGC scores.Mpi,p j

represents partial matching whilstM represents the full matching of input pieces. This matrix

can then be optimised using MatchLift framework, using SDP [16].
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4.4. Assembling Pieces

4.3.3 Corners and Cycle Consistency

Our intuition of using corners in the MatchLift framework to handle square puzzle pieces is that

it can find two-cycle (direct correspondence, white) and four-cycle consistent correspondences

(yellow) as shown in Figure 4.7. We mark the positions of corners to indicate the matching

between sub-edges. For example, in Figure 4.7 each bottom-right corner contains sub-edges 6

and 8 and each bottom-left corner contains sub-edges 2 and 7. If there is a matching between

sub-edges 6 and 2, then it means corner IV and corner II have been matched. Since we have

cycle consistency as a constraint there will not be displaced-matching, such as sub-edge 6 will

not match to sub-edge 1.

Compared with sub-edges, using corners can reduce the size of M. For example, for n

square pieces and we break each edge into f sub-edges, the dimensions of the resulting matrix

M based sub-edge matching will be 4 f n× 4 f n. By adopting this corner-wise approach our

M is only 4n×4n.

4.4 Assembling Pieces

After running MatchLift, the matrix M will be updated. The elements m(pα
i , pβ

j ) ∈ [0,1]

with 1 indicating a confident correspondence that forms a cycle whilst 0 means the associated

corner matching is not cycle consistent. Confident correspondences with m(pα
i , pβ

j ) ≥ t2 are

then returned and t2 is a user defined threshold.

We follow [20] to assemble puzzle pieces using minimum spanning tree (MST), which is

a greedy technique. Based on the extracted corners from MatchLift we can infer the matching

between sub-edges. If two sub-edges are matched we set the MGC score of the whole corre-

sponding edge with a small value (by multiplying 0.000001 to the MGC scores) so that MST

can prioritise the matching for piece assembling earlier. For example, in Figure 4.7 sub-edges

6 and 2 of the bottom pieces are matched. The MGC score between the entire right edge (con-

taining sub-edges 5 and 6) and the entire left edge (containing sub-edges 1 and 2) is reduced.

This allows MST to prioritise such matching to be considered first leading to correct assembly.
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

Image 100 144 196 assemble t1 t2
1 100 79 94 90 100 41 6.3s 17.9s 0.2 0.2
2 100 81 100 55 100 37 5.0s 18.5s 0.1 0.9
3 91 94 50 51 31 47 15.9s 16.5s 0.4 0.9
4 73 93 57 39 41 84 17.4s 16.4s 0.2 0.7
5 54 32 46 37 51 35 17.2s 17.0s 0.3 0.9
6 96 83 76 74 49 52 12.8s 12.8s 0.5 0.8
7 92 100 64 62 49 58 11.5s 10.7s 0.3 0.9

avg (%) 87 80 70 58 60 51 12.3s 15.7s

Table 4.1: We compare our method and [20] by showing percentage of correctly assembled
pieces with 100, 144 and 196 pieces input. The assemble column shows the time requires to
run MST for assembling. t1, t2 are parameters we used in our method. Our and [20] results are
shown in red and blue respectively.

The detailed information about MST and how to use MST to assemble puzzle pieces can be

found in [111, 20].

4.5 Evaluation

We evaluate our method against [20] in this section. First, we perform a quantitative evaluation

on a small collection of images in Section 4.5.1 to compare the success assembly rate of our

technique against MGC alone. Section 4.5.2 shows some assembled results from both methods

as qualitative evaluation. For both methods we use the same number of puzzle pieces and

images. We also evaluate with puzzle pieces of different resolutions in our experiments.

4.5.1 Quantitative Evaluation

We evaluate our method against [20] on seven images of varying numbers of pieces and reso-

lutions. We use five of our own (high and low resolution) images and two images from public

data set [22] (low resolution). We slice each image into 100, 144, and 196 pieces as the input

of both methods. The higher number of pieces leads to lower resolution of each piece. Though

MatchLift [16] in theory has good tolerance to random outliers, the stability of MGC is low.

When there are too many incorrect correspondences, it would lead to poor results.
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4.5. Evaluation

We therefore need to adjust two of our parameters t1 and t2. t1 controls the number of

correspondences accepted as input to MatchLift (most initial correspondences are incorrect).

t2 controls how confident we accept the matching results from MatchLift. These parameters are

somehow dependent on the resolution of images and stability of MGC. For t1 we try 20 values

0.6 ≤ t1 ≤ 1 and 9 values for t2 where 0.5 ≤ t2 ≤ 0.95 and report the best assembled results

in Table 4.1. The overall process is time consuming. On average, it takes five hours (i7-6700

4.0GHz CPU with 32GB memory) per image in this experiment. The long time computing is

mainly caused by the low usage of CPU (only 20%). In the future, it can be addressed by using

C++ instead of MATLAB (low efficiency in the loop computing) for higher performance in

iteratively computing.

We use the ground truth coordinates of each piece to evaluate the assembled results, so-

called the direct comparison [20]. When an assembling technique misaligned a large assembled

region, the percentage of correctly assembled pieces will reduce significantly. The evaluation

results are shown in Table 4.1. Our initial results show that our method can produce better

results than [20] with the proper parameters. Because our technique recovers better piece

matching, the MST assembling step is faster than using MGC alone. Nevertheless, we hope to

discover the best parameter settings automatically for our technique in the future, for example,

to investigate the spectrum of the matrixM [16].

4.5.2 Image Resolution and Puzzle Solving

Next, we qualitatively evaluate our technique on high resolution images (all input images have

a resolution above 2700 by 2700) in Figure 4.8. In Figures 4.8b and 4.8c both images are

assembled from 49 pieces. For regions with distinctive texture, such as clouds at the low part

of the image, MGC and MST perform well and produce good assembled results. However,

MGC produces unreliable scores around the white smoke and cloud at the top. This leads

to incorrect assembled results. In our case, after MatchLift refinement, MST can assemble

100% correct results. When we increase the number of puzzle pieces to 100, MGC becomes
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

(a) Original image (b) Assembled result by directly
using MGC

(c) Our method result

(d) Input 100 puzzle pieces (e) Assembled result by directly
using MGC

(f) Our method result

(g) Input image (h) Assembled result by directly
using MGC

(i) Our method result

(j) Input image (k) Assembled result by directly
using MGC

(l) Our method result

Figure 4.8: Experimental results on puzzles built from high resolution images.
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4.5. Evaluation

(a) Input image (b) Assembled result by directly
using MGC

(c) Our method assembled result

(d) Input image (e) Assembled result by directly
using MGC

(f) Our method assembled result

Figure 4.9: Directly using MGC causes more incorrect assembled results in low resolution
images or images containing indistinctive pieces. Our method maintains 100% correctness in
assembled images.

(a) Rectangular pieces of arbitrary sizes. We compute pairwise simi-
larity by using corners as labelled in the red boxes.

(b) We compute all possible corner-wise simi-
larities.

Figure 4.10: We use corners on rectangular pieces with arbitrary sizes.
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4. Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

(a) Result of our method. Correct corner-wise match-
ings are labelled as pink half-circles. Incorrect
matchings are labelled as other colours.

(b) All correct matchings obtained by [20]. These
matchings are insufficient to solve the puzzle. To
avoid clutter, we do not show incorrect matchings
(since they are too many).

Figure 4.11: By using MatchLift on corners we can find reasonable matching between rectan-
gular pieces with arbitrary sizes.

unreliable (Figure 4.8e). Meanwhile, our technique can still discover confident matching. This

allows MST to assemble 100% correct results (Figure 4.8f).

Low distinctive regions are challenging for MGC. The resolution of Figure 4.8g is 2700 by

2700, and there are 196 puzzle pieces. Similar to Figure 4.8a the sky is difficult to be assembled

by MGC. When puzzle pieces become smaller (since the number of pieces increased), the

number of pixels to compute in MGC is fewer. MGC will return more unreliable scores. For

example, in the red highlighted region of Figure 4.8h, MGC considers the sky and cloth are

highly similar.

Figure 4.8j is another high resolution image of resolution 3840 by 3840. It consists of 64

pieces. Though the resolution is higher with fewer pieces, MGC does not perform well on

under-exposed regions and leads to incorrectly assembled top-left region.

Figure 4.9 evaluates the two methods with images of low resolution. Figure 4.9a has a

resolution of 1200 by 1200, and size of 289KB. We slice it into 144 pieces. In Figure 4.9b,

without MatchLift refinement, the technique struggles to assemble regions around the deck,

gun and road pieces.

Our method models puzzle solving based on corners and cycle consistency constraint. We

can better handle unreliable MGC scores of such pieces and assemble the correct results in
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4.6. Puzzle Solving for Rectangular Pieces of Arbitrary Sizes

Figure 4.9c. Similar situation appears in Figures 4.9e and 4.9f. Without MatchLift refinement,

MST cannot find a correct assembling of the gun barrel and the camouflage netting behind the

vehicles.

4.6 Puzzle Solving for Rectangular Pieces of Arbitrary Sizes

We show one interesting example of applying our technique to solve puzzles of rectangular

pieces with arbitrary sizes (to our knowledge no existing techniques can handle such chal-

lenging case). Since the pieces have arbitrary sizes, our earlier square puzzle slicer does not

apply. To produce the input puzzle pieces, we manually slice the image as shown in Figure

4.10a into 9 pieces. Next, we manually select 36 local regions (Figure 4.10b) to represent the

four corners of all 9 pieces (red boxes in Figure 4.10a). Similar to square puzzle examples,

for each corner, our technique breaks each edge into two sub-edges and computes similarity

to other corners/pieces. We encode all similarity scores and pass them to MatchLift to obtain

corner-wise matchings on these rectangular pieces.

Our method outputs 15 corner-wise correspondences. 11 of them are correct and are visu-

alised as pink half circles in Figure 4.11a. The four incorrect corner-wise matchings are visu-

alised as coloured bars with associated local regions (the red boxes) in Figure 4.11a. Among

these four mismatched pairs, the green pair and the black pair are respectively from the same

rectangular piece and can be removed as it is not possible to assemble corners/sub-edges from

the same rectangular piece. The matched sub-edges of the blue pair are located inside the two

rectangular pieces. The sub-edges/whole edges that are inside pieces should not be used in

the assembling, because an assembling is based on the borders of each piece. Similarly, one

of the matched sub-edges in the orange pair is also inside the rectangular piece. These four

mismatched pairs can be easily removed in a pruning scheme as post-processing. On close

inspection, we argue that such a puzzle with rectangular pieces of arbitrary sizes can be assem-

bled correctly using the returned matched corners (visualised as the pink half circles) as shown

in Figure 4.11a.
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Figure 4.11b shows all the correct matchings obtained by [20] with the same input of Figure

4.10b. To avoid clutter, we visualise all (only three) correct assembled corners (the pink half-

circles). Since most corners are incorrectly assembled, we cannot refine/infer the results as we

did for Figure 4.11a.

4.7 Limitation and future work

Long computational time is an issue for our current technique. MatchLift requires multiple

eigendecompositions which can be slow for puzzles with a large number of pieces. Another

problem is that due to the nature of the images (e.g. distinctiveness, texture, resolution), our

technique requires some parameter adjustment to obtain the best results, tailoring to the image

properties. We hope to investigate and develop a parameter-free technique.

Currently, we are using square puzzle pieces with known rotations. We can use the same

modelling idea to solve puzzle pieces with unknown rotation (Type II puzzle [20]). In that

way, the matrix M will be denser than the current configuration. We also would like to

try non-rectangular pieces, or a mixture of square, triangle and polygonal pieces. Since our

method models the puzzle problem with corners, it can be extended to such challenging ex-

amples, which existing techniques cannot solve. Given our promising cycle consistent corner

constraint, we hope to develop a fully automatic technique to solve such problems.

4.8 Conclusion

In this chapter, we try to solve square puzzle problems by considering two novel ideas. First, we

use corner-wise correspondences, rather than edge-wise correspondences. Second, we model

the subsequent puzzle problem into the MatchLift framework, solved via a semi-definite pro-

gramming approach to recover cycle-consistent correspondences. We then refine the confident

scores of these correspondences to promote their use for piece assembling early via a mini-

mum spanning tree puzzle solver. Experimental results show that our technique can achieve
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4.8. Conclusion

better results than the non-refined cases. Finally we show that our technique can be extended to

puzzles consisting of rectangular pieces of arbitrary sizes. It is an exciting and arguably more

challenging problem. Our technique can still show promising initial results.
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Solving Variously Shaped Puzzles with

Diffusion Pruning
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5.1 Introduction

In this chapter, we introduce a new puzzle solving technique to handle variously shaped pieces.

Puzzle solving techniques have two stages: compute similarities between all input puzzle
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5.1. Introduction

(a) Input edges (b) Traditional row-approach (c) Our histograms distribution based column-
approach

Figure 5.1: We use histograms distribution to estimate similarity. This column-approach avoids
the index ordering issue of puzzle pieces.

pieces, and assemble puzzle pieces based on computed similarities. As mentioned in sec-

tion 2.2.3, the traditional puzzle solving techniques use colour compatibility between a pair of

pixels to estimate the similarity. For example, shown in Figure 5.1b, for two given edges, all

pixels on both edge will be converted into two colour matrices. The two matrices must have

the same dimensions. The number of rows is decided by the number of pixels of edge, and

the number of columns is decided by the colour space. In this example we use RGB space

and there are three columns for each matrix. Next, they compute colour compatibility for each

pair of channels with the same colour. Inside of each pair of channels, values from pixels that

have the same index will be computed, to generate a distance. When all pairs of values have

been computed, the channel-wise compatibility is measured. The final edge-wise similarity

score is defined by grouping all channel-wise compatibility. We name this approach as the

row-approach.

We have stated the limitations of row-approach in section 2.2.3 and section 1.3.3. To over-
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5. Solving Variously Shaped Puzzles with Diffusion Pruning

come the limitations, we introduce our column-approach which uses histograms distribution

to measure the similarity between input puzzle pieces. Shown in Figure 5.1c, for all pixels of

an edge we convert all colour values into three histograms for RGB colour space red green

and blue, respectively. The histograms distribution will not be sensitive to the index ordering

of pixels. EMD is a popular method for evaluate histograms distribution. Therefore, we use

EMD To compute the distribution of our colour histograms. The computed EMD scores will

be considered as similarity scores between sub-edges.

Once we have computed EMD scores, we use diffusion framework to find consistent scores

and output confident correspondences between puzzle pieces. In Chapter 3 we have demon-

strated the robustness of the diffusion framework. And Chapter 4 shows cycle-consistency

helps finding consistent correspondences. We use a designated pruning procedure with two-

way cycle-consistency as a constraint to prune EMD scores and output confident correspon-

dences for solving puzzles. So that, we can address the research questions in the sections 1.3.3

and 1.3.4. To the best of our knowledge, this is the first work to use EMD as the similarity

measurement in puzzle solving.

Due to the time of our implementation, in this chapter we do not have a proper assembly

stage. Our diffusion pruning approach is designed as a pre-assembly technique which provides

the same function as MatchLift in Chapter 4. However, in section 5.3 our experiments show

that we can handle small puzzles without using assembly stage.

Section 5.2.1 shows how to use EMD to compute similarity scores between sub-edges.

Section 5.2.2 shows how we compute initial correspondences, build affinity matrix, and use

diffusion framework to analyse initial correspondences. Section 5.2.3 shows our pruning pro-

cedure to remove inconsistent correspondences. Section 5.3 shows our experiment results in

both quantitative and qualitative evaluation. We also show our experiment results from inputs

of variously shaped pieces. Section 5.4 and 5.5 will discuss our limitation with future work

and summarise this chapter, respectively.
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5. Solving Variously Shaped Puzzles with Diffusion Pruning

5.2 Proposed Method

Figure 5.2 shows the pipeline of our proposed method. We subdivide each edge into two-sub

edges. Then we compute EMD between all possible pairs of sub-edges to generate our sim-

ilarity scores. Based on scores, for each sub-edge we find the knn-nearest-neighbours as the

initial correspondences. We use pair-wise isometrically information of initial correspondences

to build affinity matrix. Then we apply diffusion framework on affinity matrix and sort all

input correspondences by using diffusion confident scores. Finally, we select good correspon-

dences by using our designated pruning procedure. We use multiple iterations of our method

to generate more correct sub-edge-wise correspondences.

5.2.1 Sub-edges and EMD

For each input puzzle piece we need to subdivide each edge into two sub-edges. Let P =

{p1, p2, ..., pn} be the set of all input puzzle pieces. Since we are going to compute pieces

with slope edges/rectangular pieces with different sizes, the edge of each piece can not be

simply labelled into left, right, top, and bottom as the existing works. First, we introduce a user

defined value len to indicate the number of pixels. We use len to set the length of all sub-edges

(same length for all sub-edges). Then, we define vertices vcorner on each piece, where corners

means the corner-th corner of a puzzle piece. We use the same ordering scheme to name each

corner/vertex and sub-edge as stated in Chapter 4. For example, in Figure 5.3a there are four

corners in the piece i, then v2 indicates the second (left-bottom) corner of piece i.

Next, we based on index of vertices to subdivide each edge into sub-edges. We define a

source vertex vs and a target vertex vt to form a a straight line of pixels, which is a sub-edge.

A sub-edge begins at vs and towards, however, not end at vt (otherwise it will be a full edge

between two vertices). The length of a sub-edge is len. Thus, a sub-edge is a line of pixels that

locates at the boundary of a puzzle piece. For a square piece, four corners produce eight sub-

edges as shown in Figure 5.3a. The first sub-edge is from v1 to v2, the second sub-edge is from

v2 to v1, the third sub-edge is from v1 to v3, the fourth sub-edge is from v3 to v1, and so on. The
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(a) sub-edge notations (b) access to sub-edge

Figure 5.3: The notation of sub-edges and how to access them.

sub-edges are only about pixels and they are not directed edge. Same procedure for rectangular

and triangular pieces, only there are three corners/tips and six sub-edges in triangular pieces.

We define an operator subE(pvs,vt
i ) to return a sub-edge that between vertex vs to vertex vt . For

example, in Figure 5.3b, in a set of square pieces subE(pv4,v2
i ) will return the eighth sub-edge

of the i-th input puzzle piece, since the source vertex s = 4 and the target vertex t = 2. It begins

at the fourth vertex and towards the second vertex, which match the eighth sub-edge.

We consider each pair of sub-edges as a correspondence ck ∈C. The range of k is changing,

which depends on the shape of input puzzle pieces and a user defined value knn. The value knn

indicates the knn-nearest-neighbour and we will use knn in initial correspondences computation

(in the next section). When input puzzle has n square/rectangular pieces, then 1 ≤ k ≤ knn×

8×n2. If the input puzzle contains both triangular and square pieces, the range of k will depend

on the number of each type of pieces. We use EMD in [83] to compute similarity score sim(ck)

as the weight of this correspondence. In [83] EMD is defined as
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Figure 5.4: An example of EMD similarity score: for a pair of input sub-edges we convert all
pixels into colour histograms. In this example user defined value len = 8, which means eight
pixels in each sub-edge. Therefore, each histogram has eight bins.

EMD1(H1,H2) =(min
{ fi j}

∑
i, j

fi jdi j)+ |∑
i

H1i−∑
j

H2 j | t max
i, j

di j

s.t

fi j ≥ 0, ∑
j

fi j ≤ H1i, ∑
i

fi j ≤ H2 j,

∑
i, j

fi j = min(∑
i

H1i,∑
j

H2 j)

(5.1)

Where H1 and H2 are input histograms. { fi j} is the flows and fi j means the amount that will

be transferred from i to j. di j is the ground distance between the i-th bin in H1 and the j-th bin

in H2.

In our case, histograms contain colour distribution of each sub-edge and the ground dis-

tances are the absolute value of bin values’ subtraction. As shown in Figure 5.4 for a pair of
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sub-edges subE(p
vs1 ,vt1
i ) and subE(p

vs2 ,vt2
j ), we extract all red values in subE(p

vs1 ,vt1
i ) and form

them into a histogram Hr
i . And Hg

i , Hb
i are histograms for colour green and blue, respectively.

We do the same procedures on sub-edge subE(p
vs2 ,vt2
j ) to generate Hr

j , Hg
j , and Hb

j . Then, we

compute three EMD values EMD1(Hr
i ,H

r
j ), EMD1(H

g
i ,H

g
j ), and EMD1(Hb

i ,H
b
j ) and average

them as the raw similarity score simraw(ck) between sub-edge subE(p
vs1 ,vt1
i ) and subE(p

vs2 ,vt2
j ).

We define simraw(ck) = avgEMD(subE(p
vs1 ,vt1
i ),subE(p

vs2 ,vt2
j )) as

avgEMD(subE(p
vs1 ,vt1
i ),subE(p

vs2 ,vt2
j ))=


EMD1(Hr

i ,H
r
j )+EMD1(H

g
i ,H

g
j )+EMD1(Hb

i ,H
b
j )

3 , i 6= j

0, otherwise

(5.2)

We further normalise simraw(ck) by divide them with the smallest similarity score min(simraw).

We also set a user defined threshold t1 to remove large values (larger means more dissimilar).

The final EMD similarity score sim(ck) is defined as

sim(ck) =


simraw(ck)

min(avgEMD) ,
simraw(ck)

min(avgEMD) ≥ t1

0, otherwise
(5.3)

5.2.2 Initial Correspondences and Diffusion Analysis

We base on sim(ck) of each correspondence to find initial correspondences Cinit by using knn-

nearest-neighbours. For each sub-edge we compute similarity to all other sub-edges. The small

value of similarity score means two sub-edges are similar to each other, vice versa. We sort

these scores in ascent order. We select the top knn scores and pass their corresponding sub-

edges to Cinit as initial correspondences. We will introduce the selection of value knn in section

5.2.3.

We use Cinit to build affinity matrix M and apply diffusion pruning to find consistent

matching between sub-edges. The size of M is | Cinit | × | Cinit |. Each element in M in-

dicates the pair-wise isometric information of two initial correspondences. For a pair of initial
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correspondences a and b,

a = (subE(p
vs1 ,vt1
i ),subE(p

vs2 ,vt2
j )), a ∈Cinit , pi p j ∈ P

b = (subE(p
vs3 ,vt3
α ),subE(p

vs4 ,vt4
β

)), b ∈Cinit pα pβ ∈ P

we define their pair-wise isometrically information as

Ma,b =


ma,b, a 6= b, ma,b ≥ t2, 0≤ t2 ≤ 1

1, a = b

0, otherwise,

ma,b =


min(sim(a)/sim(b),sim(b)/sim(a))

min(sim(a),sim(b)) , (i = α & j = β ) ‖ (i = β & j = α)

0, otherwise
(5.4)

Where t2 is a user defined threshold, for the most experiments in this chapter we set t2 = 0.7

(see section 5.3 for details). The non-zero ma,b indicates the similarity consistency between two

sub-edges. Finally, the diagonal elements inM are representing self-matching, the consistency

of sub-edges are encoded in non-diagonal elements.

Once we have built affinity matrix M, we apply the diffusion framework on it to com-

pute diffusion confident score for all input initial correspondences Cinit . We follow the same

normalisation as stated in [3] to convert M into Markov probability matrix. The diffusion

analysis will be based on Markov random walk to generate diffusion confident score for each

correspondence inM.

5.2.3 Pruning and Iteration

We prune inconsistent correspondences to find good matchings. First, we base on diffusion

confident scores to sort all Cinit into Cd p as in descent order. Since lower diffusion confident

scores indicate more inconsistent correspondences, we only consider the top t3% correspon-

dences in Cd p and we remove the rest of them, where t3is a user defined threshold. Our pruning
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procedure ensures the two-way cycle-consistency between a pair of the whole edge, which

means all sub-edges of a pair of the whole edge must form forward-backwards matching. Oth-

erwise, we consider it is a incorrect pair of the whole edge and we do not accept them in

the pruned results Cpruned . The detailed algorithm of multiple diffusion analysis is shown in

Algorithm 2.

Algorithm 2 Pruning Algorithm
Input: Cd p
Output: Cpruned

1: procedure PRUNE(Cd p)
2: for each a = (subE(P

vs1 ,vt1
i ),subE(P

vs2 ,vt2
j )) ∈Cd p

3: counter← 0
4: matchedV s1← /0
5: matchedV s2← /0
6: for each b = (subE(P

vs3 ,vt3
α ),subE(P

vs4 ,vt4
β

)) ∈Cd p

7: if (i = α and j = β and subE(P
vs1 ,vt1
i )! = subE(P

vs3 ,vt3
α )) then

8: counter = counter+1
9: matchedV s1← vs3

10: matchedV s2← vs4
11: else if (i = β ) and j = α then
12: counter1 = counter1+1
13: end if
14: end for
15: if (counter1 = 3 and | matchedV s1 |= 1 and | matchedV s2 |= 1) then
16: val = max(sim(a)/sim(b) , sim(b)/sim(a))
17: if (abs(vs1 −matchedV s1) = 1 and abs(vs2 −matchedV s2) = 1 and val ≤ 10) then
18: Cpruned ← a
19: end if
20: end if
21: end for
22: return Cpruned
23: end procedure

We run diffusion framework and our pruning procedure in multiple iterations to obtain

more correct correspondences. We base on the pruned results Cpruned to recompute Cinit for the

following iteration. For all sub-edges that are existing in Cpruned we do not compute their initial

correspondences, and we focus on unmatched sub-edges (this is similar to adaptive spectral

matching in [36]). Then, we build M, run diffusion framework, prune correspondences to

finish a iteration. The number of iterations is also defined by the user, and we show the detailed

iteration setting in section 5.3.
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5.3 Evaluation

We test our technique in both quantitative and qualitative evaluations. In the quantitative part,

we use fixed parameters setting in all experiments. We set knn = 2, t1 = 0.1, t2 = 0.7, t3 = 0.3.

The number of iterations is automatically generated. When there are no new pruned results we

stop our diffusion pruning computation. We first show the reliability of our EMD-based simi-

larity scores by comparing the precision rate from the popular similarity measurements MGC

[20]. Then, we use neighbour comparison (the ratio between the number of correctly placed

pieces and the number of input pieces) to test our method, [54] and MGC. For comparisons

with other works we use square pieces. In the qualitative part, we use tuned parameters to ob-

tain the best precision and recall from different input puzzles. We also use differently shaped

pieces to test out method.

Images MGC EMD

1 72 76

2 19 80

3 42 79

4 55 84

5 61 81

6 68 85

7 77 92

8 74 89

9 57 94

10 63 86

avg 59 85

Table 5.1: Similarity score stability

comparison.

We use images from SSD data sets [22] and ten im-

ages from our data set in evaluation. In the quantita-

tive part, for SSD images we slice them into 192 square

pieces with the same size. For our images we slice them

into 100 square pieces with the same size. In the quali-

tative part, we slice our images into a different number

of pieces in terms of piece shapes. For all experiments

in this section we use known orientation (the Type I

Puzzle in [20]).

5.3.1 Quantitative

We show reliability of EMD in Table 5.1. We use five

SSD images and five of our images to compute similar-

ity scores by using EMD and MGC. Each score means

the similarity between two edges of two pieces. Thus,

for each edge we search the smallest score (smaller
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means more similar) and locate the two piece and their placement. We compare the place-

ment with ground-truth to check the correctness of this placement. We use this way to evaluate

the precision rate of EMD and MGC. Our experiments show that EMD has higher precision

rate than MGC and it is more reliable than MGC. Another thing to be noticed is that EMD

is more stable than MGC. In our pruning implementation we consider two similarity scores

are not consistent if they are ten times different. For MGC scores it is normal to have two

consistent scores with a huge difference (see Figure 4.1b).

Table 5.2 shows the neighbour comparison between MGC [20], our method by using MGC

scores as similarity measurement, and our method by using EMD as similarity measurement.

Overall, our method with EMD performs the best result. As mentioned in the section4.5,

MGC is sensitive to low-distinctive regions. It leads to incorrect pieces placement. In our

case, the local-consistency from diffusion framework and two-way cycle-consistency from our

pruning procedure ensured our method is not sensitive to low-distinctive regions. Although our

placement correctness slightly dropped when we use MGC instead of EMD in our method, we

still have better results than the other two methods.

5.3.2 Qualitative

In this section, we use variously shaped pieces to test our method. We use customised param-

eters in the three different experiments. The first experiment uses 25 square pieces with the

same size as the input, parameters setting is knn = 3, t1 = 0.1, t2 = 0.7, t3 = 0.3. The Second

experiment uses rectangular and square pieces as input. The parameters setting is the same

as the first experiment. Experiment three uses triangular and square pieces as input and we

manually customise all parameters.

Figure 5.5 shows the first experiment. Our method can solve square puzzles without using

assembly techniques. The correspondences from diffusion pruning cover all input pieces with

100% correctness. Even though some edges are not matched by our technique, it does not affect

the placement of pieces. However, for larger puzzles (hundreds of pieces or even more), our
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Images MGC Ours with MGC Ours with EMD
1 23 82 82
2 27 88 87
3 94 90 94
4 56 85 88
5 82 87 85
6 70 91 90
7 93 87 87
8 39 89 90
9 60 91 90
10 69 93 92
11 87 95 89
12 98 80 82
13 44 59 85
14 88 85 84
15 83 90 88
16 49 82 87
17 77 86 88
18 32 98 100
19 85 92 98
20 89 96 94
21 20 100 90
22 22 99 100
23 54 51 100
24 69 93 100
25 87 95 100
26 77 60 87
27 98 92 85
28 83 90 100
29 95 94 71
30 91 88 86

avg 68 87 90

Table 5.2: Best Neighbour comparison between MGC [20], our method with MGC as similarity
scores, and our method with EMD as similarity scores. Image 1 to 20 are SSD images [22] and
image 21 to 30 are our images.
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technique will generate incorrect results and we need a proper assembly technique for solving.

Figures 5.6 and 5.9 show the second experiment. We first generate square pieces in each

image, then randomly merge the adjacent squares to form a rectangular piece. Our pruning

procedure ensures the fully sub-edge-wise matching between a pair of the whole edge, which

means the longer edge of a rectangular piece will not be matched with a square piece. Thus, a

rectangular piece can only be matched with a square piece in horizontal. When two rectangular

pieces are perfectly aligned in vertical, the two longer edges can be matched. Our matching

results ensure the good placement of input pieces without using assembly techniques.

The third experiment is shown in Figure 5.8a. We use another slicing procedure to generate

triangular and square pieces from one image. We set 300 pixels as the length of each sub-edge

and there are 350 pixels on each whole edge. We set knn = 3, t1 = 0.05, t2 = 0.8, t3 = 0.5 as

the parameters setting. From the visualised correspondences we can claim that it is possible to

place input pieces with 100% correctness.

We show a failure case by using 56 triangular pieces and 20 square pieces. The sliced

image is shown in Figure 5.9a. The length of each whole edge is 120 pixels. We set 70

pixels as the length of the sub-edges. The first iteration outputs acceptable correspondences.

However, incorrect matchings are generated from the second iteration. By inspecting EMD

scores we found that only 52% scores are reliable. It is caused by our slicer can not generate a

consistent number of pixels on a sloping edge, which means incorrect EMD scores have been

generated from un-consecutive/un-adjacent pixels. When the sub-edges do not have enough

pixels EMD scores will become unreliable. Since we do not have a proper assembly stage,

we can not handle these incorrectly computed correspondences. Based on our observation,

after the third iteration the correct correspondences have covered most pieces. in the future we

can use a designated assembly technique with global constraints to handle incorrect similarity

scores and correspondences.
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(a) Input Pieces (b) Matching results after five iterations

(c) Input Pieces (d) Matching Results after four iterations

(e) Input Pieces (f) Matching Results after five iterations

Figure 5.5: For a small puzzle, without a assembly stage our method can find 100% correct
placement of all input pieces. Although some edges have not been matched, it is possible to
correctly place those pieces by using matchings from their neighbours.
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(a) Input Pieces (b) Matchings from the first iteration (c) Matchings from the second iteration

Figure 5.6: Matching results of rectangular pieces with different sizes. After two iterations 19
pieces have been correctly placed out of 21 input pieces.

(a) Input Pieces (b) Matchings from the first iteration (c) Matchings from the fourth iteration

Figure 5.7: After four iterations all input pieces have been correctly placed.

(a) Input Pieces (b) Matchings after the third iteration

Figure 5.8: After the third iteration all input pieces can be correctly placed by using pruning
correspondences.
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(a) Input Pieces (b) Matchings from the first itera-
tion

(c) Matchings from the second it-
eration

Figure 5.9: After the first iteration incorrect correspondences are found, shown in the red.

5.4 Limitations and future work

Computation time is the first limitation of our method. For each puzzle we have loops to

compute and there are multiple diffusion analysis. The repeating usage of diffusion framework

caused a long computation time. Currently, our implementation is using Matlab. There are

built-in functions and toolbox functions in Matlab that can be used in CUDA programming,

and these functions have covered our implementation. To address this limitation, in the future

we can use parallel computing in GPU to reduce the computation time.

Assembly is the second limitation of our method. Currently, we are using MST to assem-

ble un-matched puzzle pieces. As stated in Chapter 4 MST may generate incorrect results

when the input similarity scores are unreliable. in the future, we hope to develop a new assem-

bling technique that is based on the matching results in each loop to adjust assembled pieces

automatically.

5.5 Conclusion

In this chapter we have introduced a puzzle solving technique based on EMD and diffusion

analysis. We have demonstrated that the usage of EMD performs good results in similarity

measurement. Our diffusion pruning technique shows good two-way cycle-consistency be-

tween pieces. We use multiple diffusion computation to obtain good results. Our experiments

show we can handle differently shaped puzzle pieces with good precision rate. Our next step is
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to develop a proper assembly technique to achieve better assembled results. Moreover, we can

use parallel computing in GPU to reduce the time consumption, so that we can handle larger

puzzles.
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Chapter 6

future work and Conclusion
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6.1 future work

In this chapter we discuss the long term future work and we have demonstrated the the short

term future works in section 3.7, 4.7, and 5.4. In the 3D domain we want to use cycle-

consistency as the constraint to solve the matching problem with time steps, such as video

frame processing. In the 2D domain we want to use pixel-level matching to solve puzzle solv-

ing.

6.1.1 Cycle-consistency and Video Frames

Video frames processing is a classic problem in computer science/vision with vast applications.

Track a constant region/object during the framing is an essential function, and this can be

modelled as finding cycle-consistent correspondences between different frames. Video frame
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interpolation is also an essential function for high frame rate per second. Gamer, game studios,

smartphone/tablet market, and hardware manufacturers are focused on increase frame rate per

second for the better user experience. The interpolation can also be considered as a consistent

cycle-wise correspondences problem.

Although cycle-consistency has been studied in 3D matching or 2D image processing, it

has been rarely applied in video frame processing. [112] introduces a novel way to solving the

tracking problem by using multi-way cycle-consistency as a constraint in consecutive frames

(time steps). The multi-way cycle-consistency supports the tracking of globally consistent

objects. [113] demonstrates the first work by using cycle-consistency as the constraint in un-

supervised video interpolation. The involved two-way cycle-consistency ensures the system

to interpolate the correct pixels that match the adjacent frames (the consecutive input frames).

In the future, we hope to use designated cycle-consistency constraints to obtain longer cycles

than existing works in video frame processing problem.

6.1.2 Pixel-level Matching Between Puzzle Pieces

Using pixel-level correspondences computing in puzzle solving may produce better results than

existing works. Existing puzzle solving techniques are using pair-wise pixels to generate sim-

ilarity scores. It requires a post-processing stage to combine/merge all pixel-level similarities

into a single value. There is a considerable variation of similarity scores, and some correct

pairs of pieces have been assigned with large scores (which means more dissimilar, see Figure

4.1b). By computing matching on pixel-level of each puzzle piece, we may generate more

accurate correspondence and improve assembly results to solve puzzles. However, the amount

of computing will be significantly increased. In the future, we want to find a high-efficiency

correspondences computation to solve puzzles.
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6.2 Conclusion

In this thesis, we have demonstrated using consistent correspondences to solve matching prob-

lems in both 3D and 2D domain. We first introduced the existing works of computing corre-

spondences in both 3D and 2D domain. Then we demonstrated our works in both 3D/2D.

In the 3D, we have introduced a novel shape matching method to handle over/imperfect-

segmentation. We use segments merging approach to generate our novel multi-layer graphs

with hierarchical understanding. Then we use our diffusion pruning based matching technique

to find consistent correspondences between shape segments. Our multi-layer graphs preserve

geometric, topological, and hierarchical information of input shape segments, and we can find

meaningful merged-to-merged segment-wise correspondences to achieve a higher level under-

standing of input shape segments.

In the 2D, we demonstrated our sub-edges based puzzle solving techniques to handle low-

distinctive pieces and variously shaped pieces. Based on the sub-edges we can formulate the

traditional edge-wise puzzle solving into our corner-wise approach, which performs better re-

sults than the traditional techniques. Our technique also shows that by combining the diffusion

framework and properly designed pruning procedure, we can find high-quality matching re-

sults of puzzle solving problem. Still, we show MatchLift framework produces good results

in puzzle solving with low-distinctive pieces. In the future, we will refine and optimise our

techniques and keep researching the matching problem in 3D/2D.
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Glossary

3D meshes 3D models with structural polygons, such as triangles.. 30

diffusion analysis analysis technique which is evolved from spectral analysis.. 3

eigendecomposition A linear algebra operation of a matrix.. 3

eigenvalues A set of values which is computed from eigendecomposition, corresponding to

the eigenvector.. 20

eigenvectors A vector which is computed from eigendecomposition, corresponding to the

eigenvalue.. 3

geodesic distance the shortest path between a pair of vertices in a graph.. 20

MatchLift A cycle-consistent matching technique for shape matching.. 16

puzzle solving solve jigsaw puzzles. In recent works, the input jigsaw puzzle pieces are in

square only.. 7

SHED Shape edit distance, a segment-wise matching technique.. 8

spectral analysis mathematical analysis technique with variously application in a range of

domains.. 3
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