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Abstract
Segmentation and detection are two fundamental problems in computer vision and medical im-

age analysis, they are intrinsically interlinked by the nature of machine learning based classi-

fication, especially supervised learning methods. Many automatic segmentation methods have

been proposed which heavily rely on hand-crafted discriminative features for specific geometry

and powerful classifier for delinearating the foreground object and background region. The aim

of this thesis is to investigate the adaptive schemes that can be used to derive efficient interac-

tive segmentation methods for medical imaging applications, and adaptive detection methods

for addressing generic computer vision problems. In this thesis, we consider adaptive learning

as a progressive learning process that gradually builds the model given sequential supervision

from user interactions. The learning process could be either adaptive re-training for small

scale models and datasets or adaptive fine-tuning for medium-large scale. In addition, adaptive

learning is considered as a progressive learning process that gradually subdivides a big and dif-

ficult problem into a set of smaller but easier problems, where a final solution can be found via

combining individual solvers consecutively. We first show that when discriminative features

are readily available, the adaptive learning scheme can lead to an efficient interactive method

for segmenting the coronary artery, where promising segmentation results can be achieved with

limited user intervention. We then present a more general interactive segmentation method that

integrates a CNN based cascade classifier and a parametric implicit shape representation. The

features are self-learnt during the supervised training process, no hand-crafting is required.

Then, the segmentation can be obtained via imposing a piecewise constant constraint to the

detection result through the proposed shape representation using region based deformation.

Finally, we show the adaptive learning scheme can also be used to address the face detection

problem in an unconstrained environment, where two CNN based cascade detectors are pro-

posed. Qualitative and quantitative evaluations of proposed methods are reported, and show the

efficiency of adaptive schemes for addressing segmentation and detection problems in general.
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1.1 Motivation

Over the past two decades, Artificial Intelligence (AI) has achieved remarkable successes,

especially the advances in statistical machine learning, and deep neural networks. The emer-

gences of the pioneering works in statistical machine learning such as Support Vector Ma-

chine (SVM) [31], Random Forests (RF) [32], Adaptive Boosting (AdaBoost) [33], and the

robust feature descriptors such as Haar wavelets (Haar) [25], Scale-Invariant Feature Trans-

form (SIFT) [34], Histogram of Oriented Gradients (HOG) [27], mark the third renaissance of

AI. They have shown significant performance boosts in almost all traditional visual recognition

problems, such as semantic segmentation, face and pedestrian detection, and object recogni-

tion. Some of the success was due to increasing computer power and some was achieved by

focusing on specific isolated problems and pursuing them with the highest standards of sci-

entific accountability. It motivates the development of more challenging and realistic datasets
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which also reveal the limitations of these statistical methods in generalization ability, and the

difficulties of feature crafting. To fulfil the dream of human level intelligence that has cap-

tured the imagination of the world in the 1960s, there are many research scientists from both

academia and industry who are contributing their efforts to this fascinating topic. It is worth

noting that Geoffrey E. Hinton’s works [35, 36] make the Deep Neural Network (DNN) regain

the public sight. Especially, AlexNet [28] in visual object recognition achieved significantly

higher accuracy compared to the traditional methods that rely on stronger statistical classi-

fiers and discriminative hand-crafted features. Since then, DNNs are becoming more and more

mainstream [37]. There are four of the key reasons that have contributed to the success of

DNNs. First, DNNs are able to learn the visual features hierarchically via training in supervised

fashion, which avoids hand-crafting features. Second, layer-wise unsupervised pre-training

methods [36] were developed and have proved to be more efficient compared with random

initialisation. Third, a large amount of labelled datasets [38, 39, 40] are vital important to the

advance in supervised training. Moreover, advances in hardware makes both forward pass and

backward propagation computationally efficient. Especially, General-Purpose Graphics Pro-

cessing Unit (GPGPU) are well placed for learning deep neural network structures [41]. Many

industrial products and services have been developing using the deep learning, e.g. Google

AlphaGo [42], and Self-Driving Car [43].

Medical image analysis has a strong connection with machine learning techniques with

respect to decision making, e.g. in computer-aided diagnosis, image segmentation, and lesion

detection. Both traditional statistical methods and state-of-the-art deep models have been suc-

cessfully applied to analyse medical images [44, 45], where most of the work is focused on

developing a fully automatic method. However, there are still major challenges in machine

learning based medical image analysis which also form the major motivations of this thesis.

• The knowledge gap between computer scientist and radiologist. The statistical meth-

ods heavily rely on the discriminative visual features which requires years of working

experience on radiology and relevant fields in hospital. However, radiologists and medi-

cal experts in clinics who are professional in identifying these visual features have little

experience on machine learning, which makes rather difficult to transform the expert

knowledge into a practical and automatic system.

• The deep learning methods partially solves the feature crafting and decision mak-

ing issues, where a large amount of labelled data is required but is not readily avail-
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able in general. In order to train an efficient and accurate deep model, a large amount

of supervision data is required to initialise and optimise millions or billions of param-

eters that the model usually contains. Due to the complexity and large variability of

medical image, to obtain reliable training data, it normally requires to collect multiple

annotations from different experts, and then perform cross validation on the collected

labellings. However, the time of experienced radiologist and clinician who are able to

spend on preparing the dataset is very much valuable and generally rare resource. Hence,

in general, huge image datasets are not publicly available to the academia, although the

situation is improving with the joint effort of computer scientists and clinicians.

• Adapting an existed method to another anatomy structure could be difficult, and

it is certainly a non-trivial task. Medical image segmentation is divided into multiple

sub-fields, a number of methods were proposed for a specific anatomy structure, where

some of them are also incorporated with targeted prior knowledges. It is rather difficult

to apply an anatomy specific method to another subject due to large variations of imaging

and geometrical structure, and strong hypothesis constrains that are used. A generaliz-

able method with uniform segmentation scheme is still the ultimate goal that researchers

are going to purse. In addition, image segmentation and anatomy reconstruction are usu-

ally used for disease diagnosis and surgery planning. An accurate and robust model can

greatly reduce the chance of false prediction and unexpected surgical accident.

We believe that adaptive learning in cooperation with the user interaction can be an effec-

tive approach for addressing these challenges. Here, adaptive learning refers to a progres-

sive learning process that gradually builds the model given sequential supervision from

user interactions. The learning process could be either adaptive re-training for small

scale models and datasets, or adaptive fine-tuning for medium-large scale. We show that

such a scheme can lead to methods of interactive image segmentation and that are efficient for

medical image analysis. Studies on segmenting two anatomies in human circulation system,

i.e. coronary artery and aorta, are presented in Chapter 3 and Chapter 4, respectively. In this

thesis, adaptive learning is also considered as a progressive learning process that gradu-

ally divides a big and difficult problem into a set of smaller but easier problems, where a

final solution can be found via combining individual solvers consecutively. In Chapter 5,

we show that adaptive learning is feasible in solving generic computer vision problems as well,

i.e. face detection in the wild.
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1.2 Overview and Contribution

The aim of this work is to utilise adaptive learning schemes to investigate and analyse medical

images and natural images, particularly for image segmentation, and object detection problems.

In Chapter 3 and Chapter 4, we will present two image segmentation methods for coronary

artery and aorta using random forests and Convolutional Neural Networks (CNNs), respec-

tively. In Chapter 5, we will show the feasibility of combining cascade based adaptive learning

with shallow CNNs for detecting human face in unconstrained environment. In the rest of this

section, we will briefly introduce the works presented in individual chapters, where the connec-

tions to the motivations that we discussed in Section 1.1, and contributions of each proposed

methods are also discussed.

1.2.1 Adaptive Learning for Coronary Artery Segmentation

Coronary artery segmentation plays a vital important role in coronary disease diagnosis and

treatment. The coronary artery is a small tubular-like structure that rings the heart, which can

be well presented and distinguished using vessel feature descriptor extracted from the second

order derivative information, so-called Hessian matrix. However, there are two main difficul-

ties for coronary artery segmentation using 3D CTA images. First, it is very difficult to label

the coronary artery due to the small size and poor connectivity showing in the images. Sec-

ond, there are many similar small vessels in the whole volume scans, such as blood vessels in

the lung. In chapter 3, we present a machine learning based interactive coronary artery seg-

mentation method, where a random forest is gradually built given the knowledge interactively

obtained from user. We first apply vessel diffusion to reduce noise interference and enhance the

tubular structures in the images. A few user strokes are required to specify region of interest

and background. Various image features for detecting the coronary arteries are then extracted

in a multi-scale fashion, and are fed into a random forest classifier, which assigns each voxel

with probability values of being coronary artery and background. The final segmentation is

carried out using a Markov Random Field (MRF) [46] based optimisation with Primal Dual

algorithm [47], and followed by a connective component analysis as post processing to remove

isolated, small regions to produce the segmented coronary arterial vessels. The contributions

of this work are threefold.

• We present an interactive segmentation method for the coronary artery that requires lim-
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ited user interference and achieves robust segmentation results. It transfers the knowl-

edge from radiologists to a practical segmentation system through the foreground and

background guiding strokes.

• The proposed feature descriptor constructed on the eigen system of Hessian matrix at

multi-scales is efficient for distinguishing tubular-like, plate-like, and sphere-like struc-

tures in shape analysis. Meanwhile, we showcase how to apply spatial piecewise con-

stant on the binary prediction using MRF.

• We develop an interactive medical image segmentation platform, SVMIST. It has fol-

lowing functionalities that can be reused and further developed into a practical system:

image dataset management, 3D viewing, volumetric rendering, interactive labelling, and

segmentation.

Research outcomes from this chapter, including methods and experimental results, are pre-

sented within the following publication.

• J.Deng, X.Xie, R.Alcock, and C.Roobottom. 3D Interactive Coronary Artery Segmenta-

tion using Random Forests and Markov Random Field Optimization. IEEE International

Conference on Image Processing (ICIP), 2014.

• E.Boileau, S.Pant, C.Roobottom, I.Sazonov, J.Deng, X.Xie, and P.Nithiarasu, Estimating

the Accuracy of a Reduced-Order Model for the Calculation of Fractional Flow Reserve

(FFR). International Journal for Numerical Methods in Biomedical Engineering, 2017

1.2.2 Adaptive Learning for Aorta Segmentation

It is difficult to hand-craft discriminative features for complex anatomies. A typical example

could be the aorta that contains an arch tube and a root with three leaflets. Often, large datasets

are not readily available to train a deeper model for mining the discriminative features, which

makes it even a harder problem to solve. In Chapter 4, we present a semi-automatic method

for segmenting aorta that is achieved by a Classification-Refining-Regularizing procedure in

an interactive manner as follows: (1) detect the object via voxel-wise region classification;

(2) interactively refine the predicted region using adaptive learning scheme; (3) regularise the

results with a piecewise constant constraint that uses an implicit non-uniform B-spline model

5



1. Introduction

for shape representation. A 2-stage cascade detector is used to leverage the overall classifica-

tion accuracy and speed efficiency, where a simple Naive-Bayesian model was trained based

on the intensity information for fast background voxel elimination, and a stronger Pseudo-3D

CNN multi-scales detector was built to precisely identify the foreground objects. In addition

to fully automatic voxel classification, an interactive refining scheme is introduced to boost the

detection accuracy further by utilising the information gained from user’s interventions, in our

case, the foreground and background guiding strokes. However, it is worth noting that voxel-

wise object detection is not equivalent to binary segmentation, as it does not take any prior

knowledge into consideration. For example, the piecewise constant that is commonly used

in the deformable segmentation. The proposed method addresses this problem by introduc-

ing a Non-Uniform Implicit B-spline Surface (NU-IBS) model to represent shape geometry,

where the regularisation constrain can then be imposed via region based deformation given the

classification confidence of each voxel. Our contributions are fourfold.

• A cascade detector is proposed to efficiently delinerate the foreground objects and back-

ground regions which contains a intensity-based Naive-Bayesian classifier for fast elim-

ination, and a pseudo-3D CNN classifier for precise classification. The representative

features for region-based detection is automatically learnt in a supervised fashion, hence,

no hand-crafting is needed.

• An adaptive learning and localised refining strategies are introduced which further im-

prove the detection result and boosts the accuracy with help of user interventions that

are taken on-the-fly. The foreground and background guiding strokes provided by user

are used as supervised labelling to adaptively update the classifier, where the spatial

information of the strokes is used to localise the regions that need to be refined.

• We propose a novel shape representation method which embeds the shape into the zero

manifold of a level set function that is approximated using locally supported B-spline

patches in parametric form. The geometrical complexity is estimated using the proposed

wavelet-based filtering method, according to which the control knots are placed, there-

fore, it is able to adapt according to the local topology. This contribution is non-trivial

because it bridges implicit representation and explicit representation, and allows topo-

logical changes and localised user interaction.
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• We derive the formulation of region based deformation for proposed NU-IBS, which can

be used to impose the piece-wise constant constrain to the detection result. A smooth

interface is iteratively propagated according to the classification confidence, where both

geometrical and characteristic homogeneity are co-optimised, and an optimal solution to

the joint object function can be achieved simultaneously.

Research outcomes from this chapter, including methods and experimental results, are pre-

sented within the following publication.

• J.Deng and X.Xie. Segmenting 3D Medical Image via Adaptive Learning and Deform-

ing a Non-Uniform B-Spline Implicit Representation. To be submitted to IEEE Transac-

tion on Image Processing (TIP), In Preparation.

1.2.3 Adaptive Learning for Face Detection

Face detection in the wild is a challenging computer vision problem due to large variations

and unpredictable ambiguities commonly existed in real world images. Whilst using hand-

crafted features is generally problematic, introducing powerful but complex models is often

computationally inefficient. Especially, some recent works on adapting pre-trained large scale

recognition models to face detection problem often requires excessive resource expenditure. In

Chapter 5, we first propose a nested CNN-cascade learning algorithm that uses shallow neural

network architectures and allows efficient and progressive elimination of negative hypothesis

from easy to hard via self-learning discriminative representations from coarse to fine scales.

The face detection problem is considered as solving three sub-problems: eliminating easy

background with a simple but fast model, then localising the face region with a soft-cascade,

followed by precise detection and localisation by verifying retained regions with a deeper and

stronger model. Furthermore, we investigate multi-resolution feature aggregation strategies

for detecting face in cooperation with cascade CNNs. We show that such strategies can be

integrated into the architecture design of CNN via average pooling and channel-wise feature

concatenation. Two proposed methods are tested on several public benchmarks with across

dataset evaluation. Both quantitative and qualitative results show promising performance im-

provements on detecting faces in unconstrained environment. The contributions of this work

can be summarised as follows:
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• We show that face detection in the wild can be solved by dividing difficult problem into

several sub problems using cascade-based adaptive learning. Individual sub problem is

solved using a shallow CNN, where the features are learnt automatically and tuned to be

optimal for different stages.

• We propose an adaptive cascade schemes such that the depth of CNN model is progres-

sively increased with the number of stages. As the binary classification problem in the

later stage is significantly more difficult than earlier stages, hence stronger models are

used adaptively.

• We investigate nested soft decision method, feature aggregation via average pooling and

channel-wise feature concatenation, and multi-task training schemes for CNN-based cas-

cade, which proved to be effective for boosting the detection accuracy.

Research outcomes from this chapter, including methods and experimental results, are pre-

sented within the following publications.

• J.Deng, and X.Xie. Nested Shallow CNN-Cascade for Face Detection in the Wild. IEEE

International Conference on Automatic Face and Gesture Recognition (FG), 2017.

• J.Deng, and X.Xie. Detect Face in the Wild using CNN-Cascade with Feature Aggre-

gation at Multi-Resolution. IEEE International Conference on Image Processing (ICIP),

2017.

1.3 Outline

The rest of the thesis is organised as follows.

Chapter 2 - Background: provides the necessary background information that includes

introduction to supervised machine learning and medical image analysis, anatomical

structure of coronary artery and aorta, relevant diseases, and an overview of face detec-

tion methods.

Chapter 3 - Coronary Artery Segmentation: presents an interactive classification method

for segmenting coronary artery, where the random forests classifier is built gradually
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given a sequential foreground and background labels from user. MRF is used to regu-

larise the binary decision. The proposed method requires limited user interference and

achieves robust segmentation results.

Chapter 4 - Aorta Segmentation: presents an interactive refining method for segmenting

aorta root and arch, where given the user interaction the CNN classifier is adaptively fine-

tuning to refine the classification result. A novel parametric implicit shape representation

method is proposed, and the data driven deformation is derived from region based level

set Partial Differential Equation (PDE). Hence, the segmentation can be achieved by

regularising the refined classification result using region based shape deformation. The

method is evaluated on a CTA dataset that has 36 volumes.

Chapter 5 - Face Detection: presents two cascade CNN methods for detecting face in

unconstrained environment. The key concept is to divide the a difficult problem into

several sub problems that can be solved adaptively. The proposed methods are evaluated

on public datasets, and comparative studies are also presented.

Chapter 6 - Conclusions and Future Work: concludes the thesis with discussions of the

proposed methods and possible extensions.
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2.1 Introduction

Over the course of this chapter, the background knowledges that are required for this thesis

are provided. In Section 2.2, we first introduce the basic concept of two supervised machine

learning techniques that are used in the thesis, random forests and neural networks. In Sec-

tion 2.3, an overview of medical image analysis is given, which includes an introduction of
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image segmentation method, the anatomical structures and relevant diseases of the cardiovas-

cular system, and medical imaging techniques. Especially, we focus on aorta and coronary

artery in Section 2.3.2.1 and Section 2.3.2.2, which form the major subjects of this thesis. We

also investigate the application of adaptive learning scheme, more specifically cascade method,

in face detection, where an overview of object detection methods is provided in Section 2.4.

This chapter is closed with a summary in Section 2.5.

2.2 Supervised Machine Learning

Supervised learning is one of the most important type of machine learning methods that infers

a function or model from labelled training data. The training data consist of a set of pair ex-

amples which contains an input feature, typically a vector and a target output value, also called

the ground-truth. The process of inferring the function or model is known as the training or

learning procedure. The inferred function and model can then be used for mapping new exam-

ples to the targets, which is called the testing or prediction procedure. An optimal scenario will

allow for the algorithm to correctly determine the class labels or regression value for unseen

instances. Supervised learning is closely related to computational statistics and has strong ties

to mathematical optimisation, where a function or model can be found via minimising the pre-

diction error given input features on training dataset. Numerous supervised machine learning

algorithms have been proposed and widely used in variety of applications. Examples include

linear discriminant analysis (LDA), support vector machines (SVM), decision trees, classifi-

cation and regression trees (CART), random forests, adaptive boosting (AdaBoost), stacked

auto-encoders, neural networks (NN) [48, 49, 50]. A brief introduction to random forests (RF)

and convolutional neural networks (CNN) that are used in the thesis is provided in the rest of

this section.

2.2.1 Random Forests

A decision tree [1] is a tree-like predictive model which maps observations to targets. Each leaf

node contains a target value from training dataset, each non-leaf node contains a test unit of

certain features, and branches represent conjunctions of features that lead from the root to leaf

nodes. Decision tree, where the target variable is continuous is called regression tree, when the

target variable takes a finite set of values is called classification trees. A tree can be grown by
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splitting the training set into subsets based on a feature value test. This recursive partitioning

process is repeated on each derived subset in a recursive and top-down manner. The so-called

best split can be quantitatively measured using homogeneity difference between a parent node

and its children nodes. Popular homogeneity metric are Gini impurity, information gain, and

variance reduction. Fig. 2.1 demonstrates a visual example of random decision tree.

Figure 2.1: An illustrative decision tree used to predict whether a photo represents an indoor
or outdoor scene, adapted from [1].

A RF [32, 1] is an ensemble classifier consisting of a set of decision trees, which signifi-

cantly improves the generalisation ability of the classifier compared to a single decision tree. At

the bootstrap aggregating stage (bagging), assuming that the data sample is independent and

identically distributed, new training sets are generated by randomly sampling with replace-

ment from the complete training set. For each new training set, one decision tree is constructed

which consists of a set of split nodes and linking edges. Each non-leaf node stores a random

test function which is applied to the input data, and leads to the leaf node. In the leaf nodes, the

final predictor is stored. At the prediction stage, all the trees classify the incoming data inde-

pendently, the most voted class given by the trees is considered as the final classification of the

forest. Two parameters must therefore not be chosen determined for random forest training.
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The first is the number of trees, and the other is the amount of weak classifiers allowed in the

randomised subset to identify each non-leaf node. There are also some important parameters

that control the depth of tree, and the minimum number of targets in the leaf node. Random

forests are known to be accurate, and have reasonably good generalisation ability. However,

due to it relying on weak classifiers, it is susceptible to over-fitting on noisy dataset, and heavily

relies on hand-crafted discriminative features.

2.2.2 Neural Networks

Neural networks (NNs) are composed of layers where nodes in adjacent layers are linked to-

gether with weighted connections [51, 52]. Fig. 2.2 shows the mathematical model of neural

networks with a single neuron on the left, and a two-layer neural network model. Mathe-

matically, individual hidden node can be considered as an activation of linear combination of

connected nodes from previous layer. A common choice of activation function is the sigmoid

function, since it takes a real-valued input and squashes it to the range between 0 and 1. There

are many alternatives proposed such as: Tanh, and ReLU family [53]. Neural networks are

modelled as collections of neurons that are connected in an acyclic graph. The outputs of neu-

rons in current layer can become inputs to other neurons in next layer. Cycles are strictly not

allowed since that would imply an infinite loop in the forward pass of a network. Instead of an

amorphous blobs of connected neurons, neural network models are often organised into dis-

tinct layers of neurons. For regular neural networks, the most common layer type is the fully-

connected layer in which neurons between two adjacent layers are fully pairwise connected,

but neurons within a single layer share no connections. A deeper model can be created via in-

creasing the number of stacked layers in the network. Too few layers, and nodes in layers can

lead to a network that is too generalised, whereas too many can easily lead to over-fitting the

data. A balance between the two must be found depending on the data used in its application.

Gradient descent optimisation is commonly used to train the neural networks which involves

two consecutive stages. The parameters of the model are first initialised with small random-

ized real value. During the forward pass stage, the outputs are computed given the inputs of

training samples layer by layer. Then, the outputs computed by the current model, and targets

given by training dataset are used to compute the error loss that back-propagates to the network

in an opposite direction. Once the analytic gradient is computed with back-propagation, the

gradients are used to perform a parameter update.
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(a) (b)

Figure 2.2: Left: The mathematical model of a single neuron. Right: Two-layer neural net-
works model.

CNNs [54] can be considered as extensions to Neural Networks (NNs). It makes the ex-

plicit assumption that the inputs are images, which allows us to force spatial connectivity on

the node connection into the architecture using fixed size of local filtering kernels. These then

make the forward function more efficient to implement and vastly reduce the amount of param-

eters in the network. Four main types of layers are used to build CNN architectures: convo-

lutional layer, pooling layer, activation layer, and fully-connected layer. Convolutional layers

create multiple feature maps, yielding a large number of parameters to be optimised, whereas

pooling layers reduce the size of the feature maps with algorithms such as max, min or mean

pooling. As a result, CNNs hierarchically create simpler, more generalised versions feature

descriptor of the original image via stacking network building blocks. There are also many

regularisation layers proposed to speed up training and avoid over-fitting issues to some extent,

such as two popular options by using drop-out layer [55] and batch normalization layer [56].

The advantage of deep learning is its ability to learn suitable features. However, due to the large

amount of parameters that need to be optimised, training deep learning algorithms is slow and

require huge amount of labelled data. Furthermore, designing the architecture of network often

requires trial and error which can be very time consuming.

2.3 Medical Image Analysis

Medical image analysis is an interdisciplinary field which focuses on applying the image pro-

cessing, computer vision, machine learning, pattern recognition etc. techniques to signals and

images that acquired for medical diagnosis and treatment purposes. It includes diverse research
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topics which can be broadly grouped into five key directions from three different levels.

• Image De-noising and Enhancement: Image de-noising is a special case of noise

reduction that is the process of removing noise from a signal [57, 58, 59]. An image

is considered as a multi-dimensional signal where the spatial information is encoded

into a regular grid. One goal in image de-noising is to remove the noise that recorded

inevitably from the image in such a way that the so-called original image is restored.

It is an important image processing topic, both as a inverse problem itself, and as a

pre-processing component for other tasks. Many methods have been proposed such as

chroma and luminance noise separation, linear smoothing filters, anisotropic diffusion,

non-local means, non-linear filters, wavelet based approaches, and statistical methods.

Sometimes the image de-noising is considered as a sub-topic of image enhancement

which is defined as the process of adjusting digital images such that the results are more

suitable for further image analysis. In addition to de-noising, it also includes image

sharpening, feature highlighting and so on. For example, in Chapter 3, an anisotropic

diffusion method is used to enhance the vessel-like structures.

• Segmentation: Image segmentation can be largely considered as the process of par-

titioning an image into multiple regions that have similar semantic and/or geometrical

properties in terms of image appearance [60, 61]. The partitioning process generally

relies on shape edges, homogeneous texture, and similar feature patterns that are able

to differentiate the target object from the background. Hence, segmentation methods

can also be categorised into three categories in terms of the image information used, as

follows: edge-based segmentation, region-based segmentation, and feature-based seg-

mentation. Considering the object functions that are constructed, there are continuous

optimisation based segmentation that use PDE and variational methods, and discrete op-

timisation based methods that use graph partitioning methods. Since the majority of this

thesis will investigate the application of adaptive learning in image segmentation prob-

lem, we provide a detailed overview of the segmentation methods in the next subsection.

• Registration: In medical diagnosis scenarios, imaging scans are generally collected

over time to analyse pathological changes over a certain period, where different imag-

ing techniques may be used, and the images with diverse modalities may be obtained.

Image registration is the process of transforming different sets of image data into one
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consistent coordinate system, such that comparison and integration studies can be car-

ried out [62, 63]. An image is selected as the reference or source, and the other images

are spatially transformed to align with the reference image using either rigid estimation

or non-rigid estimation. In terms of the information that is used to estimate the transfor-

mation, there are two broadly defined categories, intensity based registration and feature

based registration. Intensity based methods match intensity patterns between reference

and target images via correlation metrics, while feature based methods establish a corre-

spondence between a number of especially distinct points based on the feature similarity.

• 3D Reconstruction: 3D reconstruction is the process of recovering the three-dimensional

structure from a set of images. Understanding the geometrical structure of the target

organ and tissue is very important for disease diagnosis, pre-surgery planning, and com-

puter assisted surgery. The spatial information is one of the keys for 3D reconstruction

which can be estimated using the geometrical relationship of multiple calibrated cam-

eras, or the imaging parameters of a volumetric scanner [64]. 3D model of target object

is created and visualised which can then be used for realistically investigating its geo-

metrical structure and shape property. It may also involve some other image processing

steps, such as image segmentation to obtain the target object, and image registration to

correct the miss-alignment during volumetric scanning procedure.

• Recognition: Visual recognition is a high level image understanding task that normally

involves feature extraction and decision making. The features can be extracted from dif-

ferent sources, such as low-level image based textural information [65], middle-level

geometrical shape information, and so on. Hence, image de-noising and enhancement,

segmentation, and registration can be considered as the pre-processes for visual recog-

nition task. Machine learning methods, particularly supervised approached are widely

used for modelling the common patterns from extracted features, and making decision

on disease prediction [44, 66]. It is noteworthy that recently deep learning is becoming

more and more main stream, as it shows superior performance boost in visual recognition

task on both natural images and also on medical applications [45].

Fig. 2.3 shows some examples of medical image analysis techniques. In the rest of this

section, we will first overview the image segmentation techniques especially in deformable

model and graph cuts method. Then, we will discuss the anatomical structures and related
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diseases of the subjects that we are going to segment in this thesis. In addition, the background

of corresponding medical imaging techniques will also be provided.

Figure 2.3: Examples of medical image analysis techniques. (a) Image segmentation [2], (b)
Image registration [3], (c) Image de-noising [4], (d) 3D reconstruction and rendering [5].

2.3.1 Medical Image Segmentation

Image segmentation is a fundamental problem in computer vision, image processing, and med-

ical image analysis, which has been widely used in motion tracking, 3D object reconstruction,

especially in medical diagnosis and treatment. It separates the image into several disjointed

parts that have semantic meaning of its own. Segmentation can generally be divided into three

categories as follows: manual, automatic, and semi-automatic methods. Manual segmenta-

tion is generally carried out by experienced medical experts such as doctors or radiologists,

which results in higher accuracy of delineating the Region of Interest (ROI) provided tools are

sufficiently sophisticated and user-friendly. However, manual segmentation methods have a

number of disadvantages. The most obvious one is the amount of time and effort it takes to
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manually label a series of images. Fully-automatic segmentation methods can partially avoid

such disadvantages to free up the time of doctors or radiologists. In addition, the segmentation

will no longer be subjective, as an automatic segmentation method is a generally determin-

istic process. However, developing an efficient automatic method is a non-trivial task, and

has many challenges. First, due to the large variation in terms of different anatomic structure,

image modality, and quality of data, it is difficult to design a general automatic segmentation

method to solve this problem in one go. Second, to transfer the knowledge of experienced

medical experts that are accumulated during their whole career is extremely challenging, not

only on developing the efficient models, but also on preparing huge amount of well formatted

medical records. The last but not the least, the segmentation quality of automatic method is

tightly bounded by the generalisation ability of the model that is used. Case-by-case variations

are very common for medical images which may not be learnt by the pre-trained model, and

result in incorrect prediction.

Semi-automatic methods, or so-called interactive segmentation, have been proposed to

avoid these issues via constructing a controllable automatic scheme, where the user interaction

is used to guide the segmentation towards the optimal target while minimising the user effort.

An overview of interactive segmentation methods in medical image can be found in [67]. The

user interaction can be applied to the process of segmentation via three different ways. First,

the user provided information is used to build or correct a delineation model for separating

foreground objects and backgrounds, where the statistical model is normally used as a clas-

sifier. Second, the user interaction is used as an initialisation segmentation or seed for some

segmentation methods. The former is very common for deformable models, while the later

is for region growing based methods. In the third interaction scheme, the user is asked to

manually correct the segmentation result that is produced by an automatic method. All these

interaction segmentation methods can also be used jointly in order to achieve the best perfor-

mance. However, it is worth noting that the interaction schemes are auxiliary which initialise,

guide, and correct the automatic method.

2.3.1.1 Active Contour

Active contour model [68] is considered as a pioneering works in deformable model which

formulates image segmentation as an energy minimising problem, where deformable spline is

influenced by smoothness constraint and image forces that pull it towards object contours and
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internal forces that resist deformation. Active contours are parametric curves where one tries

to fit to an image, usually to the edges within an image. Active contours may be understood as

a special case of the general technique of matching a deformable model to an image by means

of energy minimisation [69, 70]. The energy functional is given by:

E∗snake =
∫ 1

0
Esnake(V(s))ds

=
∫ 1

0
(Einternal(V(s))+Eimage(V(s))+Econ(V(s)))ds

(2.1)

A parametric snake is defined by a set of n points vi, the internal elastic energy term Einternal ,

and the external edge-based energy term Eexternal . The purpose of the internal energy term is

to control the deformations made to the snake, and the purpose of the external energy term

is to control the fitting of the contour onto the image. The external energy is usually a com-

bination of the forces due to the image itself Eimage and the constraint forces introduced by

the user Econ. The internal energy of the snake is composed of the continuity of the contour

Econt and the smoothness of the contour Ecurv, which is meant to enforce smoothness of the

parametric curve. Energy in the image is some function of the features of the image. This is

one of the most common points of modification in derivative methods. Features in images and

images themselves can be processed in many and various ways. For example, lines, edges, and

terminations present in the image can be used to construct the image forces.

Eimage = wlineEline +wedgeEedge +wtermEterm (2.2)

where wline,wedge,wterm are weights of these salient features. Higher weights indicate that the

salient feature will have a larger contribution to the image force. Some systems, including

the original snakes implementation, allowed for user interaction to guide the snakes, not only

in initial placement but also in their energy terms. Such constraint energy Econ can be used

to interactively guide the snakes towards or away from particular features. Given an initial

guess for a snake, the energy function of the snake is iteratively minimized. Gradient descent

minimization is one of the simplest optimizations which can be used to minimize snake energy.

Each iteration takes one step in the negative gradient of the point with controlled step size to

find local minima.

The original model is due to Kaas et al. [68], but many modifications have been proposed

in the literature, though with their own trade-offs. First, one much discussed point on active

contour is their inability to move into concavities of an objects boundary and their inability
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to find the borders when it is initialised too far distant from the actual border location. The

Gradient Vector Flow (GVF) snake model [71] addresses these two issues via introducing the

so-called GVF field that is constructed on the diffused edge map to replace the external im-

age force. The primary issue with using GVF is the smoothing term causes rounding of the

edges of the contour. Reducing the value of smoothing term reduces the rounding but weakens

the amount of smoothing. Second, the parametric curve has less topological flexibility, it is

not able to break or emerge with regards to the image data naturally. Geodesic Active Con-

tour (GAC) [72] employs ideas from Euclidean curve shortening evolution, where the contours

split and merge depending on the detection of objects in the image. These models are largely

inspired by level sets methods, and have been extensively employed in medical image segmen-

tation. Level sets implicitly define lower dimensional structures such as surfaces via a function

embedding. The 2 dimensional case is given by

Γ = {(x,y)|φ(x,y) = 0}
∂φ

∂ t
= v|∇φ |

(2.3)

The curve evaluation is equivalent to solve a time dependant partial differential equation, in

particular a Hamilton-Jacobi equation, which can be solved numerically, for example by using

finite differences on a Cartesian grid. Hence, geodesic active contours have the advantage

that they can change topology during evolution, and the result has proven to be very useful

because it combines the intuitive active contours concepts with efficient implementations of

level set methods. More recent developments in active contours address modeling of regional

properties, incorporation of flexible shape prior and fully automatic segmentation. Fig. 2.4 (a)

and (b) show two examples of active contour models with a parametric representation and an

implicit representation respectively.

2.3.1.2 Graph Cut

Graph cut is a generic method for minimising a particular form of energy the so-called MRF en-

ergy [73]. As applied in the field of computer vision, graph cuts can be employed to efficiently

solve a wide variety of low-level computer vision problems, such as background removal, im-

age smoothing, the stereo correspondence problem, and many other computer vision problems

that can be formulated in terms of energy minimisation. Such energy minimization problems

can be reduced to instances of the maximum flow problem in a graph. Under most formulations

20



2. Background

Figure 2.4: Examples of active contour models. (a) Parametric active contour model [6], (b)
Geodesic active contour model [7].

of such problems in computer vision, the minimum energy solution corresponds to the maxi-

mum a posteriori estimate of a solution. Although many computer vision algorithms involve

cutting a graph, the term “graph cuts” is applied specifically to those models which employ

a max-flow/min-cut optimisation, while other graph cutting algorithms may be considered as

graph partitioning algorithms. The solution of the graph cut is globally optimal with respect to

a cost function which has a general form given by

C ( f ) =Cdata( f )+Ccoherence( f ) (2.4)

where the Cdata is the cost of data fitness, and Ccoherent is the cost of piecewise constant of

pre-defined local neighbourhood. It has similar energy minimisation principle to active con-

tour models, and has been widely applied to image segmentation. It sometimes outperforms

the level set method when the model is MRF or can be approximated by MRF, as a global

optimiser is often able to be found [47]. However, it also suffers from some significant lim-

itations. First, when an image is represented by a 4-connected lattice, graph cuts methods

can exhibit unwanted “blockiness” artifacts. Various methods have been proposed for address-

ing this issue, such as using additional edges [74] or by formulating the max-flow problem in
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continuous space [75]. Second, the algorithm can be biased toward producing a small con-

tour. Third, graph cuts is only able to find a global optimum for binary labeling problems,

such as foreground-background image segmentation. Extensions have been proposed that can

find approximate solutions for multi-label graph cuts problems [76]. Furthermore, graph cut

segmentation is known to require high storage memory, and is computationally inefficient.

2.3.2 Cardiovascular Anatomy

In the human body, every organ, tissue and cell consumes the nutrients and oxygen, and then

produces waste and carbon dioxide. The exchange processes cannot work without the circu-

latory system which consists of two separate subsystems, the cardiovascular system and the

lymphatic system shown in Fig. 2.5. The cardiovascular system enables the blood to circulate

and transport the essentials to every corner of human body, and expel metabolic waste. The

lymphatic system circulates lymph which is also a vital part of immune system, where the flu-

ids and immunological cells are transported from and to the blood and interstitial spaces. For

most vertebrates including human, the cardiovascular system is a closed circulation, while the

lymphatic system is an open system.

The human cardiovascular system consists of three essential parts as follows: the heart,

blood and blood vessels, which form the pulmonary circulation and the systemic circulation.

In a complete pulmonary cycle, the de-oxygenated blood is pumped away from the heart to

the lungs, where carbon dioxide is released and oxygen is picked up during respiration, and

then the oxygenated blood returns back to the heart. The systemic circulation, also known as

the bronchial circulation, supplies nutrients and oxygen to the cells except the lungs, while

carrying metabolic waste products away. It can further be divided into a macro-circulation and

a micro-circulation, where the former circulate the blood from and to organ, the latter is the

circulation of the blood in the smallest blood vessels to the tissues. The whole cardiovascular

circulation system can be simply thought of as the heart works as a blood pump to which the

blood vessels are connected, while the useful materials and produced waste are exchanged,

although the reality is far more complex. Fig. 2.6 shows the superficial heart anatomy from

both anterior (a) and posterior (b) views. In Fig. 2.6, the red and the blue blood vessels indicate

the oxygenated and de-oxygenated blood that they are carrying respectively. The heart is a

special muscle organ with four cavities inside. During the whole of human life, it continuously

performs contraction and relaxation operations which results in blood flowing within the blood
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Figure 2.5: The simplified human circulation system including both the cardiovascular system
and the lymphatic system, adapted from [8]. Red indicates oxygenated blood carried in arteries,
blue indicates de-oxygenated blood carried in veins.

vessels. In a normal cycle, the contraction lasts 0.1 second, and the relation lasts 0.7 second.

For an adult, the weight of the heart is generally 0.5% of his weight, whereas during every

cycle of contraction and relaxation the heart can pump out or drain in 70ml blood on average

resulting in 5L per minute.

As shown in Fig. 2.7 (a), the heart has four chambers, the left and the right atria on the top,

and the left and the right ventricles at the bottom. The atria are receiving chambers where the

blood flow is drained into the heart, while the ventricles are discharging chambers where the

blood flow is pumped out of the heart. When the heart contracts, the oxygenated blood in the

left ventricle passes through the aorta, and is transported to all parts of body except the lungs.

At the same time, the de-oxygenated blood in the right ventricle passes through the pulmonary

artery, and is transported to the lungs. When the heart relaxes, the blood carrying the oxygen

is drained from the lungs through the pulmonary vein back to the left atrium, while the blood

23



2. Background

(a) (b)

Figure 2.6: The human heart viewed from the front (a), and behind (b), adapted from [9, 10].

carrying carbon dioxide is drained from the rest of the body through the vena cava back to the

right atrium. The blood flows are one-way that can only go out from the ventricle and back

to the atrium. In order to prevent refluxing, there are four valves separating the chambers,

where one valve lies between each atrium and ventricle, and one valve rests at the exit of each

ventricle. Fig. 2.7 (b) shows all four interior valves by removing the atria and major vessels.

The tricuspid valve and the bicuspid valve lie between the right and left atria and ventricles

respectively, where the valves open to enable the blood flows from atria to ventricles when the

heart contracts, and close to prevent the back flow when the heart relaxes. The aortic valve and

the pulmonary valve sit at the exit of each of the ventricles, where the valves open to enable

the blood flows from ventricles to the main vessels when the heart contracts, and close when

the heart relaxes. The motions of four valves are well synchronised to ensure the right blood

circulation flow.

In this thesis, we will focus on the aorta root which is the start point of the systemic cir-

culation, and the coronary artery which provides the blood circulation to the heart muscles. In

the following two sub-sections, we will discuss their anatomical structures, functionalities, and

the relevant diseases in cardiovascular circulation in more detail.
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(a) (b)

Figure 2.7: (a) The heart, showing valves, arteries and veins, and the white arrows showing
the normal direction of blood flow, adapted from [11]. (b) With the atria and major vessels
removed, all four valves are clearly visible, adapted from [12].

2.3.2.1 Aorta Root and Arch

The aorta is the large blood vessel that carries oxygen-rich blood from the left ventricle of the

heart to other parts of the body, where its root attaches to the heart. The aortic root consists

of three aortic valve leaflets and the coronary ostia which are the openings for the coronary

arteries. Fig. 2.8 shows the anatomical structure of the aorta root. The valve leaflets open to

allow the blood flow into the ascending aorta. The coronary ostia consists of two main vessels

that are just above the valve leaflets, and attached to the ascending aorta. The ascending and

descending aortas form an arch shape, where there are three main arteries, the innominate

artery, the left common carotid artery, and the left subclavian artery. The innominate artery

is generally larger than the other two, and divided into the right common carotid artery and

the right subclavian artery. The carotid arteries provide blood to the brain, and the subclavian

arteries provide blood to the upper limbs. The blood is transported to the upper limbs and the

other organs through descending aorta.

2.3.2.2 Coronary Artery

The cardiac muscle, also known as myocardium, produces powerful pressure to force the blood

flowing within the blood vessels via periodical contraction and relaxation. The coronary ar-

25



2. Background

Figure 2.8: Illustration of the aorta root, adapted from [13].

teries are the blood vessels that are in charge of continuously transporting the blood with rich

oxygen and rich nutrient to the myocardium. Fig. 2.9 shows that the left and the right main

coronary arteries branch off the aorta root, and further subdivide into smaller branches that

ring the heart. The right branches of the coronary artery transports the blood to the right atrium

and ventricles and the atrioventricular septum. The left branches of the coronary artery pro-

vide blood supply to the rest of the left atrium and ventricle as well as the ventricular septum.

Although the coronary arteries are generally narrow compared to other major vessels, the den-

sity of the blood capillary on myocardium is very high, 2,500 vessels per mm2 on average.

For a healthy adult, the total amount of blood flow in the coronary arteries reaches 225ml per

minute that is about 5% of total amount of blood flow of the whole heart. The heart never stop

beating during the whole life, it is the most efficient and busy organ, where the myocardium

consumes 65% to 70% of oxygen from the blood that flows through to enable uninterruptible

blood supply.
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Figure 2.9: Illustration of the coronary arteries, adapted from [14].

2.3.2.3 Cardiovascular Disease

Cardiovascular diseases are the diseases of the heart and blood vessels, such as stroke, heart

failure, cardiomyopathy, valvular heart disease, peripheral artery disease, and venous thrombo-

sis. According to the report published by World Health Organization (WHO), cardiovascular

diseases are the leading cause of death in the world [77]. There were 12.3 million death due to

cardiovascular disease in 1990, with the number increasing to 17.3 million in 2013 [78]. An

important and most hazardous category of cardiovascular diseases is so called stenosis, which

is an abnormal narrowing in a blood vessel. Aortic stenosis is usually a result of calcium or

plaque deposited in the artery which narrows the valve, meaning the aortic valve cannot fully

open. This leads to decreasing blood flow from the heart to the body. In turn, it can lead to

severe hypertension and angina. Coronary stenosis reduces or blocks the oxygen-rich blood

flowing to myocardium, which is the leading cause of ischaemia and myocardium damage.

Artery wall thickening diseases are specific forms of arteriosclerosis, also known as atheroscle-

rosis. They are the results of an accumulation of atheromatous and fibrofatty plaques inside

of blood vesseles that are generally produced by white blood cells and the proliferation of

intimal-smooth-muscle cells. Fig. 2.10 shows the progression of atherosclerosis.

Arteriosclerotic vascular diseases including both aorta stenosis and coronary stenosis result
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(a) (b)

Figure 2.10: (a) The progression of atherosclerosis, adapted from [15]. (b) Illustration of
coronary artery disease caused by narrowing of artery, adapted from [16].

in occlusion of any of these vessels that can interrupt the blood supply to the body and the heart.

Left without treatment, severe stenosis will lead to functional deterioration, heart failure, and

often death. Open heart surgery requires cutting the chest open, and it is performed on the

muscles, valves, or arteries of the heart, which are high risk operations to the life of patients

especially for elder patient. Nowadays, for the patients who are not well enough to have open

heart surgeries, transcatheter based surgeries are normally given instead. For aorta stenosis,

Percutaneous Aortic Valve Replacement (PAVR), also known as Transcatheter Aortic Valve

Implantation (TAVI) or Transcatheter Aortic Valve Replacement (TAVR), is the surgery of

replacing of the aortic valve of the heart using transcatheter through the blood vessels. For

coronary stenosis, a coronary angioplasty is given to widen blocked or narrowed coronary

arteries. Fig. 2.11 (a) shows transfemoral and transapical approaches for transcatheter aortic

valve replacement, and Fig. 2.11 (b) illustrates angioplasty and coronary artery stent placement

approaches. The valve replacement device and the artery stents are transported to the heart via

the catheter from one of the large vessels in the limbs, and then are positioned in the right

locations. In both cases, the path and the geometrical structure that the catheter takes must

be assessed. In chapter 3 and 4 of this thesis, we will present two interactive segmentation
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methods that are used to analyse the geometrical structure of the coronary artery and aorta root

respectively.

(a) (b)

Figure 2.11: (a) Illustration of transfemoral and transapical approaches for transcatheter aortic
valve replacement, adapted from [17]. (b) Illustration of angioplasty and coronary artery stent
placement, adapted from [18].

2.3.3 Medical Imaging Techniques

Medical imaging is the technique and process of revealing internal structures of human body

for clinical analysis and medical intervention. Since 1895 when the German physicist, Wilhelm

Conrad Rontgen discovered that X-rays can identify bone structures, the terminology “imag-

ing” has developed into much wider sense instead of producing signal in an image form only.

In order to create visual representations of the interior of a body, many physical techniques

are used, such as medical radiography, ultrasound, magnetic resonance, radionuclide, optical

laser, thermography, fluoroscopy, and so on. Those medical imaging techniques can be further

divided into two categories, invasive and non-invasive based on whether instruments are intro-

duced into a patient’s body or not. In an unrestricted sense, the process of producing visual

representations of the interior of a body is the solution of a mathematical inverse problem given

the observed signals. For example, X-ray radiation imaging technique is based on the fact of
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that it is absorbed at different rates by different tissue types such as bone, muscle and fat, where

the interior structures can be inferred via measuring the signal difference between incidence

and emergence. Taking image scans for patient is an essential procedure for diagnosis, treat-

ment and surgery planning. Fig. 2.12 shows some examples of acquired medical images. In

the next two sub-sections, we will introduce two special medical imaging techniques that are

used commonly for analysing and treating cardiovascular diseases.

2.3.3.1 Computed Tomography and Angiography

Computed Tomography (CT) is nowadays a common medical imaging technique. It produces

cross-sectional (tomographic) images of a scanned object from many X-ray images taken from

different angles. The process of computing tomographic images is so-called digital geometry

processing, where a series of two-dimensional radiographic images are taken via rotating a

single axis, and then combined into a single cross-sectional image. Fig. 2.13 shows a modern

3D CT scanner, where a series of 2D X-ray images are generated via rotating the X-ray source.

The patient lays on the motorised table, and is moved through the target locations in the scanner

progressively. By stacking all cross-sectional images, the CT scanner produce a volumetric

data that can be reformatted in various reconstruction planes for better representations of target

structures.

Generally an invasive catheter coronary angiography is given to patients in order to detect

narrowing of blood vessels, especially for those who have coronary artery diseases. However,

such invasive imaging techniques could be risky and painful to the patients. CTA is a com-

puted tomography technique used to visualize arterial and venous vessels using non-invasive

CT scanning technique. As blood has very low capacity of absorbing X-ray radiation, it is

difficult for the normal CT imaging to differentiate tissue and blood vessels. In order to reveal

the internal geometrical structure of vessels, radiocontrast agents are injected into the human

body or consumed by patients to increase the visibility of blood under X-ray radiation. The

typical radiocontrast agents are iodine or barium compounds that lack therapeutic effects for

patients. Before the radiocontrast agents are metabolised, the patient is given a normal CT scan

procedure, hence the produced tomography image is able to reflect blood flow inside of body

as well as the geometrical structure of blood vessel. CTA are used to examine blood vessels

in many vital regions of the body, such as the brain, kidneys, the heart, and lungs. Fig. 2.14

(a) shows typical examples of CTA images of coronary artery, and the corresponding recon-
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Figure 2.12: Examples of medical imaging techniques. First row left: intravascular ultrasound.
First row middle: optical coherence tomography. First row right: phase contrast microscopy.
Second row left: brain MRI. Second row right: computed tomography angiography. Third row
left: brain PET [19]. Third row right: fetal ultrasound [20].
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Figure 2.13: Modern CT scanner, adapted from [21, 22].

struction, where the blood vessels (bright regions) have relatively high intensity compared to

the myocardium. Fig. 2.14 (b) shows a CTA image of a human torso, where the blood vessel

are highlighted in CT images that have similar appearance with high density regions, such as

bone.

2.3.3.2 Fractional Flow Reserve

CTA can provide accurate measurements of the geometrical structure of blood vessels. How-

ever, sometimes it is not sufficient to precisely locate the regions of stenoses and pathological

changes, especially for small vessels, such as coronary artery. In order to reduce the risk of

TAVI procedure, and achieve the best treatment, Fractional Flow Reserve (FFR) is normally
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(a) (b)

Figure 2.14: (a) Illustration of CTA images and 3D reconstruction of coronary artery, adapted
from [23]. (b) Illustration of a CTA image of human torso, adapted from [24].

given before the surgery. It is a guide wire-based procedure that can measure blood pressure,

temperature, and flow through a specific part of the vessels using a small sensor on the tip of

the wire. FFR is performed through a standard diagnostic catheter at the time of a coronary

angiogram. The measurement of FFR can then be used to determine the exact severity of the

stenosis, which has been shown useful in assessing whether or not to perform angioplasty or

stenting at pre-surgery stage. Although, FFR is an invasive procedure, it has certain advantage

over non-invasive CTA. The most significant benefit is that FFR can quantitatively estimate the

narrowing whereas CTA only visualises contrast inside a vessel.

2.4 Object Detection

Object detection is the process of finding instances of real-world objects, such as faces, pedes-

trian, bicycles, and buildings in images or videos. Object detection algorithms typically use

extracted features and learning algorithms to recognise instances of an object category. It is

commonly used in applications such as image retrieval, security, surveillance, and automated

vehicle parking systems. It can be broadly categorised into binary detection and object locali-

sation in terms of the number of object category that it tries to find. Binary detection involves
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detecting instances of objects from a particular class in an image, where a binary decision is

made. In order to differentiate binary detection, the term “object localization” is used to refer

to multi-class detection problem. We will briefly review some popular methods in binary and

multi-class detection.

2.4.1 Binary Detection

Face detection and pedestrian detection are two most typical binary detection problems where

a foreground and background classifier is built to find the objects in an image from a particular

category. It generally has two main stages and one optional stage as follows: hypotheses

generation, foreground object prediction, and location refinement.

The Viola-Jones object detection framework [25] proposed in 2001 by Paul Viola and

Michael Jones is the first object detection framework to provide competitive object detection

rates in real-time. Although it can be trained to detect a variety of object classes, it was mo-

tivated primarily by the problem of face detection [26]. The hypotheses are generated using

sliding window technique at multiple scales, such that different sizes and locations of face

are all covered in the whole hypotheses set. Haar features are extracted efficiently using an

integral image algorithm [79]. A set of binary AdaBoost classifier are trained and connected

consecutively to form a cascade model, where the background hypotheses are progressively

eliminated. Those ones are retained by the cascade model are considered as face regions that

detected in the image. The key contributions of Viola-Jones object detection framework are

threefold. First, an integral image was used that allows for very fast feature evaluation. It can

be computed from an image using a few operations per pixel. Once computed, any one of

these Haar-like features can be computed at any scale or location in constant time. The second

contribution is a method for constructing a classifier by selecting a small number of important

features using AdaBoost. In order to ensure fast classification, the learning process must ex-

clude a large majority of the available features, and focus on a small set of critical features.

AdaBoost evaluates the discriminative power of those weaker classifier, and combines them

through critical weighting, which can be viewed as a feature selection process. It provides an

effective learning algorithm and strong bounds on generalisation performance. The third ma-

jor contribution is a method for combining successively more complex classifiers in a cascade

structure which dramatically increases the speed of the detector by progressively eliminating

negatives and focussing on promising regions of the image. The pipeline of Viola-Jones object
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detection framework is shown in Fig. 2.15.

Figure 2.15: The Viola-Jones object detection framework, adapted from [25, 26].

More powerful discriminative feature descriptors and stronger classifiers have also been

proposed to solve binary detection problem. The most successful work is [27] where the HOG

feature and an SVM classifier are used to detect the whole human body. The essential idea

behind the histogram of oriented gradients descriptor is that local object appearance and shape

within an image can be described by the distribution of intensity gradients or edge directions.

The image is divided into small connected regions called cells, and for the pixels within each

cell, a histogram of gradient directions is computed. Fig. 2.16 shows an example of HOG

feature for human detection. The descriptor is the concatenation of these histograms. For

improved accuracy, the local histograms can be normalised with respect to the contrast by

calculating a measure of the intensity across a larger region of the image, called a block, and

then using this value to normalise all cells within the block. This normalisation results in

better invariance to changes in illumination and shadowing effects. The HOG descriptor has

a few key advantages over other descriptors. Since it operates on local cells, it is invariant

to geometric and photometric transformations, except for object orientation. Such changes

would only appear in larger spatial regions. Moreover, coarse spatial sampling, fine orientation

sampling, and strong local photometric normalisation permit the individual body movement

of pedestrians to be ignored so long as they maintain a roughly upright position. The HOG

descriptor is thus particularly suited for human detection in images. Zhu et al. [80] presented

an algorithm to significantly speed up human detection using HOG descriptor methods, where

HOG descriptors were used in combination with the cascading classifiers algorithm normally

applied with great success to face detection. Their proposed algorithm achieved comparable
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performance to the original algorithm, but operated at speeds up to 70 times faster.

Figure 2.16: The HOG feature for human detection, adapted from [27].

2.4.2 Object Localisation

Traditional object recognition can be considered as a multi-class extension of object detec-

tion, whose algorithms rely on matching, learning, or pattern recognition algorithms using

appearance-based or feature-based techniques. Common techniques include edges, gradients,

HOG, Haar, and Local Binary Patterns (LBP). However, traditional object recognition algo-

rithm is heavily limited by the discriminative power of features that are used. DNN is becoming

more and more mainstream [37], as it has been shown superior over many other methods, es-

pecially for visual recognition tasks. It is able to learn the visual features hierarchically via

training in supervised fashion, which avoids hand-crafting features. The following can be con-

sidered as three of the key reasons that contributed to the success of DNNs. First, training a

multi-layer neural network involves finding a local minimum of a highly non-linear function.

In order to obtain a reasonable local minimum, gradient descent based methods require a good

initialisation. Layer-wise unsupervised pre-training methods [36] were developed and have

been proved to be more efficient compared with random initialisation. Second, a large amount

of labelled datasets [38, 39, 40] are vitally important to the advance in supervised training. For

example, Microsoft COCO dataset [40] contains more than 300,000 images, over 2,000,000

instances from 80 object categories, where each image has 5 caption labels. Moreover, ad-

vances in hardware makes both forward pass and backward propagation computationally effi-

cient. Especially, with dedicated high speed memory module and Single Instruction Multiple

Data (SIMD) architecture, GPGPU is particularly well placed for learning deep neural network

structures [41].
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One of the well known work is AlexNet [28] which ranked the first in the 2012 ILSVRC

(ImageNet Large-Scale Visual Recognition Challenge). The network was made of 5 convolu-

tional layers, max-pooling layers, dropout layers, and 3 fully connected layers. The network

was used for classification with 1000 possible categories. The most notable improvement is

that AlexNet achieved a top 5 test error rate of 15.4%, while the next best entry achieved an er-

ror of 26.2%. Very recently, several works have shown that Regions with Convolutional Neural

Network Features (R-CNN) [81, 29, 82] and Spatial Pyramid Pooling CNNs (SPPnet) [83] are

effective in simultaneous object localisation and recognition. These methods contain four main

components: convolutional feature extraction, region proposal generation, ROI classification,

and bounding box refinement. In [81], the authors showed that the representation feature learnt

with CNN using deep structure can be effectively used for visual classification and ROI regres-

sion. By introducing spatial pyramidal pooling layer to generate a fixed length output feature

regardless the size of input image, [83] overcame the limitation of [81] without cropping or

wrapping the images that are problematic as they result in information loss and distortion. The

work in [29, 82] improved the computational efficiency further by sharing the deep convolu-

tional layers with region proposal, classification and regression networks. However, for small

objects, R-CNNs have difficulty detecting them in small scales due to low resolution and lack

of visual context.

As for face detection, Farfade et al. [84] proposed a multi-view face detection method,

Deep Dense Face Detector (DDFD), which uses a fine-tuned 8-layer AlexNet [28] that was

initially designed for object recognition. It has 5 convolutional layers and 3 fully connected

layers. A pre-trained AlexNet was fine-tuned for face detection on 200,000 face patches and

20,000,000 background patches, which were all resized to 227×227 pixels in order to match

the input size of AlexNet. During the testing stage, the sliding window approach was used

to generate hypotheses. DDFD classifies each candidate into face or background, and deci-

sion confidence scores is obtained. Non-Maximal Suppression (NMS) is followed to remove

redundant bounding boxes. Fully Convolutional Neural Network (FCN) [85] was firstly in-

troduced for semantic segmentation, and then adapted to solve object detection problems. In

contrast to classifying each object hypothesis into face or background, FCN based approaches

take the whole image as input, and the convolutional outputs of forward pass are considered

as a set of feature maps. Detection then can be achieved by investigating the region pattern of

the target object on the feature maps. UnitBox [86] is derived from VGG-16 [87] model, and
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Figure 2.17: Deep learning methods in object localization. The network architecture of
AlexNet (Top) [28], and Fast R-CNN (Bottom) [29].

replaces the original fully connected layer with two pixel-wise bounding box prediction layers.

The network can then be trained via minimising the Intersection over Union (IoU) loss, which

quantitatively measures how well the predicted bounding boxes are aligned with ground truths.

Yang et al. [88] and Bai et al. [89] also showed that incorporating FCN with multi-scale strat-

egy helps to boost detection accuracy. In addition to solving detection problems, it is common

to use those deep models for multi-tasks jointly, such as fiducial landmark localisation, face

pose estimation, gender recognition, and 3D face modeling [90, 91, 92, 93].

2.5 Summary

In this chapter necessary background information has been discussed in preparation for pre-

senting the proposed methods in the following chapters. The chapter started by providing an

overview on supervised machine learning algorithms, which includes RF, CNN, and cascade

classifier. This was followed by an overview of conventional approaches for medical image

segmentation, especially in deformable models, and graph-cut segmentation. A discussion on

geometric and parametric deformable modelling is included as well. The anatomical structures
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of the cardiovascular system, particularly the aorta root and arch, and the coronary artery, and

relevant disease is provided. An overview of object detection and recently advance in deep

learning based methods are provided as well.

In the rest of thesis, we will first investigate two general segmentation methods for 3D

medical images given user interventions, such as foreground and background guiding strokes,

in an interactive manner using adaptive learning methods. Particularly, we focus on segmenting

two cardiovascular anatomies, the coronary artery and the aorta root in Chapter 3 and Chapter 4

respectively. In Chapter 5, we also show the feasibility of combining cascade scheme with

CNNs to solve face detection problem in unconstrained environment.
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Coronary Artery Segmentation
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In Chapter 1, we defined the adaptive learning as a progressive learning process that gradually

builds the model given a sequential supervision data from user interactions. In the case of using

small scale model and dataset, the learning process that involves adaptive re-training given the

accumulated interaction is often affordable. Especially, when the discriminative features for the

well-defined classification problem are available, adaptive re-training strategy usually lead to a

better model compared to on-line strategies in terms of prediction accuracy and generalisation.

In this chapter, we show such an adaptive learning scheme can lead to an efficient interactive

method for segmenting the coronary artery from 3D CTA images.
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3.1 Introduction

An accurate segmentation algorithm for extracting the vessel structure from the heart is often

considered essential for patient-specific modelling of cardiovascular diseases. A number of

vessel extraction methods for different modalities have been developed in recent years, e.g. [94,

95, 96]. Li and Yezzi [95] proposed a 4D representation for 3D vessel by combining both

the spatial coordinates and the thickness of the vessel. With two user specified endpoints,

the surface as well as the center line of the vessel are extracted using the generalized 4-D

global minimal paths algorithm. Esneault et al. [97] proposed a 3-D geometrical moment-

based detector to extract the centre line of the vessel, as well as its diameter and orientation.

Finally, a graph cut algorithm was applied to regularise the final segmentation with a local

continuity constraint. In [98], shape prior of 3D tubular tree structure is used to formulate

the regularisation to refine the initial vessel segmentation or detection. Zhu and Chung [99]

proposed the Tubularity Markov Tree (TMT) method to model and detect vessel structure,

with a graph cut algorithm applied to solve the energy minimisation problem in order to obtain

the final segmentation. Deformable models, particularly those that are capable of capturing

complex geometries such as [100], may be applied to vessel segmentation. Efficient model

representations and numerical methods are desirable and semi-implicit schemes have been

shown effective in segmenting complex objects, e.g. [101, 102].

The segmentation of coronary artery is not a trivial problem. Coronary arteries are rela-

tively small blood vessels in the heart which branch off from the root of aorta, and is divided

into two main sub-branches. These two main sub-branches further split and grow a tree-like

structure. First, the coronary artery is attached to the myocardium and surrounded by other

tissues. Second, compared to the aorta, the size of the coronary artery is much smaller, which

makes it difficult to segment and maintain its vessel connectivity. The size of blood vessel

is getting even smaller when it splits into multiple sub-branches, i.e. 2-4 pixels wide. Third,

labelling such anatomy is extremely difficult as there is no appropriated viewing plan to visu-

alise, and the geometry variations are large across different patients. Last but not least, there

are several other blood vessels nearby, such as pulmonary blood vessels in the lung, which has

very similar appearance and geometry. This makes an automated, global detection or classifi-

cation a difficult task. For example, region-growing based methods [103] are commonly used

for vessel segmentation, however, they are strongly limited by the quality of the images, where

the connectivity of such subtle structure is often broken. Interactive region growing [104] was
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proposed to address this issue by selecting the new growing seeds at the broken regions man-

ually, where a large amount of interactions and labour efforts are required. In this chapter,

we present an interactive coronary artery 3D segmentation method for CTA volumetric image.

An initial vessel classification is given by a random forest classifier which is trained on a few

user strokes: the foreground stroke labels the coronary artery and the background stroke in-

dicates the other tissues. Based on the label population in the leaf nodes of the randomised

decision trees, we formulate the final segmentation as an MRF based optimisation with local

consistency constraints. The primal dual algorithm with graph cut is used to solve the energy

minimisation problem.

The rest of the chapter is organized as follows. Section 3.2 presents our proposed approach

including vessel enhancement, feature extraction, RF classification and MRF optimisation. The

interactive segmentation software, typical segmentation process, and experimental results are

presented in Section 3.3. Section 3.4 concludes the proposed method.

3.2 Proposed Method

Given a 3D CTA image of the human heart region, the coronary artery is segmented by taking

the following four steps. First, the original image is smoothed, but the tubular-like structure is

preserved and enhanced using multi-scale vessel enhancing diffusion. Next, the features de-

signed for detecting the target vessel is computed in a multi-scale fashion. Third, according to

the user provided strokes the random forests classifier is trained, and classifies each vertex in

the volume into a positive point (coronary artery) or a negative point (other tissues). Finally, the

MRF model is used to formulate the energy function for regularising the initial classification

result with local consistency constraint. The finally segmentation is achieved by solving the en-

ergy minimisation problem using integer programming with primal dual strategy. The pipeline

of proposed method for interactive 3D coronary artery segmentation is shown in Fig. 3.1.

3.2.1 Vessel Enhancing Diffusion

It is desirable to enhance the brightness of coronary vessel and the sharpness of vessel edges in

3D before carrying out segmentation, particularly for this type of thin tubular structures. Frangi

et al. [105] proposed a vesselness function by analyzing the eigenvalues of the second order

information (Hessian) in a local neighborhood at multiple scales. The eigenvalues decomposed
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Figure 3.1: The pipeline of proposed method for interactive 3D coronary artery segmentation.

from the Hessian matrix were used to locally differentiate the tubular-like structure from other

structures, including blob-like structure, plate-like structure and background. Manniesing et

al. [106] extended it to a continuous, n-th order differentiable function for measuring the ves-

selness. Based on the proposed vesselness function, the diffusion tensor was constructed to

enhance the image at vessel region along minimal local curvature direction, while smoothing

the image isotropically at non-vessel region. In this work, we follow this approach to enhance

the coronary vessel structures in the CTA images. Later, the measurements derived from this

vesselness analysis are also used as part of the coronary features.

Given the vesselness function (Eq. 3.1) and the orthogonal eigenvectors of Hessian matrix,

at the vessel region, we construct the anisotropic diffusion tensor to preserve and enhance

the tubular-like structure by maximizing the strength of diffusion in the minimal curvature
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direction, and minimizing the diffusion in the rests of two directions. At the same time, at

the non-vessel region, the isotropic diffusion tensor is required as well, in order to reduce the

background noise. The diffusion tensor is defined as follows:

D , QΛ
′QT (3.1)

where the Q is the orthogonal eigenvectors of Hessian matrix H , and the Λ′ is a 3 by 3

diagonal matrix, with the following values on its diagonal

λ
′
1 , 1+(ω−1) ·V

1
R (3.2)

λ
′
2 = λ

′
3 , 1+(ε−1) ·V

1
R (3.3)

where ω � ε > 0, and 0≤ V ≤ 1. When the vesselness V is approximating to the maximum

(Vmax = 1), the maximum diffusion factor λ ′1 = ω in the minimal curvature direction, and the

minimum λ ′2 = λ ′3 = ε in the rests are achieved, which ensures the anisotropic diffusion along

the vessel direction. On the contrary, the isotropic diffusion tensor with λ ′1 = λ ′2 = λ ′3 = 1 is

obtained when the vesselness V = Vmin = 0. The parameter R controls the sensitivity to the

vesselness response.

3.2.2 Multi-Scale Coronary Feature Extraction

Coronary arteries are the blood vessels that circulate the blood with oxygen into heart muscle

myocardium. At the root of the aorta, it branches off into two main coronary arteries, and

then these coronary arteries branch off into smaller arteries to form a tree structure. The left

and right coronary arteries run on the surface of the heart. The examples of coronary arteries

in 3D CTA images shown in Fig. 3.2. Segmenting coronary arteries is a challenge problem

as there are many anatomical structures forming similar geometries and appearances, such as

pulmonary vessels, bones of rib cage, myocardium, and adventitia. Fig. 3.3 shows the examples

of other anatomical structures in 3D CTA images.

The features we use to highlight coronary vessels can be categorised as texture or appear-

ance based and shape based. The texture features are derived as intensity and image gradient

magnitude distribution in a local neighborhood across multiple scales. These appearance fea-

tures are useful in differentiating myocardium, bone, and adventitia. Since they are extracted

from multiple scales, the difference between other vascular structures and coronary vessels

can be highlighted. For example, although aorta exhibits similar brightness to coronary, it has
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Figure 3.2: The examples of coronary arteries in 3D CTA images.

different intensity distribution across scales because aorta is a much larger vessel. Pulmonary

vessels has similar geometry to coronary arteries but their neighborhood appearances are dif-

ferent. The second set of features are designed to highlight the narrow, tubular-like structure

of coronary vessels. We derive multiscale local geometrical features, following those that have

been used in vessel enhancement.

At scale S , the Hessian matrix H at each voxel P is computed by convolving the vol-

umetric image with derivatives of Gaussian. The eigenvalues λ of Hessian matrix are then

computed. In the case of 3D, we define the ordering eigenvalues as H as λ1,λ2,λ3, where

|λ1| ≤ |λ2| ≤ |λ3|. At scale s, the eigenvalues of Hessian indicate the strengths of intensity

variation between the inside and outside of the region (−s,s) along the direction of the cor-

responding eigenvectors. The coronary vessels are assumed at the region in which |λ1| ≈ 0,

|λ1| � |λ2|, λ2 ≈ λ3, while the eigenvector corresponding to the eigenvalue λ1 indicates the

vessel direction. We adopt the Manniesing’s vesselness function V , which is defined as fol-

lows:

V ,

 0 λ2 ≥ 0 or λ3 ≥ 0

(1− e
−A2

2α2 ) · e
−B2

2β2 · (1− e
−S2

2γ2 ) · e
2c2

|λ2|λ2
3 otherwise

where

A =
|λ2|
|λ3|

, B =
|λ1|√
|λ2λ3|

, S =
√

λ 2
1 +λ 2

2 +λ 2
3 (3.4)
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Figure 3.3: The examples of other anatomical structures in 3D CTA images.

The parameters α,β ,γ are the weighting variables controlling the contributions of the mea-

surements to the response of vesselness function. The vesselness measurement are computed

at multiple scales and the maximum response V over the scale-spaces is selected.

3.2.3 Voxel Classification using Random Forests

DTs are a popular method for various supervised learning problems, as it is invariant to scaling

and various other feature transformations. However, one of major limitation of decision trees

is that it tends to learn highly irregular patterns, and over-fits to training sets, especially when
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Figure 3.4: Random Forests is an ensemble classifier consisting of a set of DT.

very deep structures are used. RF is a supervised machine learning method which aims to

overcome the problems caused by poor generalization ability of single decision tree by a way

of averaging multiple deep decision trees given different subsets of the training set. The general

methodology of random forests was introduced by Tin Kam Ho [107, 108], and then Leo

Breiman formed the basis of the modern practice of RF [32], where the out-of-bag error was

proposed to evaluated the generalization error, and the measurement of feature importance was

introduced through variable permutation. The modern RF is an ensemble classifier consisting

of a set of decision trees shown in Fig. 3.4, which significantly improves the generalisation

ability of the classifier compared to a single decision tree.

At the bootstrap aggregating stage (bagging), assuming that the data sample is independent

and identically distributed, new training sets are generated by randomly sampling with replace-

ment from the complete training set. Given a training set T of size N, bagging creates M sub

training sets T ′ with size of N′ via uniformly sampling T with replacement. Hence, some

observations are repeated. For each new training set of T ′, one decision tree is constructed

which consists of a set of split nodes and linking edges. Each non-leaf node stores a random

test function which is applied to the input data, and leads to the leaf node. The information

gain and Gini impurity are two popular metrics used to evaluate the performance of random

test function. The information gain measures the entropy difference between the parent node,

and weighted sum of its direct children nodes, which can be computed as:

I = H(S)− ∑
i∈{L,R}

|Si|
|S|

H(Si) (3.5)

In discrete case the Shannon entropy is defined as:

H(S) =−∑
c∈C

p(c)log(p(c)) (3.6)
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In the continuous case, for example, the entropy of a Gaussian distribution with d multi-

variable can be computed using the equation:

H(S) =
1
2

log
(
(2πe)d |β (S)|

)
(3.7)

where β (S) is the covariance matrix. Hence, finding the best split for each non-leaf node is

equivalent to maximizing the information gain. Gini impurity is alternative choice for growing

a decision tree, which measures how often a randomly chosen sample from the training set

would be incorrectly labelled if it was randomly labelled according to the distribution of labels

in the subset. Given a set of training samples from J categories, i ∈ {1,2, ...,J} is the index of

categories, and gi be the fraction of items labelled with category i in the set, the Gini impurity

can be computed as:

G =
J

∑
i=1

gi(1−gi) = 1−
J

∑
i=1

gi
2 = ∑

i!=k
gigk (3.8)

It is noteworthy that modern random forests introduce the idea of searching over a random

subset of the feature when splitting a node, which decorrelates individual decision trees further

to improve the generalization ability.

In the leaf nodes, the final predictor is stored. At the testing stage, all the trees predict the

incoming data independently, and the final prediction is combined by averaging the output for

regression, or voting for classification.

f =
1
M

M

∑
i=1

fi(x) (3.9)

where f , and fi are overall combined predictor, and individual predictors for each bagging sub

training set respectively. In our case, the classification RF is used, such that the most voted

class given by the trees is considered as the final classification of the RF.

In this work, classifying each voxel into coronary and non-coronary is required so that the

confidence value of the classification at each voxel is used to construct the cost function for

the MRF based optimisation. The RF grows a number of DTs independently using subsets of

training data by randomly sampling with replacement from the complete training set. For each

single decision tree, it grows recursively by finding the best splitting function for each non-

leaf node using the entropy or Gini index to evaluate the information loss, until the stopping

criteria are satisfied. The non-leaf nodes consist of the splitting functions, each testing sample

could follow the tests and reach the leaf node in the end. The leaf nodes, at the bottom layer
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of the tree, store the training samples which fell in in the training stage, and it votes the class

with largest proposition for the prediction. The random forests combines the prediction of

each single decision tree, the most voted class given by the forests is considered as the final

classification for the test sample. From the implementation point of view, the random forests

is supremely adequate for paralleling. By taking advantage of GPU computing technique,

classifying each pixel of a 500×300 2D image can be achieved in 140ms [109].

3D Multi-Planar Reconstruction (MPR) and curved MPR are used to produce the longitu-

dinal view of the coronary artery, in which a few strokes are placed to indicate the region of

interest at the foreground. Also, the non-coronary artery tissues, such as: aorta, ventricle, heart

muscle, pulmonary blood vessels and so on, are obtained through additional user strokes as

background, negative samples. We sample the voxels following the strokes with equal spac-

ing, and the features of those voxels as described in Section. 3.2.2 are collected as training

set. Then the whole volume is tested, the classification result may be considered as an initial

segmentation. However, the proposition of voting by these randomized decision trees for each

voxel can be considered as segmentation cue. In the next section, we show how to use these

proposition values to carry out segmentation that can be more coherent than RF classification.

3.2.4 MRF Regularization with Primal Dual Algorithm

The MRF has been widely applied in different computer vision applications to address the

regularisation problems. Especially, the grid-like, pairwise MRF model in image segmenta-

tion area has shown to be an effective approach, e.g. [110]. In general, the MRF energy is

formulated over the graph G(P,E ) as follows:

E(p) = ∑
i∈P

U(pi)+ ∑
<i, j>∈E

O(pi, p j) (3.10)

where P and E represent the node set and the two-tuples set of undirected edge of G respec-

tively. U(.) is the unary potentials defined on the node P , and O(.) is the pairwise potentials

defined on the edge E . The first term of Eq. 3.10 is considered as point-wise data term which

provides the segmentation cue, the second term is considered as pair-wise smoothness term

which constrains the consistency between neighbour nodes. For example, the Potts pairwise

potentials is defined on the distance of two linked nodes xi,x j, as follows:

O(pi, p j) = wi j · (1−δ (pi− p j)) (3.11)
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where wi j ≥ 0 is the weighting coefficient of smoothing penalty for the edge < i, j >, and the

Kronecker delta δ is defined as:

δ (p) =

 1 x = 0

0 x = 1
(3.12)

Here, the segmentation is to assign each voxel/vertex with a label lp (lp ∈L ; lp = 1 when

p is coronary artery; lp = 0 when p is not). In Section. 3.2.3, the binary classification result

of each vertex is given by the classifier as well as the voting proposition klp which could be

considered as the likelihood or confidence of being categorised to the class. So, the regulari-

sation can be formulated as solving the discrete MRF optimisation problem by minimising the

following MRF energy function:

min

(
∑

p∈P
U(p)+ ∑

<p,q>∈E
O(p,q)

)
(3.13)

In binary classification case, we have klp=0 = 1− klp=1, so the point-wise potentials is defined

as:

U(p) =

 T (1− klp=1) i f lp = 1

T (1− klp=0) i f lp = 0
(3.14)

which implies, for example, the cost of assigning the class label 0 to the vertex p is equal

to T (1− klp=1) = T (klp=0), the non-linear transformation of the confidence of assigning it

with label 1. One disadvantage of graph-cut based method is the shrink bias which results

in smaller contour, and becomes even worse in the corner region [111]. The goal of the non-

linear transformation function T is to enlarge the difference between klp=0 and klp=1 when their

values are getting similar, which is very common for the vertexes around the vessel surfaces.

By applying the non-linear transformation, to a large extent, the shrink bias caused by the

pair-wise term will be reduced. We propose the following non-linear transformation function

T :

Tη(k) =
η︷ ︸︸ ︷

t ◦ t ◦ · · · ◦ t (3.15)

t(k) =
1
2
+

1
2

sin(πk− π

2
) (3.16)

where ◦ is the function composition operator (see Fig. 3.5). It can be proved that Tη(1− k) =

1−Tη(k) when k ∈ [0,1]. In addition, we use grid-like MRF with 6-neighbourhoods system in

our experiment, and choose the Potts model as pair-wise potentials (see Eq. 3.11, 3.12).
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Figure 3.5: The plots of proposed non-linear transformation function Tη=1,2,3 compared to the
linear function Y = X .

A number of approaches have been proposed in the literature to solve the energy minimi-

sation problem of discrete pair-wise MRF, such as graph cuts based methods [112, 113], and

belief propagation algorithm [114]. Especially, the dual-decomposition approach with linear

programming method attracts a great attention in the last decade [115]. Chekuri et al. [116]

have proved that the solution of metric labeling problem given by the form of minimizing the

MRF energy (Eq. 3.13) can be approximated using the following integer programming formu-

lation:

min

(
∑

p∈P,a∈L
cp(a)xp(a)+ ∑

<p,q>∈E
wpq ∑

a,b∈L
d(a,b)xpg(a,b)

)
(3.17)

which subjects to the following constraints:

∑
a∈L

xp(a) = 1 ∀p ∈P (3.18)

∑
a∈L

xpg(a,b) = xq(b) ∀b ∈L ,< p,q >∈ E (3.19)

∑
b∈L

xpg(a,b) = xp(a) ∀a ∈L ,< p,q >∈ E (3.20)

where xp(.) = 0,1, and xpq(., .) = 0,1. The constraint Eq. 3.18 ensures for each vertex p, a label

is assigned to, and the constraints Eq. 3.19 and 3.20 ensure the consistency of the label between
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Figure 3.6: The graphical representation of MRF with 6 neighbourhood system, < p,q1,··· ,6 >.

the neighbours. Komodakis et al. gave the solution of above optimisation problem Eq. 3.17 via

dual decomposition, and proposed a family of PD (Primal-Dual) algorithms. In this work, the

PD1 algorithm [117, 118] is adopted, which solves the decomposed sub-problems via graph

cut in each iteration.

3.3 Experimental Result

3.3.1 Segmentation Software

We developed an interactive segmentation software namely “SwanseaVision Medical Image

Segmentation Toolkit (SVMIST)” to evaluate the proposed method. The summary of technical

implementation details of SVMIST is listed in Table 3.1. It implements a 3D image viewer

supporting standard Digital Imaging and Communications in Medicine (DICOM) format, such

as DICOM disk and sequential DICOM files. It provides standard Multi-Planar Reconstruction

(MPR), and curved MPR which enables user to inspect Region Of Interests (ROI), and place

labelling contours, foreground, and background guiding strokes. The main functionalities and

corresponding screen shots are listed in Table 3.2.

SVMIST stores the DICOM images in a fold-based file system database, which is organ-

ised according to patient ID, study ID, and series ID in a hierarchical manner (see Fig. 3.7 and

Fig. 3.9). The database configuration contains the file locations of all items in the hierarchical
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Table 3.1: The technical implementation detail of interactive segmentation software SVMIST.

Platform Mac OS X
Programming Language Object-C & C++
Graphical User Interface Cocoa Framework
Database Format XML-based Markup

Third-Part Library

The Visualization Toolkit (VTK)
http://www.vtk.org/

Segmentation & Registration Toolkit (ITK)
http://www.itk.org/

Grassroots DICOM Library (GDCM)
http://gdcm.sourceforge.net/

DCMTK Library
http://dicom.offis.de/

OpenCV Library
http://www.opencv.org/

Intel Threading Building Blocks (TBB)
http://www.threadingbuildingblocks.org/

tree, and the contents are serialized onto local storage media in XML format. Fig. 3.8 shows

an example of database configuration file. Given a selected item on the database GUI, the meta

information of DICOM sequence is loaded on the fly, and displayed in sliding pane on the

right. The snapshots of all DICOM images in the selected sequence are shown slice by slice

in the bottom pane with a sliding navigation control, where the auto-play option is available

for users to view in a movie mode (see Fig. 3.10). In Fig. 3.11 and Fig. 3.12, the 3D MPR

viewer is created when the corresponding function is toggled, where the 3D MPR viewer GUI

contains four 2D viewer pane, and one 3D viewer pane. The 2D viewers not only offer image

projections from sagital, axial, and coronal views given a rotatable orthogonal coordinate sys-

tem (see Fig. 3.11), but also provide 2D projection from a curved surface in 3D (see Fig. 3.12

and Fig. 3.13). Rotation and translation of orthogonal coordinate system is operated in 3D

scene viewer on the top right pane, which offers an intuitive viewing experience compared to

most of popular DICOM viewers, such as OsiriX. For curved MPR, the projection surface is

constructed via selecting surface control points from 2D viewer, where the surface with the

sampled image is overlaid onto 3D viewer (see Fig. 3.13). SVMIST provides 2D annotation

functions, which allows creating open or close contour and regions using both polynomial and

BSpline interpolations, where the annotations can also be visualised on the 3D viewer (see

Fig. 3.14). The annotations created by the user together with the information of coordinate
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Figure 3.7: To create or open a DICOM database at a specific storage location.

system can be exported in XML format, and loaded back whenever needed. Fig. 3.15 shows

an example of XML file for storing the annotations. Meanwhile, the user input strokes for

guiding the interactive segmentation is implemented as a special case of open contour, which

offers adequate flexibility for the users to communicate with the software.

Given SVMIST, the typical interactive segmentation processes are as follows:

1. Create or open an SVMIST database from a specified local folder;

2. Import the 3D DICOM image sequence to the created or opened database;

3. View the imported sequence using 3D or curved MPR;

4. Provide foreground and background strokes by annotating the 2D images;

5. Train a binary classifier (Random Forests) using the supervised information given by the
user;

6. Classify the whole volume using the trained classifier;

7. Refine the classifier by providing more strokes until the user is satisfied with the classi-
fication result;

8. Obtain the segmentation result by applying the regularization scheme (MRF) to the clas-
sification result;

9. Apply some post processes to refine the segmentation.
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Figure 3.8: An example of database configuration XML file of SVMIST.

3.3.2 Segmentation Result

The method is evaluated on the clinical CTA volumes. The volumes have different number of

slices with 0.65mm inter-slice spacing, each slice has 512 × 512 pixels with 0.38mm intra-

slice spacing. At first, we cropped out the region of interest which contains the whole heart

and a part of region in the lung, then followed by 10-iteration vessel enhancing diffusion fil-

tering. The features for every vertex in the sub-volume are computed in multi-scale spaces

with σ ∈ {0,1,2,3,4}, which results in a 85-components feature vector. An RF classifier is

interactively trained on the training set which provided by sampling the vertexs from the user’s

foreground and background strokes. Fig. 3.16 shows the out-of-bag error against the number

of decision trees that are used to build the RF. It can be observed that the out-of-bag error

steadily converged at 200. Therefore, we empirically set the number of decision trees to 200
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Figure 3.9: The database management GUI of SVMIST.

for all iterations. The sub-volume is segmented by optimising the classification result given

by the RF using grid-like Markov random field model with 6 neighbours system and PD1

algorithm. Given the binary volume, the segmented result is visualized as iso-surface using

marching cube algorithm. Once the user adds more strokes, we repeat the classifier training,

sub-volume classification, label optimisation and result rendering processes, until no more user

stroke is detected, and the final segmentation is achieved. A connected component analysis was

also carried out to remove isolated, small regions.

Fig. 3.17, Fig. 3.18, and 3.19 provide examples of the segmentation process and result. In

Fig. 3.17, we show the iso-surface rendering of the vascular structures, including the ventri-

cles. It is clear from this that coronary vessels are only a small proportion of those structures.

To isolate them and to obtain a coherent structure with good connectivity is not a trivial task.

Fig. 3.19 (a) shows the classification result from RF classifier. Most of the non-coronary struc-

tures are removed, but there are still plenty of isolated thin, tubular structures. The final result

of the proposed method is shown in Fig. 3.19 (b), where the coronary structures are well seg-
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Figure 3.10: The snapshots and meta information of DICOM images are loaded when a se-
quence is selected.

mented. Two further examples are provided in Fig. 3.20. The examples provided here are

typical results we achieve using the proposed method. The user interactions are minimal, i.e.

only a few strokes on the foreground and background.

3.4 Summary

Coronary artery segmentation plays a vital important role in coronary disease diagnosis and

treatment. In this chapter, we present a machine learning based interactive coronary artery

segmentation method for 3D CTA images. We first apply vessel diffusion to reduce noise in-

terference and enhance the tubular structures in the images. A few user strokes are required to

specify region of interest and background. Various image features for detecting the coronary

arteries are then extracted in a multi-scale fashion, and are fed into a random forests classifier,
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Figure 3.11: Investigate the volumetric image using orthogonal MPR.

Table 3.2: The main functionalities of interactive segmentation software SVMIST.

Figure Detail
Fig. 3.7 Create and open a DICOM database.

Fig. 3.9 & 3.8
The GUI of database management, and an example of database
configuration file in XML format.

Fig. 3.10
Load meta information and slice snapshots of the selected DI-
COM sequence.

Fig. 3.11 Visualize the volumetric image using orthogonal MPR.

Fig. 3.12 & 3.13
Visualize the volumetric image using curved MPR by interac-
tively constructing the projection surface.

Fig. 3.14 & 3.15
Annotations can be created using open or close contours, and an
example of exported annotation file in XML format

which assigns each voxel with probability values of being coronary artery and background. The

final segmentation is carried through an MRF based optimisation using primal dual algorithm.

A connectivity component analysis is carried out as post processing to remove isolated, small

regions to produce the segmented coronary arterial vessels. The proposed method requires

limited user intervention and achieves robust segmentation results. A segmentation software

namely SVMIST was developed, and promising segmentation results are achieved with just a

few user strokes. The clinicians evaluated segmentation results which are considered to be
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Figure 3.12: Create curved MPR via clicking surface control points on a 2D viewer pane.

consistent with the real anatomical structures. In addition, the segmented geometries were

used to calculate fractional flow reserve in the blood vessel with a reduced-order model, which

suggests that our approach can be used as a part of a broader risk assessment tool that aims at

increasing the diagnostic yield of cardiac catheterisation for in-hospital evaluation of signifi-

cant stenoses. This part of work has been published in the following journal paper.

• E. Boileau, S. Pant, C. Roobottom, I. Sazonov, J. Deng, X. Xie, and P. Nithiarasu, Esti-

mating the Accuracy of a Reduced-Order Model for the Calculation of Fractional Flow

Reserve (FFR). International Journal for Numerical Methods in Biomedical Engineering,

2017
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Figure 3.13: Visualize the curved MPR surface on the 3D viewer pane on the right, and the
projection image is shown in the 2D viewer pane on the left.

Figure 3.14: The examples of user strokes.
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Figure 3.15: An example of exported labelling XML file of SVMIST.

Figure 3.16: The out-of-bag error of different number of grown trees.
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Figure 3.17: The iso-surface rendering of the CTA image.

Figure 3.18: The examples of user provided strokes. (blue: background strokes; yellow: fore-
ground strokes; dot: control points of user strokes.)
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(a) (b)

Figure 3.19: The examples of interactive segmentation process: (a) RF-based voxel classifica-
tion result; (b) final segmentation result of the proposed method.
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(a) (b)

(c) (d)

(e)
(f)

Figure 3.20: The examples of interactive segmentation results: (a), (c) and (e) iso-surfaces
rendering of the original CTA images; (b), (d) and (f) final segmentation results of the proposed
method. 64
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In the previous chapter we proposed an interactive segmentation method, where an off-line RF

model was repeatedly trained using the accumulated foreground and background strokes ac-

quired from user in an interactive fashion. There are several limitations that prevent it being an

efficiently segmentation method for other complex anatomies. First, it requires hand-crafting

discriminative features for the anatomy to be segmented, whereas representative features are

often not available, and it is very time-consuming to design them by hand. Second, during each
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round of interaction, the RF model is re-trained completely using all collected training sam-

ples. Generally the off-line model converges to better locally optimal solutions compared to

the on-line model, however, it is computationally inefficient for large training sets and complex

learning models [119]. Third, it has no geometrical representation for the segmented object,

which makes it rather difficult to incorporate with topology analysis, shape prior or structure

manipulation. In order to address the issues that we discussed above, in this chapter, we present

a novel interactive segmentation method that is built upon an adaptive learning scheme which

utilises CNN based cascade detector and an implicit parametric shape representation.

4.1 Introduction

Interactive image segmentation plays a vital important role in computer vision, graphics, and

medical image analysis especially, where user intervention as additional source of information

for guiding the process is incorporated with procedural segmentation to form a semi-automatic

method. An overview of interactive medical image segmentation can be found in [67]. In-

teractive scheme bridges expert knowledge of user required on the fly with fully-automatic

method, and generally produces more accurate segmentation result than using non-interactive

method alone. Many traditional segmentation methods, such as active contour models, re-

gion growing based models, and statistical models, are capable of combining with interac-

tive schemes, where user interactions are used in diverse ways, such as geometrical initial-

ization, foreground-background clue, parameter tuning, or correction for mis-segmentation.

Especially, interactive segmentation with statistical model has proved to be an efficient strat-

egy for image segmentation over full-automatic approaches in differentiating foreground and

background, where the supervised interaction from user is directly applied to the image to be

segmented. The user interaction is considered as supervision labels to form either region based

texture model, or edge based boundary model to partition the image into a number of sub-

regions [120, 121, 122, 123]. The segmentation can then be obtained via solving a either com-

binational or continuous optimization problem, where the user interaction also can be used as

regularization constraints [124, 125]. Semi-automatic methods are also able to be extended to

segment higher dimensional data, i.e. 3D volumetric image, where a computational efficiency,

and a flexible and natural user interaction scheme are particularly in need. It is worth noting

that these semi-automatic schemes still heavily rely on the traditional fully-automatic methods.

Hence, the challenges of designing interactive segmentation method can be summarized into
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four fundamental problems as follows: delinearating foreground object from background, user

interaction scheme, shape representation and segmentation regularization.

An ideal interactive segmentation method provides accurate segmentation results with min-

imum user interaction effort given a natural and friendly interface. A list of related interactive

image segmentation methods is shown in Table. 4.1. Boykov et al. [126] proposed a general

interactive segmentation method, Interactive Graph Cuts for N-dimensional images, where the

user marks certain strokes as object and background to guide the semi-automatic partition pro-

cess. The delinearating model is built as two grey-level distributions for object and background

respectively using intensity histograms obtained from user interactions. The segmentation is

equivalent to a binary labelling problem given the data support and assuming local smooth-

ness of pixel intensity. It is achieved by solving a discrete energy minimization using Graph

Cut method using standard minimum cut algorithm, where a globally optimal solution can be

found for binary segmentation. Based on the original Interactive Graph Cuts method, Rother

et al. proposed a so-called GrabCut [120] for foreground and background segmentation in still

images using RGB color space. An initialization ROI bounding box is provided by user, where

the texture appearances of foreground and background are modelled and delinearated using

two separate Gaussian Mixture Models (GMMs). The piecewise constant is then imposed by

solving the same Gibbs energy minimization problem as proposed in [126] using minimum

cut. The segmentation is achieved via a periodical procedure, where the method interactively

updates the delinearating model based on the border matting provided by user, and assigns all

pixels with optimal labels that minimize the energy objective function. Such interactive seg-

mentation procedure terminates when satisfying results are achieved. Han et al. [127] extended

the GrabCut by introducing multi-scale non-linear structure tensor texture feature to overcome

the difficulty of delinearating the scale difference of textured image. Given a few user marked

foreground and background lines, Lazy Snapping [128] builds two K-Means models to partition

the image into many small pre-segmented regions based on the color similarity. Therefore, the

segmentation can be obtained by formulating as a binary labelling problem for pre-segmented

blocks using graph cut. Unger et al. [122] showed that such interactive framework can be incor-

porated with total variation regularization, which solves a minimization of the geodesic active

contour energy. It is clearly that the interactive segmentation methods fall into an uniform

framework with a series of periodical processes as follows: acquiring object and background

clues from user, image delinearating and segments regularization. Therefore, in order to boost
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the efficiency of method, stronger delinearating models with more discriminative features were

proposed, such as naive Bayesian classifier with geodesic distance features [129], and RF with

arbitrary features [123]. Most recently, Feng et al. [130] showed the feasibility of applying

such interactive segmentation method to RGBD images.

Table 4.1: Related Interactive Image Segmentation Methods (F-B: Foreground-Background,
ROI: Region Of Interest, MRF: Markov Random Fields.)

Method Features Delinearating Regularization Interactive Scheme

[126] Grey Texture Histogram Graph Cut F-B Stroke
[120] Color Texture GMMs Graph Cut ROI Box, Border Matting
[128] Color Texture, Image Gradient K-Means Graph Cut F-B Stroke, Boundary Editing
[122] Color Texture Histogram Total Variation ROI Box, Border Matting
[127] Color Texture, MSNST GMMs Graph Cut ROI Box
[123] Color Texture Random Forests Total Variation F-B Stroke
[129] Color Texture, Geodesic Distance Guass Naive Baysian Graph Cut F-B Stroke
[130] Geodesic Distance Naive Baysian MRF F-B Stroke

Our Texture, Self-Learned Feature Naive Baysian, CNN Total Variation F-B Stroke, Locally Refining

Adaptive learning is an efficient strategy for constructing interactive image segmentation

methods which can be used to build classifiers to differentiate foreground and background

for region based segmentation. In contrast to the traditional machine learning based fully-

automatic segmentation method, interactive segmentation requires the supervision interactions

from user on the fly. These interactions are directly applied to an image that is to be segmented

via adaptively tuning the classifiers. The user interactions are considered as supervision la-

bels to form either a region based texture model or edge based boundary model, partitioning

the image into a number of sub-regions [120, 121, 122, 123]. The segmentation can then be

obtained via solving either a combinational or a continuous optimization problem, where the

user interaction also can be used as regularisation constraints [124, 125]. Statistical models are

often built from the user interaction, and then used to delinearate the foreground objects and

background regions [123]. However, the discriminative features are hand-crafted for a specific

structure, and user inputs are relatively simple and often biased, which generally leads to failure

in learning the right decision boundary for predicting the foreground and background locations.

For example, in Chapter 3, the features for the coronary artery segmentation are extracted from

the Hessian matrix and the intensities of local neighbourhood at multi-scale. These features are

designed for representing the small tubular-like vessels that attach to the myocardium, hence,

they are informative for differentiating the coronary artery and other tissues, however they are

not suitable for segmenting the aorta root and arch. Recently, deep learning based methods

are becoming more mainstream [35, 37], as it has been found superior over many traditional
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methods for visual recognition tasks. An overview on deep learning method in medical image

segmentation can be found in [66]. By using deep CNN models, the features are automatically

learnt through a supervised classification training process, where the low-level features can be

further generalised by stacking multiple convolutional layers, and the decision boundary is also

learnt jointly. Backwards Propagation of Errors (Back-Prop) with mini-batch based gradient

descent is often used to train the CNN model. Therefore, on-line learning schemes can be

developed naturally via fine-tuning the pre-learnt model with the training data batch acquired

from user interaction. However, training a deep model requires a large amount of supervision

data that are generally not available in the scene of interactive segmentation, which more likely

results in an under-fitted model.

Table 4.2: Parametric Implicit Representation for Surface Reconstruction and Image Segmen-
tation

Param. Support Method

Polynomial
Global Polynomial Kernel [131]
Local B-splines Kernel [132, 133, 134]

RBF
Global Thin-Plate [135], Gaus [136], Multi-Quadric [137]
Local Wendland’s RBF [138]

Implicit functions that are widely used in segmentation provide smooth and topologically

flexible shape representations, where the surface of a shape is embedded into a zero level set

that is able to deform and visualize naturally [72, 139]. Compared to the parametric mod-

els [68, 71], the geometric models have more topological flexibility as the shape is embedded

in higher dimensional space which can break, merge and vanish naturally during the level set

function evolution that is driven by a time-dependant PDE. The high dimensional implicit

function can be approximated using parametric form, which is so-called Parametric Implicit

Representation (PIR). During the level set evolution, for segmenting volumetric data in par-

ticular, shape or flat gradients may be developed, which requires re-initialisation to avoid in-

accuracy numerical approximation. PIR approximates the level set function via interpolating

its parametric formulation, which avoids developing the numerical errors, and a more con-

cise Ordinary Differential Equation (ODE) solution is often available. PIR can be broadly

divided into a polynomial based approach, or a Radial Basis Function (RBF) based approach,

both of which can be further categorised into globally support method and locally support

method considering the kernel function that is used. Table 4.2 lists some representative PIR

approaches that are used for surface reconstruction and image segmentation. The idea of ap-
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plying PIR to image segmentation was first proposed by Morse et al. [135] in 2005, where

a continuous representation of the level set function is parametrised using globally supported

Thin-Plate RBF. The deformation is driven by an external image and balloon forces to move

the locations of zero RBF constraints towards the boundary of the object. However, this is an

incomplete solution, as the locations of RBF centres are updated during each iteration while

their coefficients are fixed, where periodical interpolation is required to re-initialise the implicit

function in order to ensure the functional continuity. Xie et al. [137] overcame this numeri-

cal intractability by introducing fixed location RBF centres. The formulation of coefficient

based deformation can then be derived, where the level set PDE problem is converted to an

ODE problem, and re-initialisation is no longer needed. Paiement et al. [136] showed such a

strategy is able to solve the segmentation and interpolation problems jointly when the image

data is partially missing. However, computational complexity is the major limitation of the

globally supported RBF approaches [135, 136, 137], which is the same case for polynomial

fitting [131], as those methods generally involve decomposing a large and dense kernel matrix

that is computationally expensive operation. Gelas et al. [138] introduced compactly support

RBF (Wendland’s RBF [140]), where a sparse linear system is obtained. According to [141],

the computational complexity of sparse matrix factorization can be considered to be O(Nnz f )

where Nnz f is the number of non-zero factors. This is much simpler compared to the dense

formulation of O(N logN). Bernard et al. [132] proposed variational B-spline level set model

that approximates the level set function using a number of B-spline basis. It shows that the

parametric representation can be deformed as a sequential 1-D convolution. Rouhani et al.

proposed an Implicit B-spline Surface (IBS) based reconstruction method that recovers shape

from point cloud [133], and showed its feasibility of solving a shape registration problem [134].

However, the over-smoothing issue is one of the major drawbacks of the interpolation process

where unnecessary loss of geometrical detail is inevitable.

In this chapter, we present a novel volumetric image segmentation method that bridges

state-of-the-art deep learning based object detection approach, and deformable parametric im-

plicit shape representation. First, to combine the deep model with an interactive scheme, we

propose a two-stage cascade detector that contains a Naive-Bayesian classifier for fast elimi-

nation, and a pseudo-3D CNN classifier for precise detection. Instead of learning the model

from scratch using the interaction, the pseudo-3D CNN is trained on pre-built dataset, such

that the discriminative features are first learnt using sufficient data, which completely avoids
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hand-crafting features. Then, user interaction is only used to fine-tune the pre-learnt model.

The refined model is used to correct the miss-classified regions that are selected, again based

on user interactions, such that the effect of any biased model is imprisoned only in the lo-

cal regions marked for refining. Second, it is worth noting that the geometrical complexity

of an individual object has not been considered by the previous PIR approaches, whereas our

proposed NU-IBS method measures the complexity density of the local topology using scale

weighted wavelet coefficients. It is able to adapt the density and supporting radius of individ-

ual B-splines, where dense and compact bases are placed at the regions that have more subtle

structures. The level set PDE is transformed to an ODE problem, where the formulation of

coefficient deformation is derived using the region based velocity function. In addition, the

proposed method is equipped with an efficient foreground detector, where the segmentation no

longer relies on shape edge, homogeneous region, or good initialisation. It is able to distinguish

the object from complex background, which is more practical for real-world applications. Our

contributions are fourfold.

• To efficiently delinearate the foreground objects and background regions, a cascade de-

tector is proposed which contains an intensity-based Naive-Bayesian classifier for fast

elimination, and a pseudo-3D CNN classifier for precise classification. The representa-

tive features for region-based detection are automatically learnt in a supervised fashion

together with the decision boundary for binary classification, no hand-feature-crafting is

needed.The use of pseudo-3D CNN avoids 3D convolution over the volumetric data via

aggregating 2D convolutional features that extracted from 3 orthogonal planes at multi-

scales, which is a more computationally economical scheme, and makes no sacrifice in

accuracy.

• An adaptive learning and localised refining strategy is proposed which further improves

the detection result and boosts accuracy with help of user interactions that are taken

on-the-fly. It requires minimum effort from user to provide foreground and background

guiding strokes interactively, where the supervision information is used to adaptively

update the classifier, and the geometrical information is used to localise the regions that

need to be refined. The method is able to compensate the case by case variations that

are not pre-learnt by the detector, meanwhile avoid the outliers contaminating the well-

modelled common patterns.
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• We proposed a novel shape representation method, NU-IBS. It embeds the shape into

the zero manifold of a level set function that is approximated using locally supported

B-spline patches in parametric form. In contrast to the uniform knot distribution, the

geometrical complexity is estimated using the proposed wavelet-based filtering method,

and the control knots are placed according to the complexity density. It is able to adapt

according to the local topology, where highly curved regions are blended using more

compact patches to avoid over-smoothing or adding unnecessary knots.

• Piecewise constant is the most common and successful regularisation scheme widely

used for image de-noising, restoration and segmentation problems, which assumes that

the appearance of an image or the geometrical structure of an object are locally homo-

geneous. The regularisations are generally imposed through adding homogeneity mea-

surements to the objective function that penalise the discrepancies. In contrast to the tra-

ditional approaches, we impose the piecewise constant on the classification results given

by the proposed cascade detector through NU-IBS that ensures geometrical smoothness

naturally. The region based deformation scheme are derived from level set PDE which

iteratively propagates a smooth interface according to data support, where both geomet-

rical and characteristic homogeneity are co-optimised, and a optimal solution to the joint

object is achieved.

The rest of the chapter is organized as follows. The proposed methods including cascade

detection, NU-IBS and region based deformation are introduced in Section 4.2. The evaluation

is performed on segmenting aorta root and arch given a 3D CTA image dataset, with details of

dataset and experimental results presented in Section 4.3. The concluding remarks are provided

in Section 4.4.

4.2 Proposed Method

4.2.1 Overview

The goal of the proposed method is to segment the target object from a volumetric data pro-

vided limited user interaction, i.e. the strokes that indicate the foreground and background re-

gions. The delinearated model is initially learnt given a set of labelled training images, where

the foreground and background ground-truth is provided in the form of binary volume. The
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segmentation task can be completed by a Classification-Refining-Regularising procedure in an

interactive manner as follows: (1) detect the object via voxel-wise region classification; (2) in-

teractively refine the predicted region using adaptive learning scheme; (3) regularise the results

with a piecewise constant constraint that uses an NU-IBS model for shape representation.

From a machine learning perspective, detecting an object is equivalent to a binary classifi-

cation problem, which groups individual voxel into foreground objects or background regions.

Voxel-wise classification on volumetric images is a computational expensive task due to the

large number of hypotheses, and feature variations compared to lower dimension data. When

more discriminative but complex models were used, the speed of segmentation procedure is

reduced dramatically. In order to boost the runtime performance, a 2-stage cascade detector is

used to leverage the overall classification accuracy and speed efficiency, where a simple Naive-

Bayesian model was trained based on the intensity information for fast background voxel elim-

ination, and a stronger pseudo-3D CNN multi-scale detector was built to precisely identify the

foreground objects. In addition to fully automatic voxel classification, an interactive refining

scheme is introduced to boost the detection accuracy further by utilizing the information gained

from user interventions, in our case, the foreground and background guiding strokes. However,

it is noteworthy that voxel-wise object detection is not equivalent to binary segmentation, as

it does not take any prior knowledge into consideration, such as the piecewise constant that is

commonly used in the deformable segmentation. The proposed method solves this problem by

introducing an NU-IBS model to represent shape geometry, where the regularisation constrain

can then be imposed via region based deformation given the classification confidence of each

voxel.

4.2.2 Intensity-based Naive-Bayesian Detector

Given V , a set of N training voxels, each sample in V is a pair tuple defined as vi ∈ V , and

vi := 〈ti,ci〉, where i is the index of the training sample, ti is a scaled integer intensity within

the range of [0,255], and ci ∈ {0,1} is its corresponding binary category label that indicates

either background (ci = 0), or foreground (ci = 1). Hence, the likelihood of background and

foreground can be empirically estimated using two GMMs with K components as follows:

P (t|C) =
K

∑
k=1

ak N (t,µk,σ
2
k ), C ∈ {0,1} (4.1)

N (t,µ,σ2) =
1√

2πσ2
e−

(t−µ)2

2σ2 (4.2)
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where the mixture weights a, means µ , and stand deviations σ of K Gaussian components can

be obtained via Expectation Maximization (EM) given the observations from training dataset.

In our case, the foreground and background likelihoods are equivalent to two probability den-

sity functions of GMMs, where the parameters of their Gaussian components are estimated

independently on two sets of training samples from the distinct categories. Hence, the naive

Bayesian classifier can be constructed via choosing an appropriate prior probability P(C) for

each category, and then applying the Bayesian rule as follows:

P (C = c|t) = P(C = c) P(t|C = c)
P(t)

(4.3)

P (t) =
{0,1}

∑
c

P(C = c) P(t|C = c) (4.4)

There are a number of approaches to select the prior probability, such as empirical estimation

of the category frequency, or inference by Maximizing A Posteriori (MAP) from given training

dataset. Whereas for the stage classifier in a cascade framework, it is sensible to sacrifice the

fallout rate to some extent in order to retain a high recall rate, which can be achieved by man-

ually setting a biased prior probability that is weighted towards the foreground category. Such

a strategy compensates the limitation of lacking positive evidence for general detection prob-

lem, especially for those extremely unbalanced datasets, it levers the biased data distribution to

some extent. Hence, the classifier can be constructed via computing the posterior probabilities

of t for all C ∈ {0,1} given the prior probabilities, and then mapping t to the category label

which maximises the posterior, where t is an 1D intensity value of the target voxel.

4.2.3 Pseudo-3D CNN Detector

Intensity only is not sufficient to distinguish the object from background, as 1D features lack

structural information which forms variations in terms of appearance and geometry. Inspired

by the commonly used MPR in radiography, a pseudo-3D CNN detector is proposed using the

local image patch from three perpendicular panels at multi-scale to precisely identify the fore-

ground object from the hypotheses retained by the first stage intensity-based naive-Bayesian

detector. 2D image patches are a set of appearance projections of the original 3D geometry

data from different view angles at a certain location that is within the volume. For most cases,

the information from a single projection is ambiguous and biased, whereas the uncertainty can

be reduced significantly when more projections are available and integrated, especially from
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uncorrelated views. For example, coronal, sagittal, and axial views are perpendicular to each

others, and the mutual information is minimum that can only be found on the intersecting lines.

Hence, the pseudo-3D CNN learns the primitive features from those three views independently,

which are then aggregated to further generalise abstract descriptors to represent foreground and

background elements where a compact classification boundary can also be found. Rotations to

the coordinates system can also be applied at the same time in order to obtain the best views and

projections for the given anotomical structures. In addition, different to 3D CNN [142] which

normally computes 3D convolutional features from a volumetric data, the proposed pseudo-

3D CNN applies 2D convolution operators to the images sampled from coronal, sagittal, and

axial views that centred at the target voxels. The proposed method has many fewer computa-

tional operations and much less complexity, such that it is more efficient in speed. The details

of the network architecture are illustrated in Fig. 4.1, and the parameter settings of the key

components are listed in Table 4.3.

Table 4.3: The parameter settings of the key components of proposed Pseudo-3D CNN net-
work.

BLK Type Parameter

(a)
C1, C2 13×13 patches from coronal view at two scales
S1, S2 13×13 patches from sagittal view at two scales
A1, A2 13×13 patches from axial view at two scales

(b)
Conv. 3 16 (3×3) Conv. filters with stride of 2 pixels
BNorm Batch Normalisation
ReLU Rectified Linear Unit activation function

(c).B5
Conv. 5 192 (5×5) Conv. filters with stride of 2 pixels
BNorm Batch Normalisation
ReLU Rectified Linear Unit activation function

(c).B3

Conv. 3 192 (3×3) Conv. filters with stride of 1 pixel
BNorm Batch Normalisation
ReLU Rectified Linear Unit activation function
Conv. 3 192 (3×3) Conv. filters with stride of 2 pixels
BNorm Batch Normalisation
ReLU Rectified Linear Unit activation function

(d)
Ave. Pool 4×4 average pooling filter
FC. 2 Fully Connected layer with 2 outputs
Softmax Softmax layer for binary classification

The pseduo 3D CNN network consists of four components as follows: (a) multi-scale

pseudo-3D sampling, (b) primitive feature extraction, (c) feature aggregation and generali-
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Figure 4.1: The network architecture of pseudo-3D CNN detector which consists of four com-
ponents as follows: (a) multi-scale pseudo-3D sampling, (b) primitive feature extraction, (c)
feature aggregation and generalisation, and (d) foreground-background prediction.
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sation, and (d) foreground-background prediction. Given a 3D volumetric data and a voxel

location, block (a) constructs the image patches with size of W×H pixels from coronal, sagit-

tal, and axial views using MPR sampling at multiple scales {S1...Sn}. Therefore, there are in

total 3× |S| images fed into the networks as inputs, in our case, (W,H) = 13, and |S| = 2.

In block (b), each primitive feature extractor includes a 3× 3 convolutional filtering layer, a

batch normalisation layer, and a Rectified Linear Unit (ReLU) layer connected consecutively.

The primitive feature extraction processing is applied to individual images per view per scale,

where the learnt responses of kernel filters then join together via channel-wise concatenation.

A batch normalization layer as a regularisation scheme is inserted between the convolutional

layer and the activation layer to compensate the internal covariate shift that is introduced by

mini-batch gradient descent via Back-Prop learning [56]. A ReLU is a favorable and efficient

choice for non-linear activation function, where the vanishing gradient issue no longer exists

at the positive axis, and highly sparse models are often obtained to ensure a reliable local min-

ima to some extent [143]. Block (c) consists of two branches, a single feature extractor with a

5×5 convolutional layer, and two consecutive feature extractors with two 3×3 convolutional

layers. Two branches have the same size of receptive field (5×5 pixels), and join the features

via channel-wise concatenation at the end, whereas the depths of feature abstraction are dif-

ferent (1 level for the top branch, 2 levels for the bottom branch, see Fig. 4.1 and Table 4.3).

This strategy of enforcing feature aggregation from different abstraction levels was proved to

be efficient to boost the accuracy [144]. No pooling layer is used for feature extraction blocks

(b & c), spatial down-sampling is applied by setting the stride of convolutional filter to 2 with

boundary padding. To note that for the bottom branch of block (c), only the stride of the last

feature extractor is set to 2 pixels in order to achieve the consistent spatial resolution with the

top branch. Therefore, the feature outputs of block (b & c) have the spatial resolutions of 7×7

pixels and 4× 4 pixels respectively. In block (d), an average pooling layer with the filter size

of 4× 4 pixels is used to reduce the spatial resolution to 1 pixel, whereas the features are en-

coded within the channels. Then, a fully connected layer with 2 output nodes and a Softmax

prediction layer are followed to perform binary classification. During the training procedure,

the Softmax is replaced by its log loss version for Back-Prop. For a voxel, the pseduo 3D

CNN network encodes the aggregated features using the perpendicular perspective projections

from multi-scales, where a set of rich descriptors of local appearances and geometrical struc-

tures can be extracted hierarchically, and then be identified using discriminative analysis for
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segmentation.

4.2.4 Localised Interactive Refining

Due to different clinical conditions of patients, the medical scans are normally acquired in a

case by case basis. The patient-specific variations are often observed when different radiation

doses, the scanning angles are used. A fully automatic off-line model that can achieve the

optimal classification accuracy is extremely hard to train, and is generally not available. User

intervention from the experienced clinician is informative and very helpful to overcome the

difficulties that are introduced by the personalised image analysis. In order to minimise the

intervention effort of the user, the stroke based foreground and background guiding curves are

introduced in our method. There are two key bits of information implied inside the guiding

strokes: the supervision knowledge, and the spatial location that need to be corrected. The

voxels bypassed by the foreground strokes are considered as positive regions, whereas the ones

along the background strokes indicate the negative regions. Although, at the testing stage, such

supervision knowledge is limited in terms of the number of strokes that are acquired from the

user, the labelled regions are more representative and informative for the testing volume which

can be used to revise the pre-learnt model, and add the missing variances. Since the pseudo-

3D CNN detector is trained using Back-Prop with Stochastic Gradient Descent (SGD), it can

then be fine-tuned on-the-fly whenever the training data sampled from the new guiding strokes

is available. However, fine-tuning is very sensitive to the training data in terms of adjusting

feature patterns, and shifting the decision boundary, whereas the strokes normally indicate spe-

cific case by case patterns or the outliers. Training a global classifier using this supervision

information with SGD overtime will lead to a biased model, and the overall accuracy can drop

dramatically. In order to overcome such difficulty, there are three training strategies that are

introduced to suppress the learning oscillation. First, in addition to the voxels interactively ac-

quired from user, there are a number of pseudo-3D patches sampled from original training data

to form the fine-tuning set. Hence, the model revision will not be dominated by the training

data given by the supervision strokes, and the gradient of each mini-batch is corrected to some

extent towards the direction of common pattern over all variations. Second, a relatively lower

learning rate, and a smaller number of training epochs are used to ensure a stable gradient de-

scent optimisation, and prevent largely adapting the model towards the special variations. The

last but the most important strategy is localised refining, which takes the location information
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embedded inside the supervision strokes into account. It considers that the trajectories of the

strokes imply the bypassed local regions require refining, where the re-classification is only

applied to the sub-volume that are k-neighbours of the supervision strokes. This procedure

is performed iteratively until the satisfying result is achieved, through which the case by case

patterns are learnt, and classification are refined. Algorithm 1 shows the detail of proposed

localised interactive refining scheme.

Algorithm 1: Localised Interactive Refining
Input : C is a trained pseudo-3D CNN detector.
Input : V is a 3D volumetric image.
Input : Ds is the binary classification of V given C .
Output: Di, Si are the refined binary classification and the confidence score of V

respectively.

1 Di← Ds, Initiate the classification result;
2 n← 0, Initiate the interactive classification counter;
3 while the user provides foreground strokes F , and background strokes B do
4 n← n+1, increase the counter;
5 Po ← randomly sample foreground and background pseudo-3D patches from the

original dataset for training C ;
6 Pi← sample foreground and background pseudo-3D patches and corresponding

labels along the guiding strokes F and B;
7 C n

i ← fine-tune the pre-trained CNN detector C using Po and Pi with a relatively
lower learning rate Li;

8 V n
i ← find the irregular sub-volume which contains the voxels that are the
k-neighbour of the guiding strokes F and B;

9 Dn
i , S n

i ← classify and score the sub-volume V n
i using the fine-tuned model C n

i ;
10 Di, Si← merge the refined classification result Dn

i , and confidence S n
i ;

11 end
12 return Di and Si;

4.2.5 Non-Uniform Implicit B-spline Surface

A binary volume is obtained using the proposed 2-stage cascade detector, and interactive re-

fining process, where each voxel is assigned with either a foreground or background label

independently. It is considered as a loose presentation of object, while a compact model that

has rich geometrical interpolation is missing and in need. NU-IBS model is proposed in this

section which can be used to represent shape using a set of parametric basis functions that have

non-uniform local supports. It offers topological flexibility, sparse and local control, and is able
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to adapt in terms of the shape complexity. The key idea is that the shape is first embedded in

an implicit representation using a signed distance function, it then can be approximated using

non-uniform B-spline patches in a parametric form:

L (X) = C T D(X) (4.5)

where X∈R3 is the control knots in 3-dimensional space represented using xyz-coordinates, D

is the B-spline basis vector given X, C is the coefficient vector for all B-spline bases, and L is

the approximated level-set function. We will introduce the formulation of uniform implicit B-

splines surface first, and then show its non-uniform expansion using density mapping of control

knots that is based on the estimation of shape complexity. Hence, constructing the NU-IBS

representation of a shape is equivalent to solving a non-linear least square problem, while the

surface can then be reconstructed via interpolation given its implicit parametric formulation.
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Figure 4.2: (a.1) A 1D example of cubic B-splines basis functions that are made out of scal-
ing and translating the uniform blending functions. (a.2) An example of unweighted uniform
kernel functions. (b.1) A 1D example of cubic B-Spline basis functions that are made out of
scaling and translating the non-uniform blending functions. (b.2) An example of unweighted
non-uniform kernel functions.
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4.2.5.1 Uniform Implicit B-spline Surface

In the case of cubic splines that are used in proposed method, the basis vector is constructed

using four 3rd degree polynomial blending functions as follows:

b0(u) = (1−u)3/6

b1(u) = (3u3−6u2)/6

b2(u) = (−3u3 +3u2 +3u+1)/6

b3(u) = u3/6

(4.6)

Let r,s, t be the indexes of blending functions, N be the number of basis functions which are

uniformly placed over the definition interval [0,1], and ci, j,k be the coefficient of knot {i, j,k},
such that given a local control point in xyz-coordinates, the indexes of knot and corresponding

u,v,w for each axis can be mapped as follows:

δ = 1/(N−3)

i = dx/δe, j = dy/δe, k = dz/δe

u = x/δ −bx/δc, v = y/δ −by/δc, w = z/δ −bz/δc

(4.7)

where d·e and b·c are ceil and floor rounding operators respectively. Then the approximated

level-set function L can be computed based on Eq. 4.6 and 4.7 as follows:

L (X) =
3

∑
r,s,t=0

ci+r, j+s,k+t br(u)bs(v)bt(w) (4.8)

Fig. 4.2 (a.1) shows a 1D example of cubic B-Spline basis functions that are made out of

scaling and translating uniform blending functions, and (a.2) are the unweighed uniform kernel

functions that are computed using Eq. 4.8 with constant coefficients (∀c = 1).

4.2.5.2 Non-Uniform Expansion

The uniform model places the knots evenly on the definition intervals, however, for the shapes

that have both simple and complex structures, densely distributed knots are required to cover

the highly curved parts, while the computational resource is wasted at the smooth regions.

Hence, it is worth considering a non-uniform model that can adaptively distribute the knots

based on the local complexity of the shape. Fig. 4.2 (b.1) shows an 1D example of cubic

B-Spline basis functions that are made out of scaling and translating non-uniform blending
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functions, and (b.2) are the unweighed non-uniform kernel functions that are computed using

Eq. 4.8 with constant coefficients (∀c = 1). In Fig. 4.2 (b.2), the densely distributed knots

(towards left) that has small support radius provide more compact representation compared to

the loose ones (towards right).

The surface lays on the zero level set of L , where those highly curved structures are

presented as large oscillations and high frequency signals over the signed distance field. A

scale weighted complexity estimation method is proposed to determine the density of knots for

each axes. Fig. 4.3 (a) show a 1D signal that is constructed using a set of sine functions that

have different frequencies. Fig. 4.3 (b) show the heat map of continuous wavelet coefficients of

the signal in multiple scales. Given an implicit shape representation L0, the density of shape

complexity along one axis can be estimated via marginalising the scale weighted amplitudes

of Guassian wavelet responses over other two axes, as follows:

Wx =
Y

∑
y=1

Z

∑
z=1

M

∑
m=1

1
m
||L0(:,y,z) ⊗ Kgaus||1

Wy =
X

∑
x=1

Z

∑
z=1

M

∑
m=1

1
m
||L0(x, :,z) ⊗ Kgaus||1

Wz =
X

∑
x=1

Y

∑
y=1

M

∑
m=1

1
m
||L0(x,y, :) ⊗ Kgaus||1

(4.9)

where M is the number of scales, Kgaus is the kernel filter of Gaussian wavelet, and ⊗ is the

convolution operator. The amplitudes (L1 norm) of wavelet coefficients are weighted by the

reciprocal of the scales, which lowers the contributions of detected signal oscillation in large

scales, while concentrates it in small scales. Therefore, the density of shape complexity can be

interpreted as the density histogram of subtle changes of geometrical structures along a certain

axis over the whole volume. N B-splines divide the definition domain into N − 3 intervals

where the knots are placed at the intersections. An NU-IBS divides the intervals according to

density histogram Wx,Wy, and Wz, ensures that each intervals has even accumulated density,

where such mapping can be easily obtained by using histogram equalisation algorithm. For

NU-IBS, the uniform distributed knots (Eq. 4.7) are replaced by this adaptive mapping method,

and the basis vector D can be constructed accordingly. By doing so, the regions that have

complex geometrical structures are approximated using more B-spline patches with compact

supports, when the total number of B-splines is fixed.
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Figure 4.3: (a) A 1D signal is constructed using a set of sine functions that have different
frequencies. (b) The heat map of continuous wavelet coefficients of the signal given in (a).

4.2.5.3 Surface Parametrisation and Reconstruction

Given a binary volume, a signed distance function L ′ is computed, where the voxels on the

object surface are assigned to 0, and the others are the Euclidean distance to the surface. In

order to ensure the numerical stability, we follow the convention that the distance values inside

the object are positive, and outsides are negative. The surface parametrisation is equivalent to

solving the following non-linear least square problem with a ridge regularisation:

C ∗ =argmin
C

{||L ′−L (X)||2 +µ(C T I C )}

=argmin
C

{||L ′−C T D(X)||2 +µ(C T I C )}
(4.10)

where the µ is the regularisation parameter, and I is the identity matrix. Given a uniformly

sampled sub-volume S from L ′, the vectorised distance values Bs, and basis matrix Ds(X)

can be constructed by concatenating the basis vector of corresponding points in S row-by-row,
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such that the approximated solution can be found as follows:

C = D†
s (X) Bs = (Ds(X)T Ds(X))−1Ds(X)T Bs

C ∗ = (Ds(X)T Ds(X)+µ I)−1 Ds(X)T Bs

(4.11)

where D†
s (X) denotes the pseudo inverse of Ds(X). The basis matrix (Ds(X)T Ds(X))−1 is a

highly sparse matrix, where much faster factorisation algorithms are available compared to

dense matrix [145]. Given the parametric representation of a shape, the level-set function can

be computed via interpolating the distance field of the shape within the definition domain using

Eq. 4.5. Hence, the surface is reconstructed on the zero level-set manifold.

4.2.6 Segmentation as Region-based Deformation

The NU-IBS is the approximated parametric form of the level set function given a shape

which can be constructed directly from the binary decision volume. It imposes the geomet-

rical smoothness constraint to the loosely detected object, however, the classification score has

not been taken into account. In order to incorporate the data support, level set based segmen-

tation is introduced which captures the shape via propagating the zero interface Γ according

to a PDE derived from an energy functional. In this chapter, we consider the classical Chan-

Vese energy functional [146] that leads to a solution partitioning the definition domain into two

regions with piecewise constant data support, and delimiting the boundaries of the objects:

J(L ) = λ1

∫
Ω

δ (L )||∇L || dC

+λ2

∫
Ω

(S (C )−C1(L ))2 ·u(L ) dC

+λ3

∫
Ω

(S (C )−C2(L ))2(1−u(L )) dC

(4.12)

where u and δ are the Heaviside and Dirac univariate functions respectively, λ1,λ2,λ3 are

positive hyper-parameters that control the contributions from the surface smoothness, inside

and outside of the object. C1(L ),C2(L ) are computed during the interface propagation at

each iteration using the following expression:

C1(L ) =

∫
Ω

S (C ) ·u(L (C , t)) dC∫
Ω

u(L (C , t)) dC

C2(L ) =

∫
Ω

S (C ) · (1−u(L (C , t))) dC∫
Ω
(1−u(L (C , t))) dC

(4.13)
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The general minimisation solution of J(L ) can be found using variational calculus and gradi-

ent descent method [146, 147, 148], as follows:

∂L (C , t)
∂ t

+V(C , t) ·δε(L (C , t)) = 0

δε(x) =
1

πε · (1+( x
ε
)2)

(4.14)

where δε is a regularised Dirac function. It is noteworthy that in Eq. 4.12, λ1 controls the

contribution weight of surface smoothness which is already assured by the intrinsic property

NU-IBS, we can simply set λ1 = 0, and λ2 = λ3 = 1. Then, the velocity term is given as:

V(C , t) =−(S (C )−C1(L ))2 +(S (C )−C2(L ))2 (4.15)

By combining Eq. 4.5, 4.10, 4.14, the PDE equation can then be transformed to an ODE equa-

tion with respect to the B-spline coefficients C of NU-IBS, where the optimal segmentation

can be found by iteratively updating C according to the detection confidence score S until the

steady state is reached. The gradient descent solution is given as:

dC

dt
=−{(Ds(X)T Ds(X)+µI)−1 Ds(X)T

× (V(C , t) ·δε(L (C , t)))}

C(n+1) = C(n)+ τ
d C(n)

dt

(4.16)

where τ is the step size. A small τ value enables a steady numerical solution while more

iterations are required to converge.

4.3 Evaluation

4.3.1 3D CTA Dataset

The proposed method was evaluated on a 3D CTA dataset which contains 36 volumetric TAVI

scans. The number of slice of each scan varies, while the image size of each slice is fixed at

256×256 pixels across all scans. The anatomical structure to be segmented is the aorta which

is the large blood vessel that carries oxygen-rich blood from the left ventricle of the heart to

other parts of the body, and its root attaches into the heart. The aortic root consists of three

valve leaflets which open to allow the blood in the left ventricle to flow into the ascending

aorta when the heart contracts. The ascending and descending aortas form an arch-like shape.
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An example of 3D TAVI image and its 3D surface rendering is shown in Fig. 4.4, where the

aorta root is highlighted with the organ circle. This is an ideal case to study our method. First,

the aorta has heterogeneous local geometrical complexity, where its arch is a generally smooth

structure while its root formed by three valve leaflets has far more complex topology. Second,

differentiating the aorta from the volume is not a trivial problem, as there are many similar

object in the whole volume in terms of image appearance and geometry structure, for example,

the pulmonary artery and the superior vena cava. To label the ground-truth, for each scan

the ROI was cropped out, and a reconstruction plane was found manually. The representative

plane is perpendicular to the ascending direction of the root. Then, the root including three

valve leaflets, and the arch were labelled slice by slice up to the top of the arch using closed

contours. Hence, a binary volume can be constructed where insides of the contours were

assigned to 1, and outsides were 0 indicating foreground objects and background respectively.

4.3.2 Experimental Result

3-Fold cross validation was used, where the 36 volumes were randomly divided into 3 subsets

each of which contains 12 volumes. In each evaluation round, one subset was retained for

testing, and the rests were used for training. The intensity value was scaled into the range

of [0,255] given the optimal window size and window level that were provided in the Digital

Imaging and Communications in Medicine (DICOM) image meta information. To train the

Naive-Bayesian detector, 300K foreground and 300K background voxel intensities from each

training volume were collected, which was about 6% of the total number of voxels in the

whole volume. A GMM with 5 Gaussian components was used, and the conditional posterior

probabilities were computed given an even foreground and background prior. Fig. 4.5 shows

three Naive-Bayesian classifiers that were constructed for different fold tests. The blue and

cyan curves are conditional probabilities of foreground and background that are modelled using

the GMM, and the red and black curves are posterior probabilities obtained through Bayesian

rule given a pre-defined prior. To train a pseudo-3D CNN detector, the false positive and

the false negative voxels were collected from which the multi-scale Pseudo-3D patches were

sampled from each volume. The size of mini batch was 512, the number of epochs was set to

6, which leaded to 63,420 iterations on average. The initial learning rate was set to 0.1, and

then divided by a factor of 10 every two epochs. To simulate the localised interactive refining

procedure, we randomly selected 1,280 voxels from both false positives and false negatives that
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Figure 4.4: An example of 3D CTA TAVI image from 3 orthorgonal views and surface render-
ing created using 3DimViewer [30]. The images from the top to the bottom in the left column
are axial view, coronal view and sagittal view respectively. The right column shows the mesh
model of aorta root (top) and 3D surface rending of the volume (bottom), where the aorta root
is highlighted with the organ circle.
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were given by the Pseudo-3D detector as user guiding strokes. In addition, 3,840 voxels were

randomly sampled from the original dataset, which was together with the simulated guiding

strokes making a fine-tuning dataset with 5,120 samples in total. The learning rate and training

epoch for fine-tuning were set to 10−5 and 10 respectively to avoid large decision boundary

shifting. The localised refinement was applied to 9× 9× 9 sub-volumes that were centred at

the voxels from simulated guiding strokes.

Figure 4.5: The visualization of three Naive-Bayesian classifiers trained for different dataset
folds. The blue and cyan curves are conditional probabilities of foreground and background
that are modelled using GMMs. The red and black curves are posterior probabilities obtained
through Bayesian rule given a pre-defined prior.

The classification results of individual stages from different fold tests are listed in Table 4.4.

The Naive-Bayesian classifier achieves 93.20% true positive rate on average, which is required

to tolerate 9.63% false positive. However, as the majority of the volume is background the

false positive rate is considerably high, where the structures that have similar intensities are

preserved inevitably, such as rib cage, pulmonary artery, blood vessels in the lungs, ventricles

and atria (See Fig. 4.8 row (a)). In the next stage, the pseudo-3D CNN detector dramatically

eliminates those objects by learning the spatial feature hierarchically. It achieves a 0.82% false

positive rate, while it makes a sacrifice in true positive rate which was reduced by 8.06% on

average. Generally, the miss-classification happens around the outer boundaries of the arch and

the tips of leaflets shown in blue in Fig. 4.8 row (b), where those regions either have no sharp

edge or are too close to other large blood vessels. The localised interactive refining scheme

greatly improves the detection accuracy. In particular, the first round of refining boosts the true

positive rate from 85.14% to 92.16% while reduces the false positive rate further. The major

reason could be that the fine-tuning procedure was trained using the samples directly from

the testing volume that are far more representative. Moreover, the localised refining strategy

prevents contaminating the well classified regions. Fig. 4.8 row (c) and (d) show the examples
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of the first round and the last round of refinement respectively. The false positive (yellow

regions) and false negative (blue regions) are eliminated progressively, especially the example

in the second column. It is worth noting that the false positive rate goes higher slowly after 2

rounds of refinement, which is caused by the miss-classifications within the localized regions,

and shows the upper limit of discrimination power of pseudo-3D CNN to some extent. A

connectivity component analysis was applied as a post-processing step to remove the isolated

small regions.

Table 4.4: Quantitative classification results (TP: True Positive, FP: False Positive, in %) of
each cascade stage and localised interactive refining.

Fold-1 Fold-2 Fold-3 Avg.
TP FP TP FP TP FP TP FP

N-B 94.79 8.65 87.99 9.41 96.83 10.83 93.20 9.63
P-3D 84.96 0.66 81.56 0.86 88.91 0.95 85.14 0.82
Ref-1 93.81 0.44 90.35 0.45 92.31 0.61 92.16 0.50
Ref-2 94.89 0.46 91.14 0.39 93.02 0.64 93.02 0.50
Ref-3 95.30 0.48 92.11 0.40 93.55 0.66 93.65 0.51
Ref-4 95.59 0.49 93.07 0.43 94.02 0.69 94.23 0.54
Ref-5 95.89 0.50 94.06 0.47 94.53 0.71 94.83 0.56

The shape representation was initially constructed using the binary classification volume,

and then deformed with regard to the normalised prediction scores until it converges (∆C1 +

∆C2)<5e-4). The maximum number of iterations was set to 50. The regularization parameters

of Heaviside and Dirac functions were set to 1e-5 and 1e-1 respectively, and the step size τ

was set to 1e-1 for all iterations. We compared the proposed NU-IBS with uniform IBS using

23 and 28 B-splines with different sampling rates. The quantitative mesurements are listed

in Table 4.5 which were calculated using EvaluateSegmentation Tool [149]. Table 4.5 shows

that given the same number of B-splines and sampling rate, NU-IBS outperforms IBS in all

aspects. Fig. 4.8 row (e) shows three qualitative segmentation results, where the false negatives

in blue can be largely observed at the tips of valves. The best performance is observed with

28 B-splines and a sampling rate of every 3 pixels, where the highest recall rate (91.66%) and

lowest Hausdorff distance (5.5733) is achieved. Although compared to the recall rate achieved

by the interactive refinement (94.83%), the region based deformation decreases by 3.17% on

average, which is mainly caused by the intrinsic smoothness property of NU-IBS, where it is an

inevitable issue for all PIR approaches. However, compared to the uniform IBS, the proposed

NU-IBS has much richer details of subtle structures. Fig. 4.6 shows the qualitative comparison
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of uniform IBS (top row) and proposed NU-IBS (bottom row), where the uniform method turns

to smooth out the geometrical details of aorta valves that are well preserved by our method. The

main reason is that the IBS has far less B-spline patches at the valve regions compared to the

NU-IBS, which prevents the IBS deforming further to match the data support. Fig. 4.7 shows

three examples of proposed region based deformation using a cube as an initialisation, where

the shape can break naturally during the deformation. The speed of deformation is controlled

by the step size τ , where the large value generally leads to quick convergence while it also

increase the possibility of producing intractable numerical error.

Table 4.5: Quantitative comparison of Uniform IBS and proposed Non-Uniform IBS. (BS:
#B-splines; Sim: Similarity; Mut: Mutual Information; Hau: Hausdorff; Mah: Mahanabolis;)

BS Rate Method Dice Jaccard Sim Mut Hau Mah Recall Fallout

23
6

IBS 0.9095 0.8346 0.9173 0.1180 7.5909 0.0739 0.8406 0.0002
NU-IBS 0.9296 0.8688 0.9314 0.1240 5.7885 0.0407 0.8702 0.0001

3
IBS 0.9233 0.8580 0.9332 0.1221 6.9412 0.0632 0.8658 0.0002

NU-IBS 0.9404 0.8881 0.9441 0.1279 5.8728 0.0381 0.8912 0.0001

28
6

IBS 0.9264 0.8633 0.9372 0.1230 6.7426 0.0602 0.8720 0.0002
NU-IBS 0.9470 0.8997 0.9521 0.1300 5.8706 0.0359 0.9041 0.0001

3
IBS 0.9304 0.8701 0.9425 0.1243 6.2202 0.0550 0.8800 0.0002

NU-IBS 0.9536 0.9115 0.9594 0.1321 5.5733 0.0315 0.9166 0.0001

(a) (b)

(c) (d)

Figure 4.6: Qualitative comparisons of Uniform IBS (top row) and proposed NU-IBS (bottom
row). The uniform method turns to smooth out the geometrical details of aorta valves that are
well preserved by our method.
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(a) τ = 2.50e-1

(b) τ = 1.75e-1

(c) τ = 1.00e-1

Figure 4.7: The deformation process at the 1st, 4th, 8th, 10th, 12th and 20th iterations using
different step sizes τ .
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Figure 4.8: Qualitative results of detection and segmentation from three fold testing at different
stages. (a) Naive-Bayesian classification results. (b) Pseudo-3D CNN classification results. (c)
The first round of localised interactive refining results. (d) The last round of localised interac-
tive refining results. (e) The final segmentation results. Green, yellow, and blue correspond to
true positive, false positive, and false negative respectively.
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Figure 4.9: Additional qualitative results of detection and segmentation from three fold testing
at different stages. (a) Naive-Bayesian classification results. (b) Pseudo-3D CNN classifica-
tion results. (c) The first round of localised interactive refining results. (d) The last round of
localised interactive refining results. (e) The final segmentation results. Green, yellow, and
blue correspond to true positive, false positive, and false negative respectively.
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4.3.3 Speed Discussion

The proposed method were evaluated on a machine with a 3.4-GHz Intel i7 (Sandy Bridge)

CPU, 32GiB of RAM, and a Nvidia GeForce Titan X (Maxwell) GPU. The classification

speeds of Naive-Bayesian classifier and pseudo-3D CNN classifier are 2,725,033 voxels/second

and 18,985 voxels/second on average respectively. The NU-IBS and uniform IBS have the

same computational complexity, we evaluated the speed efficiency of our method on a volume

with a fixed size of 256× 256× 200. The single thread speeds and the approximation accu-

racies of NU-IBS are reported in Table 4.6 where a sampling rate of 6 pixels was used. The

total computational time can be further reduced to 59s and 67s for 23 and 28 B-splines cases

respectively by using multi-threading techniques and optimised factorisation libraries, where

Intel TBB [150] and SuiteSparse [151] were used in our case.

Table 4.6: Speed and Approximation Accuracy of proposed NU-IBS on a 256× 256× 200
volume. (BS: #B-splines; Maxtrix: Basis Matrix Size; Dist: Signed Distance Transformation;
Basis: Compute Basis Matrix; Chol: Cholesky Decomposition; Deform: 1-Iteration; Interp:
Interpolation.)

BS Matrix #Points Dist Basis Chol Ave Error Deform Interp
23 121672 62866 19.256s 12.041s 16.969s 0.020 30.253s 226.950s
28 219522 62866 19.704s 12.779s 48.390s 0.032 30.460s 226.973s

4.4 Conclusion

In this chapter, we first introduced a two-stage object detection cascade that contains a fast

Naive-Bayesian classifier and a powerful pseudo-3D CNN classifier, which balances the speed

efficiency and discrimination performance. Particularly, the pseudo-3D classifier learns the hi-

erarchical features and decision boundary simultaneously through a supervised classification

task, hence, no hand-crafting is required. In addition, it avoids using 3D convolution operator

that is a computational expensive. The proposed localised interactive refining scheme enables

user guided miss-classification correction on the fly. The segmentation is obtained via regular-

ising the voxel-based classification results with NU-IBS deformation in terms of the prediction

scores. The NU-IBS has non-uniform distribution of control knot that is adapted to the density

of geometrical complexity, which can well preserve the subtle structures. The proposed method

is evaluated on a 3D CTA dataset via segmenting the aorta root and arch. The qualitative and
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quantitative comparisons are reported, and show the superiorities of the proposed method in

both segmentation accuracy and subtle structure preserving.
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In Chapter 4, there were two notable findings that can be further applied to address generic

computer vision problems. First, CNN can be used to learn discriminative features given suf-

ficient data and suitable architectures, hence no hand-crafting features is required. Second,

the cascade detector can be constructed by combining simple but fast elimination classifiers

and accurate but complex detection classifiers, which neatly balances the speed efficiency and

accuracy performance. In this chapter, we show these strategies can be jointly used to address

the challenging face detection problem.
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5.1 Introduction

View-specific face detection under controlled environment is largely considered a solved prob-

lem due to recent advances in object detection, in particular the work by Viola-Jones (VJ) [26].

As a typical detection problem, the class distribution between face and background is extremely

unbalanced and heavily biased towards the background. The traditional VJ framework uses a

multi-stage cascade detector, where individual stage is a binary filter that classifies retained hy-

potheses from previous stage into face and non-face. For efficiency, the traditional methods use

simple visual features or weak classifiers at multiple stages (typically over 15). However, they

perform poorly on the so-called Face in the Wild problem, where faces are captured with large

pose and facial expression variations, severe occlusions and clutters, and poor lighting scenar-

ios. Built upon those classical detection frameworks, several works have been recently reported

in developing discriminative visual features [152, 27, 153] and strong classifiers [84, 154, 155]

to improve face detection performances in the wild. Deep learning methods [37], especially

CNNs, have shown outstanding successes in representative feature learning and supervised

classification for various computer vision problems. Our work leverages recent advances in

deep learning for efficient face detection. More in-depth discussions to these related work are

presented in the next section.

From image retrieval perspective, face detection can be considered as a visual matching

problem, where a window candidate is determined as face by successfully finding reliable

correspondences in a pre-built exemplar database. In [156, 157], an exemplar database is

constructed using localised visual words, and detection is obtained by finding the high confi-

dence regions on the voting map provided by matched exemplars. The performance of those

non-parametric searching methods can be severely compromised by the quality of exemplar

database, such as the discriminative power of visual features, and the variation in coverage

of different poses, illuminations, occlusions and so on. In addition, using a large exemplar

database also slows down the detection speed as exploring large search space is a time consum-

ing task. The Deformable Part Model (DPM) was originally proposed for object recognition,

and can be considered as an alternative searching based method for detecting faces [158, 159].

It considers that the target object is consisted of several deformable parts. The part candidates

are proposed by individual part detectors, and then the entire object can be found by searching

for a most plausible configuration of displaced parts. DPM helps to overcome the difficulties

introduced by severe occlusion and clutter, provided reliable performance of part detectors.
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However, assembling individual parts into objects is equivalent to solving a combinational op-

timisation problem which could also be computationally expensive even with approximation

algorithms.

Computational efficiency is one of the main concerns for practical detection system, es-

pecially when dealing with large number of hypothesis, complex visual feature, and strong

classifier. For example, to precisely locate faces in the image, exhaustive search methods,

such as sliding window, are commonly used to generate candidates. However, examining all

hypotheses is computationally expensive, thus relatively simple features and weak classifiers

are typically used to reduce the complexity [26, 27]. It is worth noting by taking this ap-

proach the detection problem is divided into a set of sub-problems first and then solved by

combining individual sub-problem solver into a multi-stage detector [26, 160]. For exam-

ple, Koestinger [161] trained a 20-stage VJ face detector using LBP features. Object region-

proposal methods are popular for image recognition and object localisation, such as object-

ness [162], selective search [163], category independent object proposals [164], combinatorial

grouping [165], and segmentation based methods [166]. However, generating object candi-

dates generally involves region segmentation, classification, and grouping, which slow down

the detection speed drastically. Furthermore, the recall rate of region proposal is generally

lower than exhaustive search, such as sliding window.

Whilst using hand-crafted features is generally problematic, introducing powerful but com-

plex models is often computationally inefficient. Especially, some recent works on adapting

pre-trained large scale recognition models to face detection problem often requires excessive

resource expenditure. Cascading, feature aggregation and multi-resolution are three efficient

strategies for traditional visual recognition methods. In this paper, we show that such strategies

can be used and integrated into the architecture design of CNN via. Shallow networks with

feature aggregation at multi-resolution enables the traditional cascade framework to tackle

the challenging detection problems efficiently. In this chapter, we propose two different ap-

proaches for tackling the face detection problem in an unconstrained environment. The Soft-

Cascade approach considering a loose decision boundary over multiple stages of the cascade

detector, where it has maximum 2 convolutional layers, and the final detection is made by av-

eraging the classification results in an ensemble fashion. The Detection-Regression approach

uses more complex CNN models with maximum 4 convolutional layers to construct a hard cas-

cade. Whereas it more focuses on refining the location of detected windows using a regression
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net that shares the features computing with other classification nets. The rest of chapter is or-

ganised as follows: Section 5.2 reviews related works on CNN-based face detection methods.

Section 5.3 provides detailed descriptions of Soft-Cascade method, and experimental results

on public datasets. Section 5.4 provides detailed descriptions of Detection-Regression method

together with experimental results on three public datasets. Conclusions and remarks are pro-

vided in Sections 5.5.

5.2 Related Work

Applying NNs to face detection dates back to at least early 1990s [167, 168, 169]. Back then,

training a multi-layer neural networks was difficult as the number of parameters increases ex-

ponentially with the number of layers. However, Deep Neural Network (DNN) is becoming

more and more mainstream [37], as it has been shown superior over many other methods, espe-

cially for visual recognition tasks. The following can be considered as three of the key reasons

that contributed to the success of DNNs. First, training a multi-layer neural network involves

finding a local minimum of a highly non-linear function. In order to obtain a reasonable local

minimum, gradient descent based methods require a good initialisation. Layer-wise unsuper-

vised pre-training methods [36] were developed and have been proved to be more efficient

compared with random initialisation. Second, a large amount of labelled datasets [38, 39, 40]

are vitally important to the advance in supervised training. For example, Microsoft COCO

dataset [40] contains more than 300,000 images, and over 2,000,000 instances from 80 object

categories, where each image has 5 caption labels. Moreover, advances in hardware makes

both forward pass and backward propagation computationally efficient. Especially, with ded-

icated high speed memory module and Single Instruction Multiple Data (SIMD) architecture,

General-Purpose Graphics Processing Unit (GPGPU) are particularly well placed for learning

deep neural network structures [41].

As for face detection, Farfade et al. [84] proposed a multi-view face detection method, so-

called Deep Dense Face Detector (DDFD), which uses a fine-tuned 8-layer AlexNet [28] that

was initially designed for object recognition. It has 5 convolutional layers and 3 fully connected

layers. A pre-trained AlexNet was fine-tuned for face detection on 200,000 face patches and

20,000,000 background patches, which were all resized to 227×227 pixels in order to match

the input size of AlexNet. During the testing stage, the sliding window approach was used to

generate hypotheses. DDFD classifies each candidates into face or background, and decision
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confidence scores is obtained. Non-Maximal Suppression (NMS) was followed to remove

redundant bounding boxes.

In [154], the authors introduced a deep CNN based deformable part model for face detec-

tion. The whole face is decomposed into 5 facial regions: hair, eye, nose, mouth and beard.

The part detectors are constructed using 5 binary CNN classifiers that shared the same deep

layers for computational efficiency. The window candidates are generated using object pro-

posal methods, such as selective search [163]. The confidence scores of each candidate can

then be inferred via examining the spatial configurations of part detector responses. Finally, to

further refine the detection results, a CNN with similar architecture to AlexNet is trained for

face-background classification and bounding box regression.

FCN [85] was firstly introduced for semantic segmentation, and then adapted to solve ob-

ject detection problems. In contrast to classifying each object hypothesis into face or back-

ground, FCN based approaches take the whole image as input, and the convolutional outputs

of forward pass are considered as a set of feature maps. Detection then can be achieved by in-

vestigating the region pattern of the target object on the feature maps. UnitBox [86] is derived

from VGG-16 [87] model, and replaces the original fully connected layer with two pixel-wise

bounding box prediction layers. The network can then be trained via minimising the IoU loss,

which quantitatively measures how well the predicted bounding boxes are aligned with ground

truths. Yang et al. [88] and Bai et al. [89] also show that incorporating a FCN with multi-scale

strategy helps to boost detection accuracy. In addition to solving detection problems, it is com-

mon to use those deep models for multi-tasks jointly, such as fiducial landmark localization,

face pose estimation, gender recognition, and 3D face modeling [90, 91, 92, 93].

Very recently, several works have shown that Regions with CNN features (R-CNN) [81, 82]

and Spatial Pyramid Pooling CNNs (SPPnet) [83] are effective in simultaneous object locali-

sation and recognition. These methods contain four main components: convolutional feature

extraction, obtaining region proposal, region of interest (ROI) classification, and bounding box

refinement. In [81], the authors showed that the representation feature learnt with CNN using

deep structure can be effectively used for visual classification and ROI regression. By intro-

ducing spatial pyramidal pooling layer to generate a fixed length output feature regardless the

size of input image, [83] overcame the limitation of [81] without cropping or wrapping the

images that are problematic as they result in information loss and distortion. The work in [82]

improved the computational efficiency further by sharing the deep convolutional layers with
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region proposal, classification and regression networks. However, for small objects, R-CNNs

have difficulty to detect them in small scale due to low resolution and the lack of visual context.

Although deeper models generally outperforms shallow ones, training complex models is

not a trivial task, especially for binary detection problems where the distribution of target object

and background is extremely unbalanced. Given millions of parameters to optimise using back-

propagation, deep nets have the tendency to overfit the data, even with strong regularisations

such as dropout and batch normalisation. Due to the smaller amount of parameters, training

shallow nets is significantly faster. Embedding shallow nets into traditional cascade framework

can also significantly reduce the number of stages and drastically increase the discriminative

power of the model [170]. One of limitation of shallow nets is that the recall rate drops quickly

with the increase of the number of stages. In this chapter, we introduce a nested soft cascade

to compensate the loss of recall while adding multiple stages to remove false positives.

Yang et al. [171] proposed a multi-scale cascade CNN, where 4 proposal nets and 4 FCN

detectors with different resolutions were used in an ensemble fashion. The input image passes

through 4 detection procedures, and the results are combined at the end. Ensembling multi-

ple detectors boosts the accuracy, however, the computational efficiency is the bottleneck. The

most relevant work to ours is [155], where 3 face-nonface classification CNNs are used for sep-

arating face regions from background and 3 calibration CNNs are used to refine the location of

detected bounding box. Sliding window method is used to generate region candidates. These

hypotheses pass through 3 classification-refinement components with different image resolu-

tions, from coarse to fine, and the retained ones are considered as object regions. However,

a cascade based method has to make a compromise between the number of stages, accuracy

and efficiency. For example, in a hard cascade setting, adding more stages helps to reduce

false positives, while it decreases the detection rate and speed, especially when a computation-

ally intensive model is used such as CNN. In addition, refining the detected windows between

stages introduces re-sampling the patches from the original image, which is non-trivial during

the testing phase.

5.3 Soft Cascade

The hard-cascade method progressively eliminates the negative hypotheses by individual stage

classifiers, while some of the hard positives are also dropped out during this filtering process.

Inspired by [160], a nested soft-cascade is introduced as an ensemble classifier that averages
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the predictions over multiple stages. In this section, we present a multi-resolution face detector,

which embeds 5 shallow CNN classifiers into a nested cascade framework. Detecting faces in

images is carried out in three phases: (1) A large amount of easy background patches from the

whole hypothesis set generated by the sliding window are eliminated at the very early stage

using a shallow but fast net at a coarse scale. (2) A nested soft cascade with 3 nets is used to

further reject hard false positive hypotheses while keeping a high recall rate. (3) To precisely

locate the face region, all retained hypotheses from previous stages are verified by a deeper net

using higher resolution.

5.3.1 Proposed Method

Fig. 5.1 shows the basic flowchart of the proposed nested cascade face detector. It consists of

three main phases as follows: fast elimination, nested soft cascade, and precise detection. Win-

dow patches are firstly generated by densely scanning the input image at multiple scales using

sliding windows. Majority of those window patches are quickly eliminated as background by

an ElmNet using a patch resolution of 12×12. A soft-cascade is built by combining 3 LocNets

in a weighted fashion, which is used to further reject the hard false positives with a patch reso-

lution of 24×24. Then, all retained candidates from the previous stages are verified by DetNet

using a patch resolution of 48×48. The final detections are obtained via removing redundant

detections with Non-Maximum Suppression (NMS).

Figure 5.1: The pipeline of the proposed nested cascade face detector.

5.3.1.1 ElmNet: Fast Elimination

A large amount of patch candidates are generated by the sliding window method. The ElmNet

is designed to quickly eliminate negative patches to reduce the computational cost for the
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following phases. Table 5.1 and Fig. 5.2 provide the details of the architecture for ElmNet,

where only one convolutional layer and one fully connected layer are used. Adopting such

simply CNN structure is motivated by the following two reasons. Firstly, ElmNet has a small

input size of 12×12, a small kernel size of 3×3, and a small number of filters of 16. Compared

to other nets, ElmNet has significantly smaller number of parameters, which enables a lower

memory consumption and a much lower computational cost. Secondly, at this fast elimination

stage, low frequency image features extracted from coarse spatial resolution is more effective

in rejecting easy negative hypothesis. Since there is no hierarchical feature extraction within

ElmNet, the discriminative power is limited. In order to retain most positive windows for the

following stage, a high recall rate can be achieved by shifting the decision boundary of Softmax

layer towards zero. For example, using a minimal face size of 48×48, 87.16% recall can be

achieved by shifting the decision boundary to 0.01, whereas 72.62% recall is achieved with

0.50.

Table 5.1: The network architecture of ElmNet for fast elimination.

No Layer Type Parameter Setting
1 Image Input 12x12x3 images scaled to the range [0,1]
2 Convolution 16 3x3 filters with stride 1
3 ReLU Rectified linear unit
4 Max Pooling 3x3 filter with stride 2
5 Fully connected Fully connected with 16 outputs
6 ReLU Rectified linear unit
7 Fully connected Fully connected with 2 outputs
8 Softmax Softmax regression for binary classes
9 Classification Classification output

5.3.1.2 LocNets: Nested Soft-Cascade

Each stage classifier in cascade is trained using the full set of true positives and the false pos-

itives passed through previous stages. Although over 90% of negative patches are eliminated

by ElmNet at the first stage, the number of retained false positives for training following stage

is still considerably large, especially when a large negative image set is used. In our case,

18,089 negative images are used. In order to retain high recall and remove hard non-face hy-

potheses further, multiple LocNets are trained on different subsets of negative images and then

assembled in a soft-cascading fashion, where the final decision confidence is a weighted sum
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Figure 5.2: Network architecture of ElmNet.

of all Softmax outputs of LocNets. Within individual LocNet, see Table 5.2 and Fig. 5.3, there

are two levels of feature abstraction using convolution layers, each of which is followed by

a non-linear mapping and a spatial down-sampling. Such hierarchical network enables more

discriminative descriptors being learnt through back-propagation, and lifting up from low-level

features to high-level representations. The weights of each LocNet are estimated using linear

regression by solving an over-conditioned least square problem without the interception term.

This linear regression problem can be formally defined as

arg min
W

N

∑
n=1
‖Ln−

S

∑
s=1

Ws×Csn‖2, (5.1)

where W , C, L, S and N denote the weights, probability confidences of face category given by

Softmax layers, ground truth labels, the number of LocNet stages, and the number of training

samples, respectively. The decision boundary of nested soft-cascade is also shifted to 0.01 in

order to achieve a high recall rate.

Figure 5.3: Network architecture of LocNet.
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Table 5.2: The network architecture of LocNet for precise localisation.

No Layer Type Parameter Setting
1 Image Input 24x24x3 images scaled to the range [0,1]
2 Convolution 16 5x5 filters with stride 1
3 ReLU Rectified linear unit
4 Max Pooling 3x3 filter with stride 2
5 Convolution 16 5x5 filters with stride 1
6 ReLU Rectified linear unit
7 Max Pooling 3x3 filter with stride 2
8 Fully connected Fully connected with 32 outputs
9 ReLU Rectified linear unit

10 Fully connected Fully connected with 2 outputs
11 Softmax Softmax regression for binary classes
12 Classification Classification output

5.3.1.3 DetNet: Precise Detection

DetNet is designed to precisely locate face regions by verifying retained face candidates at

a higher image resolution. In order to capture features in detail, the resolution of input, and

the number of filters are doubled compared to LocNet, while the size of convolutional kernel

and the level of feature abstraction are kept as the same (See Table 5.3 and Fig. 5.4) for com-

putational efficiency. Local response normalisation layers are added between the non-linear

mapping layer and the maximum spatial pooling layers. Such inhibition scheme is only ap-

plied across channels to enforce regularisation to the networks. Since DetNet is the last phase

of cascade, binary classification is carried out without shifting the decision boundary, and de-

tected square bounding boxes are then refined using a 2-step NMS to remove redundancies.

For the detections at the same scale, we iteratively select the detection with highest confidence

score and remove the detections that has the intersection over union (IoU) ratio larger than

0.50 with selected window. Then, for the detections at different scales, the redundancies can

be found by measuring the intersection over minimum (IoM) ratio, where the threshold is set

to 0.90. The first step removes the redundant detections that are spatially offset to the correct

location, and the second step enables removing redundancies in scale.
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Table 5.3: The network architecture of DetNet for face detector.

No Layer Type Parameter Setting
1 Image Input 48x48x3 images scaled to the range [0,1]
2 Convolution 32 5x5 filters with stride 1
3 ReLU Rectified linear unit
4 Normalisation Cross channel (9) normalisation
5 Max Pooling 3x3 filter with stride 2
6 Convolution 32 5x5 filters with stride 1
7 ReLU Rectified linear unit
8 Normalisation Cross channel (9) normalisation
9 Max Pooling 3x3 filter with stride 2

10 Fully connected Fully connected with 128 outputs
11 ReLU Rectified linear unit
12 Fully connected Fully connected with 2 outputs
13 Softmax Softmax regression for binary-classes
14 Classification Classification output

Figure 5.4: Network architecture of DetNet.

5.3.2 Experiment and Discussion

5.3.2.1 Detector Training

The AFLW (Annotated Facial Landmarks in the Wild [172]) dataset was used to train the face

detector. The dataset contains 22,712 labelled faces out of 21,123 images. The positive face

windows were further augmented by horizontal flipping. In total, 45,424 faces were used in the

training procedure, and examples of face images are shown in Fig. 5.5 (a). The negative images

contain no face. To bootstrap non-face images, labelled face windows were replaced with

non-face patches which were randomly sampled from PASCAL VOC dataset [39] (the person

subset was excluded). In total, 19,458 negative images were generated using this bootstrapping

approach. However, there are considerable amount of unannotated faces in AFLW dataset, we
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thus further applied Koestinger’s VJ-LBP detector [161] on the negative images. After those

ones which have positive response were removed, the negative set contains 18,089 images.

To train ElmNet, 904,450 non-face samples were cropped randomly from all negative im-

ages (50 patches per image), and then resized to 12×12. With cascading set-up, the negative

samples for training the next stages were the residuals (false positives) generated by densely

scanning the negative image set using all previous stages. It is useful to set a maximum

negative-positive ratio (MNP) for LocNets and DetNet. For example, ElmNet would generate

over 50 million false positives from 18,089 images, where MNP can thus avoid training with

extremely imbalanced data. In our case, we used 48×48 scanning window with the stride of 16

pixels, scale factor of 1.18, and MNP of 10. All networks were trained using back-propagation

with batch stochastic gradient descent.

(a) (b)

Figure 5.5: Examples training images. (a) Positive images are cropped face from AFLW
dataset; (b) negative images are generated by replacing the face region with non-face patches
sampled from PASCAL VOC datasets.

5.3.2.2 Evaluation on FDDB Dataset

The proposed face detector was quantitatively evaluated on the Face Detection Dataset and

Benchmark (FDDB) [173] dataset that contains 5,171 annotated faces in 2,845 images. The

quantitative results were generated following the standard evaluation procedure with the soft-

ware provided by the authors. For discrete score evaluation, the detections that has over 0.50

IoU with annotations are counted as true positive. Since the groundtruth faces are labelled

using ellipses, we also fitted ellipses to our bounding boxes for fair comparison. However,

the faces were labelled using ellipses, whereas our method outputs square bounding boxes. In

order to match the ground truth format, the square detection outputs were extended 20% verti-

cally towards the top of image. Then for each upright rectangle, an ellipse was approximated
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by setting the centre of ellipse, the length of major and minor axes, to the centre, height and

width of rectangle respectively. The angle of major axis with the horizontal axis was set to a

constant (π/2).

Table 5.4 shows the discrete metrics of individual stages of the proposed method using

minimal face sizes of 36×36 and 48×48. Over 96% of hypotheses were eliminated, but rea-

sonable recall rate was achieved by ElmNet at the first stage, which ensures deeper network can

be computed effectively in the following cascade without overwhelming computational cost.

The results of different stages shows that higher resolution and hierarchical feature abstraction

are the key to build discriminative models. We also compared proposed method with state-of-

the-art methods which are trained on the same dataset. The discrete ROC curves are shown in

Fig. 5.6. DPM based methods, such as Yan et al. [174] and HeadHunter [175] are leading the

performance, mainly because the variations of facial parts are relatively small, thus detecting

facial parts are more robust than detecting face as a whole. Especially, HeadHunter [175] re-

ports the optimal results that obtained through comprehensive studies on training strategies and

parameter settings. However, DPM methods require training part detectors, and searching opti-

mal configuration, which make building the detector a laborious, time-consuming task, and are

known to be much slower than cascade based methods. ACF-Multiscale [153] method aggre-

gates multiple features, such as colour, gradient, local histogram, into a rich representation, and

then trains multiple soft cascade with depth-2 decision tree for different views. It shows that

combining multiple models and features outperforms a single model. The computational cost

of aggregating feature channels is considerably more. Significantly, Koestinger [161] shows

that without rich features, the performance of multi-view based method drops by a significant

margin. In addition, sophisticated post-processing is required to combine the multiple detection

outputs given by detectors of different views. The proposed method requires no model aggre-

gation. The features are self-learnt through training, and it outperforms the traditional methods

which use the cascade framework such as NPDFace [176]. Also image retrieval based meth-

ods suffer from efficiency issue much more severely. For example, to process an image of

size 1480×986 with minimal face size 80×80, Boosted Exemplar [157], and XZJY [156] take

900ms and 33000ms receptively, whereas our methods only takes 153ms using a non-optimised

Matlab implementation.

Qualitative results on the FDDB dataset are shown in Figs. 5.7, 5.8, and 5.9. Red and blue

ellipses represent groundtruth and true positives, whereas yellow and green ellipses represent
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false positives and false negatives respectively. Fig. 5.7 illustrates some examples of typical

detection results with large pose and facial expression variations, blurring, and severe occlusion

and clutter. Fig. 5.8 shows some examples of false positives and false negatives. The false

positives are usually observed at the region that contains partial face, and false negatives are

mainly caused by severe blurring and faces in small scale. Fig. 5.9 shows some interesting

detections in yellow, which are counted as false positives since there are no annotations to

match. However, they are in fact correct detections.

Figure 5.6: ROC curves of the proposed detector and recent methods on FDDB database with
the discrete score metric.)

5.3.2.3 Evaluation on AFW Dataset

We quantitatively evaluated our face detector on another face detection benchmark, namely

Annotated Face in the Wild (AFW) [177] that contains 205 images, and 468 annotated faces.

97.43% recall rate was achieved by our face detector, which is slightly lower than CNN-
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Figure 5.7: Typical detection results on FDDB dataset (red: ground truth, blue: true positive).

Table 5.4: Recall rate and number of false positives of individual detection stage of the pro-
posed method on FDDB dataset.

Stages
36×36 minimal face 48×48 minimal face

Dis. Recall #FP Dis. Recall #FP
Hypothesis 95.16% 17843K 91.94% 16033K

ElmNet 90.17% 471K 87.16% 314K
S1-LocNet 88.05% 114K 83.52% 64K
S2-LocNet 85.48% 42K 81.63% 28K
S3-LocNet 83.10% 23K 79.37% 16K

Soft-LocNets 88.74% 117K 85.84% 78K
DetNet 82.38% 723 80.89% 450
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Figure 5.8: Examples of false positives and false negatives on FDDB dataset (red: ground
truth, blue: true positive, yellow: false positive, green: false negatives).

Figure 5.9: Examples of correct detections but counted as false positives (red: ground truth,
blue: true positive, yellow: false positive).

Cascade [155] (97.97%, +0.54%), but outperforms other state of the art methods, such as

DPM [158] (97.21%, -0.22%,), HeadHunter [175] (97.14%, -0.29%), Structured Models [178]

(95.19%, -2.24%), Shen et al. [156] (89.03%, -8.4%), and TSM [177] (87.99%, -9.44%). Qual-

itative results are shown in Fig. 5.10, where square detection bounding boxes were used to

match the original annotations.

5.3.2.4 Evaluation on CMU-MIT & GENKI Datasets

The proposed method was also evaluated on two early face detection benchmarks, CMU-MIT

face dataset [179], and GENKI database [180]. Several examples of typical detection results

are presented in Figs. 5.11 and 5.12. CMU-MIT dataset contains a total of 511 faces from
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Figure 5.10: Examples of qualitative results on AFW dataset. (green: ground truth, blue:
detection results of the proposed method).

130 grey-scale images. The top right image in Fig. 5.11 shows that our method is able to

tolerate rotation variance, and there are only one false negative and two false positives in the

top right image. Current release of GENKI database contains two subsets, where GENKI-

4K subset contains 4,000 images, and GENKI-SZSL subset contains 3,500 images. Some

detection examples with different poses and facial expressions are shown in Fig. 5.12.

5.3.2.5 Detection Speed

The proposed detector was implemented and evaluated on Matlab 2016 using two different

GPUs, GeForce GTX TITAN X (Maxwell) and Quadro K2000, which have 3,072 CUDA cores

with 12GiB memory and 384 CUDA cores with 2GiB memory respectively. Table 5.5 shows

the running speed of individual stages. It can be observed that TITAN X outperforms K2000

as more CUDA cores and GPU memory are available. The computation time increases as the

complexity of the model increases. To processes one 640×480 VGA image with the size of

minimum face of 80×80, our method takes 40.1ms using CPU only, whereas [155] takes 71ms

on average.

We proposed an efficient multi-stage cascade method that is well suited for binary detection

problems, where the number of positive samples is significantly smaller than negative samples.

Instead of resorting to deep structures that are time consuming and laborious to train, the pro-
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Figure 5.11: Examples of qualitative results on CMU-MIT dataset.

Figure 5.12: Examples of qualitative results on GENKI database.

Table 5.5: Speed of individual stage (hypotheses/second)

ElmNet LocNet DetNet
TITAN Maxwell 102,380 ± 4,964 71,844 ± 574 17,599 ± 99

Quadro K2000 61,112 ± 2799 22,988 ± 415 2,383 ± 9
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posed nested shallow CNN-cascade overcomes these difficulties by solving three sub-problems

from easy to hard using models from weak to strong. In addition, a nested soft cascade is in-

troduced to compensate the loss of recall when multiple classifiers are used to reject a large

amount of negatives. The proposed method was evaluated on three datasets including FDDB

and AFW. Quantitative and qualitative results show promising performances on detecting face

in unconstrained environment with much improved efficiency compared to state of the art.

5.4 Detection-Regression Cascade

The performance of the soft-cascade method is bounded by two major factors. First, the fea-

sibility of mining discriminative features is limited by the depth and architecture of the CNN

that is used. Second, we found that there are some false positive detections which are very

closed to the true positive. However, due to the IoU being lower than 0.5, they are counted as

negatives. Feature aggregation and multi-resolution strategies were proved to be the efficient

schemes for visual recognition tasks with hand-crafted features [153, 181]. In this section, we

show that introducing such strategies into CNN architecture design also helps improving the

accuracy of the challenging face detection problem. The proposed Multi-Resolution Feature

Aggregation (MRFA) face detector embeds a fast elimination stage, and two verification stages

into a cascade framework. A large amount of easy background patches from the whole hypoth-

esis set generated by sliding window are eliminated at the very early stage using a shallow but

fast net at a coarse scale. To precisely locate the face region, verification nets are designed with

feature aggregation at multi-resolution via average pooling and channel-wise feature concate-

nation. The face-nonface binary decision is first made by the detection classifier, and then for

all positive predictions, a regression procedure is applied to refine the locations, aspect ratios

of major and minor axes, and angles of output bounding boxes.

5.4.1 Proposed Method

Fig. 5.13 shows the basic flowchart of the proposed MRFA face detector. It consists of two

main phases: fast elimination, and precise verification. Window patches are firstly generated

by densely scanning the input image at multiple scales using sliding windows. The majority of

window patches are quickly eliminated as background by an ElmNet using a patch resolution

of 12×12. Then, all retained candidates from ElmNet are verified by two VefNets using a patch
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resolution of 48×48. At the end of cascade, the detection branch outputs the binary classifica-

tion of face-nonface decision with confidence scores, meanwhile the regression branch refines

the bounding box location by determining the optimal face center, angle, and aspect ratio. The

final detections are obtained via removing redundant detections with a 2-step NMS.

Figure 5.13: The pipeline of the proposed MRFA detector.

5.4.1.1 Sliding Window Elimination Net

A large amount of patch candidates are generated by the sliding window method. The ElmNet

proposed in Section 5.3 are reused as fast elimination classifier, where a batch normalisation

layer and a drop-out layer are added to regularise the training process for current method.

Table 5.6 and Fig. 5.14 provide the details of the architecture for ElmNet with a batch nor-

malisation layer and a drop-out layer. Since there is no hierarchical feature extraction within

ElmNet, the discriminative power is limited. In order to retain most positive windows for the

following stage, a high recall rate can be achieved by shifting the decision boundary of Softmax

layer towards zero. For example, using a minimal face size of 48×48, 91.12% recall can be

achieved on FDDB dataset by shifting the decision boundary to 0.01. Compared to the original

ElmNet (87.16%), the regularised ElmNet has a higher recall rate.

5.4.1.2 Multi-Task Verification Net

A multi-task VefNet is designed to precisely locate face regions by verifying retained face

candidates at a higher image resolution of 48×48. Table 5.7 and Fig. 5.15 provide the details

of the architecture, where VefNet is divided into 4 main blocks.

Block 1 consists of 3 average pooling branches which use three filters (1× 1, 3× 3, and

5× 5 respectively) with no spatial down-sampling. Three pooling branches joint together via
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Table 5.6: The network architecture of ElmNet with a batch normalisation and a drop-out
regularisations for fast elimination.

No Type Parameter
0 Input 12x12x3 images scaled to [0,1]
1 Conv. 16 3x3 filters with stride 1
2 BNorm. ε = 0.0001
3 ReLU Rectified linear unit
4 Max Pool 3x3 filter with stride 2
5 Dropout 0.20 dropout rate
6 F.C. Fully connected with 16 outputs
7 F.C. Fully connected with 2 outputs
8 Softmax Softmax probability for binary classes

Figure 5.14: Network architecture of ElmNet with batch normalisation and drop-out regulari-
sations.

concatenating the outputs across channels. In contrast to traditional multi-scale methods that

construct Gaussian pyramid as network input, such structure embeds a simple average blurring

scheme into network itself, which greatly helps the later computational blocks to identify scale-

invariant features.

Block 2 extracts the first level of visual features via sequentially passing the multi-resolution

images through a convolutional layer, a batch normalisation layer, a ReLU non-linear transform

layer, and a max pooling layer. In order to gain high speed efficiency, we aggressively reduce

the spatial resolution by setting the strides of convolutional layer and max pooling layer both to

2. Batch normalisation layer is inserted between convolutional layers and ReLU layers (same

for other blocks) to enforce regularisation to internal co-variate shift caused by weight updates
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during back-prop. Inspired by GoogLeNet [182], a simplified inception module which contains

three feature extraction branches, is used to generalise discriminative power further.

Each branch in Block 3 starts with a dimensionality reduction module with a 1× 1 con-

volutional layers which removes redundant feature channels, and improves computational ef-

ficiency. Block 3.b and 3.c consist of two 3× 3, and one 5× 5 feature extraction modules

respectively. It is worth noting that although a 5× 5 filters has the same reception field as

two consecutive 3× 3 filters, the later could generalise even deeper structures. The outputs

of three branches in Block 3 are concatenated across channels, and then followed by an av-

erage pooling layer to reduce the spatial resolution. Yang et al. [153] shows that aggregating

hand-crafted features improves the detection accuracy. In our method Block 3 embeds such

multi-level feature interfusion into a learnable framework.

Block 4 contains two fully connected objective branches, detection branch and bounding

box regression branch (top row and bottom row of Block 4 in Fig. 5.15 respectively). Previ-

ous blocks are trained with detection branch using Softmax loss, whereas regression branch

is trained using smooth `1 loss. Binary classification is carried out by the detection branch

without shifting the decision boundary at the last stage.

As the face candidates are generated by sliding window, the optimal locations of faces may

not be in the hypothesis set. The detection performance can be further boosted by refining

the locations of output bounding boxes. The regression target is a quintuple defined by two

coordinates of face center offset to top left corner, lengths of major and minor axes with respect

to the size of bounding box, and the angle of major axis with vertical axis. A positive value

of face angle indicates an anti-clock rotation with respect to vertical axis. The bounding box

calibration procedure only applies to the positive response given by detection branch. Then

a 2-step NMS is followed to remove redundancies. For the detections at the same scale, we

iteratively select the detection with highest confidence score and remove the detections that has

the IoU ratio larger than 0.50 with selected window. For the detections at different scales, the

redundancies can be found by measuring the Intersection over Minimum (IoM) ratio, where

the threshold is set to 0.75. The first step removes the redundant detections that are spatially

offset to the correct location, and the second step enables removing redundancies in scale.
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Table 5.7: The network architecture of multi-task VefNet for face detection and bounding box
regression.

BK. No Type Parameter
0 Input 48x48x3 images to [0,1]

1

1.1 Ave. Pool 1 1x1 filter with stride 1
1.2 Ave. Pool 3 3x3 filter with stride 1
1.3 Ave. Pool 5 5x5 filter with stride 1
1.4 Concat. Concat. 2.1, 2.2, 2.3

2

2.1 Conv. 96 3x3 filter with stride 2
2.2 BNorm. ε = 0.0001
2.3 ReLU Rectified linear unit
2.4 Max Pool 3x3 filter with stride 2

3.a
3.a.1 Conv. 32 1x1 filter with stride 1
3.a.2 BNorm. ε = 0.0001
3.a.3 ReLU Rectified linear unit

3.b

3.b1.1 Conv. 32 1x1 filter with stride 1
3.b1.2 BNorm. ε = 0.0001
3.b1.3 ReLU Rectified linear unit
3.b2.1 Conv. 48 3x3 filter with stride 1
3.b2.2 BNorm. ε = 0.0001
3.b2.3 ReLU Rectified linear unit
3.b3.1 Conv. 48 3x3 filter with stride 1
3.b3.2 BNorm. ε = 0.0001
3.b3.3 ReLU Rectified linear unit

3.c

3.c1.1 Conv. 24 1x1 filter with stride 1
3.c1.2 BNorm. ε = 0.0001
3.c1.3 ReLU Rectified linear unit
3.c2.1 Conv. 32 5x5 filter with stride 1
3.c2.2 BNorm. ε = 0.0001
3.c2.3 ReLU Rectified linear unit

3.d
3.d.1 Concat. Concat. outputs of 3.a-3.c
3.d.2 Ave. Pool 2x2 filter with stride 2

4.c

4.d.1 Dropout 0.20 dropout rate
4.d.2 F.C. with 256 outputs
4.d.3 F.C. with 2 outputs
4.d.4 Softmax Binary classification

4.r

4.r.1 Dropout 0.20 dropout rate
4.r.2 F.C. with 256 outputs
4.r.3 F.C. with 5 outputs
4.r.4 Smooth `1 Bounding box regression
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Figure 5.15: Network architecture of VefNet.
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5.4.2 Experiment and Discussion

5.4.2.1 Detector Training

The Annotated Facial Landmarks in the Wild (AFLW) [172] dataset was used to train the face

detector. To train ElmNet, non-face samples were cropped randomly from negative images, and

then resized to 12×12. The negative-positive ratio of ElmNet was set to 10:1. With cascading

set-up, the negative samples for training the detection branch of VefNet were the residuals (false

positives) generated by densely scanning the negative image set using previous stages. Since a

large number of negative samples were generated by shifting the decision boundary of ElmNet

to 0.01, in order to keep the negative-positive ratio of VefNet under 5:1, additional positive

samples were added by randomly blurring the original face images. The maximum sigma

value for Gaussian blurring was set to 2. The networks were trained using MatConvNet [183].

The number of epoch was set to 50, and a size of mini-batch was 128, and momentum of 0.9

were used. The learning rate gradually drops from 1e−2 to 1e−5. Regression branch of VefNet

was trained independently, and it converges in 2 epochs.

5.4.2.2 Evaluation on FDDB

The proposed face detector was quantitatively evaluated on the FDDB [173] dataset. The quan-

titative results were generated following the standard evaluation procedure with the software

provided by the authors. For discrete score evaluation, detections with over 0.50 IoU with an-

notations are counted as true positive. Since the ground truth faces are labeled using ellipses,

for fair comparison, we also fitted ellipses to our bounding boxes given the outputs of regres-

sion branch of VefNet. Table 5.8 shows the discrete metrics of individual stages of the proposed

method using minimal face sizes of 36×36 and 48×48. Over 90% of hypotheses were elimi-

nated, but reasonable recall rate was achieved by ElmNet at the first stage, which ensures deeper

network can be computed effectively in the following cascade without overwhelming computa-

tional cost. The results of different stages show that higher resolution and hierarchical feature

abstraction are the key to build discriminative models. At the last stage of cascade, majority of

retained hypotheses are distributed around the face regions. A simple bounding box regression

is used in the proposed method, which helps to tie those hypotheses together, and then NMS

retains the ones with highest confidence scores while removing the redundancies. We also

compared proposed method with state-of-the-art representative methods which are evaluated
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on the same dataset. Table 5.9 shows the comparison of discrete and continuous detection rates

given the number of false positives, and the discrete ROC curves are shown in Fig. 5.16. DPM

based methods, Faceness [154] is leading the performance, mainly because the variations of

facial parts are relatively small, thus detecting facial parts are more robust than detecting face

as a whole. However, DPM methods require training part detectors, and searching optimal con-

figuration, which makes building the detector a laborious, time-consuming task, and are known

to be much slower than cascade based methods. CasCNN [155] refines the bounding boxes be-

tween each stage, and then re-fetches the image patches for the next stage. Such procedure

does improve both discrete and continuous scores, however it is non-trivial. Our method only

applies simple location calibration at the last stage, and no re-fetching is required. Compared

to Deep Dense Face Detector (DDFD) where a deeper structure is used, the proposed MRFA

achieved higher True Positive (TP) rate after 100 false positives, and outperformed it by a sig-

nificant margin (6.9% higher) at 500 false positives. ACF-Multiscale [153] method aggregates

multiple features, such as colour, gradient, local histogram, into a rich representation, and then

trains multiple soft cascade with depth-2 decision tree for different views. It shows that com-

bining multiple models and features outperforms a single model. The computational cost of

aggregating feature channels is considerably more expensive. Significantly, Koestinger [161]

shows that without rich features, the performance of multi-view based method drops by a sig-

nificant margin. In addition, sophisticated post-processing is required to combine the multiple

detection outputs given by detectors of different views. The proposed method embeds fea-

ture aggregation and multi-resolution strategies into the network architecture. The features are

self-learned through training, and it outperforms the traditional methods which use the cascade

framework, and hand-crafted features, such as NPDFace [176], ACF-Multiscale [153], and

Koestinger [161]. For image retrieval based methods, such as Boosted Exemplar [157], they

generally have higher recall rate compared to those traditional methods, however, our method

outperformed [157] it in all aspects. Those methods also suffer from severe efficiency issues.

For example, to process an image of size 1480×986 with minimal face size 80×80, Boosted

Exemplar [157] takes 900ms, whereas our methods only requires 537ms using a non-optimised

Matlab implementation.

Qualitative results on the FDDB dataset are shown in Figs. 5.17, 5.18, and 5.19. Red and

blue ellipses represent ground truth and true positives, whereas yellow and green ellipses rep-

resent false positives and false negatives respectively. Fig. 5.17 illustrates some examples of
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Table 5.8: Recall rate and number of false positives of individual detection stage of the pro-
posed method on FDDB dataset.

Stages
36×36 mini face 48×48 mini face

Dis. TP #FP Dis. TP #FP
Hypotheses N.A. 30.42M N.A. 15.43M

ElmNet 94.64% 2.69M 91.12% 1.39M
VefNet S1 90.99% 76.52K 88.70% 58.97K
VefNet S2 85.34% 6140 83.56% 5873

Reg. & NMS 86.09% 246 83.93% 186

Table 5.9: Comparison of detection rates (%) with both discrete and continuous metrics on
FDDB.

Discrete Metric
FP=25 FP=50 FP=100 FP=500

Proposed MRFA 75.22 78.92 82.77 87.89
Faceness [154] 85.81 86.87 87.64 89.38
CasCNN [155] 81.26 83.48 85.07 N.A.
DDFD [84] 75.40 79.23 80.99 83.40
BoostedExampler [157] 74.14 77.66 80.82 83.89
NPDFace [176] 74.53 76.50 77.97 80.89
ACF-Multiscale [153] 78.21 80.00 81.65 84.45
Koestinger [161] 36.34 47.22 57.03 69.70

Continuous Metric
FP=25 FP=50 FP=100 FP=500

Proposed MRFA 59.46 62.27 65.13 68.85
Faceness [154] 68.18 69.01 69.70 71.38
CasCNN [155] 63.49 65.11 66.29 N.A.
DDFD [84] 60.38 63.12 64.45 66.41
BoostedExampler [157] 52.14 54.64 56.87 59.20
NPDFace [176] 55.54 56.96 58.04 60.25
ACF-Multiscale [153] 57.90 59.20 60.43 62.49
Koestinger [161] 25.96 33.65 40.55 49.49
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Figure 5.16: ROC curves of the proposed detector and recent methods on FDDB with the
discrete score metric.)

typical detection results with large pose and facial expression variations, blurring, and severe

occlusion and clutter. Fig. 5.18 shows some examples of false positives and false negatives.

The false positives are usually observed at the region that contains partial face, and false neg-

atives are mainly caused by severe blurring and faces in small scale. Fig. 5.19 shows some

interesting detections in yellow, which are counted as false positives since there are no annota-

tions to match. However, they are in fact correct detections.

5.4.2.3 Evaluation on CMU-MIT & GENKI

The proposed method was also evaluated on CMU-MIT [179], and GENKI [180]. Fig. 5.20

shows some typical detection results on CMU-MIT and GENKI datasets, in (a) and (b) respec-

tively. In Fig. 5.20(a), there is no false positive observed, and the only false negative can be

found is in the right bottom, at the edge of the image, mainly because more than half of the face
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Figure 5.17: Typical detection results on FDDB dataset (red: ground truth, blue: true positive).

Figure 5.18: Examples of false positives and false negatives on FDDB dataset (red: ground
truth, blue: true positive, yellow: false positive, green: false negatives).

Figure 5.19: Examples of correct detections but counted as false positives (red: ground truth,
blue: true positive, yellow: false positive).
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is occluded. In Fig. 5.20(b), we show that the proposed method is able to tolerate exaggerated

facial expressions.

5.4.2.4 Computational Efficiency

The proposed detector was implemented and evaluated on MatConvNet Matlab 2016 version

using GeForce GTX TITAN X (Maxwell), which has 3,072 CUDA cores with 12GiB memory.

Table 5.10 shows the training and testing speed, and corresponding GPU load for individual

stage. The training and testing speeds of regression branch are negligible, since it shares the

feature computational blocks with detection branches. The computation time increases as the

complexity of the model increases. However, the GPU is not fully loaded, and detection speed

can be further boosted via parallelization and optimizing execution order of individual branches

in VefNet.

Table 5.10: Speed (samples/second) and GPU load (usage percentage and memory consump-
tion) of individual stages.

ElmNet VefNet

Train Speed 13,602 ± 286 2578 ± 22 %
Train GPU Load 24%, 469Mib 40%, 717MiB

Test Speed 193,060 ± 19,153 872 ± 156
Test GPU Load 7%, 497Mib 52%, 4,040Mib

We proposed an efficient multi-stage cascade method that is well suited for binary detec-

tion problems, where the number of positive samples is significantly smaller than negative

samples. Instead of resorting to deep structures that are time consuming and laborious to train,

the proposed MRFA overcomes these difficulties by embedding multi-resolution and feature

aggregation into shallow networks. Considering computational efficiency, it combines fast

elimination and precise verification into a cascade framework. The proposed method was eval-

uated on three datasets including FDDB. Quantitative and qualitative results show promising

performances on detecting face in unconstrained environment with much improved efficiency

while introducing multi-resolution feature aggregation into the network architecture.
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(a)

(b)

Figure 5.20: Examples of qualitative results on CMU-MIT and GENKI datasets, showing in
(a) and (b) respectively.
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5.5 Summary

Face detection in the wild is a challenging vision problem due to large variations and unpre-

dictable ambiguities which commonly exist in real world images. Whilst introducing powerful

but complex models is often computationally inefficient, using hand-crafted features is also

problematic. Some recent works on adapting pre-trained large scale recognition models to face

detection problem often requires excessive resource expenditure. In this chapter, we proposed

two CNN based cascade detection methods to overcome the difficulties that are introduced by

the human face detection problems under an unconstrained environment.

In section 5.3, we propose a nested CNN-cascade learning algorithm that adopts shallow

neural network architectures that allow efficient and progressive elimination of negative hy-

potheses from easy to hard via self-learning discriminative representations from coarse to fine

scales. The face detection problem is considered as solving three sub-problems: eliminating

easy background with a simple but fast model, then localising the face region with a soft-

cascade, followed by precise detection and localisation by verifying retained regions with a

deeper and stronger model. The face detectors are trained on the AFLW dataset following

the standard evaluation procedure, and the method is tested on four other public datasets, i.e.

FDDB, AFW, CMU-MIT and GENKI. Both quantitative and qualitative results on FDDB and

AFW are reported, which show promising performances on detecting faces in unconstrained

environment.

Feature aggregation and multi-resolution are two efficient strategies for traditional visual

recognition methods. In section 5.4, we show that such strategies can be integrated into the ar-

chitecture design of CNN via average pooling and channel-wise feature concatenation. Shallow

networks with feature aggregation at multi-resolution enables the traditional cascade frame-

work to tackle the challenging detection problems efficiently. The proposed method is tested

on three public benchmarks with across dataset evaluation. Both quantitative and qualita-

tive results show promising performance improvements on detecting faces in unconstrained

environment. It leverages recent advances in CNNs for efficient face detection, where deep

structure and large scale model adapting that require excessive resources, such as training data

and time on both pre-trained and adapted models, are avoided. Our proposed solution is not

overwhelmed by the model complexity.
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Chapter 6

Conclusion and Future Work
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6.1 Conclusion

In this thesis, we have investigated the feasibility of applying adaptive learning to both medical

image analysis and generic computer vision problems, more specifically, medical image seg-

mentation and face detection. For medical image segmentation, we tried to fill the knowledge

gap between computer scientists and experienced radiologists via introducing semi-automatic

segmentation schemes. The adaptive learning leads to an interactive image segmentation meth-

ods where the user’s interpretation of image and intermediate result can be progressively in-

tegrated via learning an incremental classification model, or fine-tuning existed model. In

addition, adaptive learning can also lead to a problem subdivision scheme, where a difficult

classification problem can divided into several simple sub-problems that can be solved adap-

tively using a set of weaker classifiers. The final solution can then be found via combining

individual sub-solvers in a cascade fashion. In this thesis, we have shown that both schemes

that derived from adaptive learning strategies are efficient to address coronary artery and aorta

segmentation problems, and the face detection problem. The main contributions are summa-

rized as follows.

• An interactive segmentation method with minimal elastic user input. This robust
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method was developed for use in segmenting the coronary artery from CTA volumetric

image. We first proposed a multi-scale vessel feature based on the eigen system of the

Hessian matrix, where an effective classifier can be built. An initial vessel classification

is given by a RF classifier which is trained on a few user strokes: the foreground stroke

labels the coronary artery and the background stroke indicates the other tissues. Based

on the label population in the leaf nodes of the randomised decision trees, we formulated

the final segmentation as an MRF based optimisation with local consistency constraints.

Promising segmentation results were achieved with just a few user strokes.

• Feature awareness adaptive learning for complex anatomy segmentation. This ro-

bust method was developed for use in segmenting aorta arch and root from CTA volu-

metric images. A cascade detector was proposed to efficiently delinearate the foreground

objects and background regions. It consists of an intensity-based Naive-Bayesian classi-

fier for fast elimination, and a pseudo-3D CNN classifier for precise classification. The

representative features for region-based detection are automatically learnt in a super-

vised fashion together with the decision boundary for binary classification, hence, no

hand-feature-crafting is needed. Adaptive learning and localised refining strategies were

introduced which further improve the detection result and boosts the accuracy with help

of user intervention.

• Topology awareness implicit shape representation and deformation. We presented

a novel parametric implicit representation method that blends the level set of a shape

using locally supported B-spline patches. The control knots are placed according to

the complexity density that is estimated using wavelet coefficient. It is able to adapt

according to the local topology, where highly curved regions are blended using more

compact patches to avoid over-smoothing or adding unnecessary knots. We also derived

the formulation of shape deformation based on regional data support that can then be

used to impose the piecewise constant for segmentation purpose.

• Depth adaptive CNN cascade detection. We proposed an adaptive cascade scheme

that the depth of CNN model is progressively increased with the increase of stages.

Nested soft decision method, feature aggregation via average pooling and channel-wise

feature concatenation, and multi-task training schemes for CNN-based cascade were

investigated which have proved to be effective to boost the detection accuracy.
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• Prototype of integrated segmentation platform, SVMIST. We developed a segmenta-

tion platform which contains the following essential functionalities: image dataset man-

agement, 3D viewing, volumetric rendering, and interactive labelling. The coronary

segmentation method proposed in this thesis has been integrated into SVMIST. In ad-

dition, it is also an practical software for data labelling, for example, the segmentation

ground-truth for aorta segmentation was labelled using SVMIST.

6.2 Future Work

There are three key areas which we believe this work can be built upon.

• Dataset: At the time of this work, we had a relatively limited medical dataset to evaluate

our proposed methods. We had 36 labelled CTA volumes for evaluating aorta segmen-

tation method, whereas there is no labelled data to carry out quantitative evaluation for

coronary artery segmentation method due to small size and poor connectivity. Labelling

medical data requires related background knowledge and clinical experience, and it is

also very time consuming. The labelling process generally involves identifying the lo-

cations of pathological changes, labelling the ROI with opened or closed contours, and

then assigning with semantic annotation, where cross validation is required to ensure

the labelling quality. The process of labelling a 3D volumetric data is often performed

in a slice by slice fashion, sometimes it has to be applied on multiple separated views

independently. Hence, large labelled 3D medical datasets are very rare and not readily

available for researchers in general. Fortunately, the situation is improving due to the

joint effort of computer scientists and radiologists. For example, the grand challenges

hosted by two well-known medical imaging communities, IEEE Signal Processing Soci-

ety (ISBI) and Medical Image Computing and Computer Assisted Intervention Society

(MICCAI) start to provide public access of biomedical images that are labelled by spe-

cialists, where the most of labelled datasets are 2D images. We would like to keep on

putting effort into data preparation for volumetric medical images, and sharing our re-

sources with the other researchers. There are still over 100 unlabelled CTA volumes that

can be used for both aorta and coronary artery segmentation studies. We are planing to

work closely with relevant clinical experts and radiologists to provide public access to

the labelled dataset in the future.
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• Improvement to Proposed Method: There are several potential improvement that can

be made to the proposed methods in this thesis.

– Efficient RF Training and Testing: In Chapter 3, the adaptive learner for voxel-wise

foreground-background classification is built on a completely re-trained RF in each

round of interaction. Although the speed difference between off-line RF and on-

line RF is negligible due to small amount of training data, it is worth investigating

on-line models that are more suitable for larger and higher dimensional dataset.

The testing speed is the efficiency bottle neck of proposed method. In addition

to on-line training strategy, feature ranking, importance selection and tree prun-

ing could be potential ways to increase the overall speed efficiency, as the model

complexity can be further reduced by removing the weak feature and unnecessary

branches.

– End-to-End Cascade Training: Cascade classifier was used in Chapter 4 and Chap-

ter 5, which subdivide a big and difficult problem into a set of smaller and simpler

sub-problems. Then, the solution to the original problem can be found via combin-

ing individual solvers of sub-problems consecutively to form a cascade classifier.

However, training a cascade classifier is a non-trivial task, where the training data

for current stage is the residues retained from previous stage. Hence, any modifi-

cation to previous stage will lead to the rest of stages needing to be re-trained. An

end-to-end learning method is required to avoid unnecessary intermediate manual

training adjustment. There are a couple of strategies that we are going to investigate

the feasible of end-to-end training method for cascade classifier, such as instance

training weighting and multiple-pass training data generation.

– Shape Prior Regularisation: Shape prior as an image segmentation regularisation

has been widely studied, and proved to be efficient for anatomy specified segmen-

tation. In Chapter 4, the proposed NU-IBS is feasible to cooperate with shape prior

regularisation, and formulate it into a joint energy minimisation function. Given

sufficient labelled data for certain anatomy, the shape prior can be learnt in the pa-

rameter space using the proposed implicit representation, where the regularisation

can be imposed directly as a likelihood of statistical distribution on NU-IBS pa-

rameters. We would expect a promising accuracy boost for an anatomy specified

segmentation task.
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– Implicit Shape Manipulation: The proposed NU-IBS was used to represent the

geometrical structure of target object, where the region based deformation was de-

rived based on level set PDE and Chan-Vese model. We believe that the interaction

interface between proposed segmentation method and user can be further extended

to geometry manipulation, for example level set surface editing operator [184], and

Laplacian surface editing method [185].

• System: Our plans for further development are to aim to integrate both proposed medical

image segmentation methods into our platform software, SVMIST, that can be delivered

to radiologist and clinician to carry out realistic studies. Speed efficiency is the major

issue of current machine learning based method for 3D volumetric data segmentation,

where the methods generally involve voxel-wise feature extraction and prediction. Com-

pared to 2D image, the number of hypotheses of a volumetric data are huge, hence,

real-time interaction on a large size 3D scan is extremely challenging. Parallel imple-

mentation with dedicated hardware architecture could be a promising solution, especially

for random forests and CNN based methods that are very suitable to be parallelised on

both CPU and GPU. In addition, there are many standard but effective segmentation

algorithms and functionalities need to be integrated, such as geometrical measurement,

rich annotation tools, and standardised labelling output format. Fig. 6.1 shows the new

interface of SVMIST that uses a cross-platform GUI library, QT.
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Figure 6.1: The new interface of SVMIST that uses a cross-platform GUI library, QT.
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