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Abstract—We present an approach to detecting and localizing defects in random color textures which requires only a few defect free

samples for unsupervised training. It is assumed that each image is generated by a superposition of various-size image patches with

added variations at each pixel position. These image patches and their corresponding variances are referred to here as textural

exemplars or texems. Mixture models are applied to obtain the texems using multiscale analysis to reduce the computational costs.

Novelty detection on color texture surfaces is performed by examining the same-source similarity based on the data likelihood in

multiscale, followed by logical processes to combine the defect candidates to localize defects. The proposed method is compared

against a Gabor filter bank-based novelty detection method. Also, we compare different texem generalization schemes for defect

detection in terms of accuracy and efficiency.

Index Terms—Defect detection, texture analysis, texem model, mixture model, EM algorithm.

Ç

1 INTRODUCTION

VISUAL surface inspection tasks are concerned with
identifying regions that deviate from defect-free samples

according to certain criteria, e.g., pattern regularity or color.
Machine vision techniques are now regularly used in
detecting such defects or imperfections on a variety of
surfaces, such as textile, ceramics tiles, wood, steel, silicon
wafers, paper, meat, leather, and even curved surfaces, e.g.,
[1], [2], [3], [4], [5]. Generally, this detection process should be
viewed as different to texture segmentation, which is
concerned with splitting an image into homogeneous
regions. Neither the defect-free regions nor the defective
regions have to be texturally uniform. For example, a surface
may contain totally different types of defects which are likely
to have different textural properties. On the other hand, a
defect-free sample should be processed without the need to
perform “segmentation,” no matter how irregular and
unstationary the texture is. Defect localization should also
be viewed differently from image classification. It involves
classifying the surfaces, not just globally, but going further to
localize the defective regions. Moreover, in visual inspection,
all the defective surfaces are usually considered as a single
class, defect class, as it is a positive verification process.
However, those defective samples are likely to form multiple
classes in terms of surface properties and would need to be
further categorized in a conventional classification approach.

Some materials display complex patterns but appear

visually regular on a larger scale, e.g., textile, steel, or wafer.

Methods such as co-occurrence matrices, template-based

methods, and Fourier-domain analysis have proven useful in
detecting defects on materials that exhibit a high degree of
regularity and periodicity. For example, filter bank-based
approaches, particularly Gabor filters [3], [4], have been
applied due to their ability to analyze texture by achieving
optimal joint localization in the spatial and frequency
domains. Randen and Husøy [6] present a thorough com-
parative review of texture analysis using filtering techniques.
For materials that display complex, random appearance
patterns, such as marble slabs or printed ceramic tiles,
detecting subtle local defects turnsout to be rather difficult [7].

However, the supremacy of filter bank-based methods for
texture analysis have been challenged by several authors. For
instance, in [8], Varma and Zisserman argued that a large
variety of signals (e.g., textures) can be analyzed by just
looking at small neighborhoods. They used 7� 7 patches to
generate a texton-based representation and achieved better
performance than the filtering-based methods they com-
pared against. Their results demonstrated that textures with
global structures can be discriminated by examining the
distribution of local measurements. This is a key factor in the
approach in this paper. In [9], Ojala et al. also advocated the
use of local neighborhood processing in the shape of local
binary patterns (LBP) as texture descriptors. These generate a
binary code that characterizes the local texture pattern by
thresholding a neighborhood by the gray value of its center.
Other works based on local pixel neighborhoods are those
which apply Markov Random Field models. For example, in
[1], Cohen et al. used Gaussian Markov Random Fields
(GMRF) to model defect free textile web. The inspection
process was treated as a hypothesis testing problem on the
statistics derived from the GMRF model. The testing image
was partitioned into nonoverlapping subblocks, where each
window was then classified as defective or nondefective.

Recently, in [10], Jojic et al. defined the epitome as a
miniature, condensed version of an image containing the
constitutive elements of its shape and textural properties
needed to reconstruct the image. The epitome also relies on
“raw” pixel values to characterize textural and color
properties rather than popular filtering responses. An
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image is defined by its epitome and a smooth, hidden

mapping from the epitome to its image pixels.
Inspired by the success of nonfiltering local neighborhood

approaches and the work in [10], in this paper, we propose a

new approach to detecting and localizing defects on random

textured surfaces. We generate texture exemplars, referred to

as texems, by exploring mixture model representations of

patches of texture using different formulations, one for gray-

level textures and one for color textures.
Some defect types are unpredictable and occur only

during production. Due to limited time and resources in a

factory environment, it is difficult to collect a wide range of

defective samples which is an essential step for a more

traditional classification-based approach requiring a sig-

nificant training stage, such as neural networks. Here, we

propose the texem model as a suitable tool in texture defect

inspection within a novelty detection framework. To ensure

computational efficiency, we also extend the proposed

method into a multiscale framework. We evaluate texems

using a ceramic tile defect detection application and texture

collages created from VisTex textures [11].
In Section 3, the proposed method is presented, includ-

ing the two different EM-based generations of the texture

exemplars, different extensions from gray-level image

analysis to color image analysis, the multiscale approach,

and the novelty detection stage. Experimental results are

given in Section 4. Section 5 concludes the paper.

2 MOTIVATION AND FOUNDATIONS

In an application such as ceramic tile production, the images
under inspection may appear different from one surface to
another due to the random texture patterns involved.
However, the visual impression of the same product line
remains consistent. In other words, there exist textural
primitives that impose consistency within the product line.
Fig. 1 shows three example tile images from the same class (or
production run) decorated with a marble texture. Each tile
has different features on its surface, but they all still exhibit a
consistent visual impression. One may collect enough
samples to cover the range of variations and this approach
has been widely used in texture classification and defect
detection, e.g., for textile defects in [12]. It usually requires a
large number of nondefective samples and lengthy training
stages; not necessarily practical in a factory environment.
Additionally, defects are usually unpredictable.

Instead of the traditional classification approach, we learn,
in an unsupervized fashion, textural primitive information
from a very small number of training samples. We name the
representations texture exemplars or texems. They occur at
various sizes and encapsulate the texture or visual primitives
of a given image. Similar to the work in [10], we consider that
each surface texture is produced by putting together a certain
number of subimage patches of various sizes, possibly
overlapped. As the images of the same (tile) product contain
the same textural elements, one image can be generated from
the patches extracted from other images. Thus, for a few given
samples we can easily obtain a large number of patches of
various sizes (which can, in turn, generate a large set of new
images with the same visual impression). However, it is
computationally prohibitive to perform defect detection
based on such a large number of patches. Also, the patches
themselves contain lots of redundant information. We can
reduce the number of patches by learning a relatively small
number of primitive representatives, i.e., texems. In this
paper, we use mixture models to learn the texems. Fig. 2
illustrates the generalization of texems.

The texem model is similar to the well-known texton
model only in the sense that both try to characterize textural
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Fig. 1. Example marble tiles from the same family whose patterns are

different but visually consistent.

Fig. 2. An illustration of the two-layer structure of the texem model and its bottom-up learning procedure. Images I are split into patches Z, from
which texems M are learned. The images can, in turn, be generated from superposition of a selection of texems from M.



images by using microstructures. Textons were first formally
introduced by Julesz in [13] as fundamental image structures,
such as elongated blobs, bars, crosses, and terminators, and
were considered as atoms of preattentive human visual
perception. Zhu et al. [14] used a three-layer generative model
to describe textons. An image, as the first layer, was
considered as a superposition of a number of image bases in
the second layer, such as Laplacian of Gaussians and Gabors,
selected from an overcomplete dictionary. These image bases
were generated by a smaller number of texton elements,
selected from a dictionary of textons, as the third layer in the
model. Although also in a three layer structure, Leung and
Malik [15] adopted a discriminative model, where an image
was deterministically transformed by filtering through a
bank of Gaussian filters at different orientations, scales, and
phases. The central clusters, via K-means clustering, of these
filter response vectors from every pixel position were
considered as textons. Our proposed method is significantly
different from the texton model in that 1) it relies directly on
subimage patches instead of using base functions, and 2) it is
an implicit, rather than an explicit, representation of
primitives. Selection of the base functions is important in
the texton model in order to obtain meaningful textons.
However, the design of a bank of base functions is nontrivial
and likely to be application dependent. Enormous efforts
have been carried out in explicitly extracting visual primi-
tives (textons), such as blobs. They generally face the
difficulty of finding optimum representation, e.g., the
window size (for example see [8]). In the proposed model,
each texem is an encapsulation of texture primitive(s).
Texems are implicit representations, which makes them
more flexible as they come at different sizes and may contain
multiple texture primitives, while textons are explicit
representations each of which tries to describe a fundamental
visual or textural structure. In other words, a texem may
contain partial texton or multiple textons. For example, if the
texem size reduces to a single pixel, it becomes histogram
analysis. If it is the same size as the input images, then the
problem turns into image template analysis. In general, each
of our texems may contain multiple textural primitives which
describes a group of image patches. This implicit representa-
tion at various sizes avoids the difficulties of explicitly
finding the best primitive representation. Not using base
functions also makes our work more convenient to deal with
multispectral images, e.g., color images.

Notably, there are a few texton-based works which
directly use “raw” pixel values to extract textural primi-
tives, e.g., K-means clustering as used in [8], or Trans-
formed Component Analysis in a vectorized patch space
[14]. However, the proposed two-layer generative texem
model, utilizing Gaussian mixture modeling, is more
advantageous in quantitatively measuring the data similar-
ity. It is also worth noting the importance of using
multiscale or various size of patches in learning textural
primitives, besides its simplicity. As shown by [8], patch
size selection played an important role in their image
classification. We advocate multiscale analysis to alleviate
the difficulties associated with scale selection.

The epitome can be used to generalize multiple images,
while preserving textural details against oversmoothing [10].
We could condense the large number of patches extracted
from tile images into an epitomic representation of the whole
family. However, as the mappings between the epitome and
the training images are hidden and the mappings from the

testing images cannot be possibly obtained as a priori
knowledge, we would need to consider all possible mappings
from the epitome at both the training and testing stages,
which involves the examination of different patch sizes at
each pixel location in the epitome. Although the epitome is
much smaller than the original image, it is still much larger
than the patches themselves. Hence, it will be computation-
ally very expensive to perform defect detection directly based
on the epitome. Thus, rather than forcing the textural
properties to be condensed into a single epitome, we learn
multiple epitomic-like representations that generalize the
family of texture images without using any implicit map-
pings. The large number of patches at various sizes can then
be described using a very small number of representatives
with explicit pixel position correspondence.

3 THE TEXEM MODEL

In this section, we propose a two-layer generative model (see
Fig. 2), in which an image as the first layer is assumed to be
generated by superposition of a small number of image
patches of various sizes from the second layer with added
Gaussian noise at each pixel position. Here, we formally
define each texem as a mean image patch associated with a
corresponding variance which controls the variation of this
particular texem. The form of the variance can vary according
to learning schemes. The generation process can be naturally
modeled by mixture models with a bottom-up procedure.

Next, we detail the process of extracting texems from a
single sample image with each texem containing some of
the overall textural primitive information. We shall use two
different mixture models. The first is for gray-level images
in which we vectorize the image patches and apply a
Gaussian mixture model to obtain the texems. In the
second, color textures are represented by texems using a
mixture model learned based on joint Gaussian distribu-
tions within local neighborhoods. This extension of texem to
color analysis is examined against other alternatives based
on channel separation. We also introduce a multiscale
texem representation to drastically reduce the overall
computational effort. Finally, we show how to automati-
cally set data likelihood bounds on defect-free samples and
perform localized defect detection using texems.

3.1 Gray-Level Texems

For gray-level images, we use a Gaussian mixture model to
obtain the texems in a simple and efficient manner [16]. The
original image I is broken down into a set of P patches
Z ¼ fZigPi¼1, each containing pixels from a subset of image
coordinates. The shape of the patches can be arbitrary, but
in this study we used square patches of size d ¼ N �N . The
patches may overlap and can be of various sizes, e.g., as
small as 5� 5 to as large as required (however, for large
window sizes, one should ensure there are enough samples
to populate the feature space). We group the patches of
sample images into clusters, depending on the patch size,
and describe the clusters using the Gaussian mixture model.
Here, each texem, denoted as m, is defined by a mean, ��,
and a corresponding covariance matrix, !!, i.e., m ¼ f��; !!g.
We assume that there exist K texems, MM¼ fmkgKk¼1,
K � P , for image I such that each patch in Z can be
generated from a texem m.
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To learn these texems, theP patches are projected into a set
of high dimensionality spaces. The number of these spaces is
determined by the number of different patch sizes and their
dimensions are defined by the corresponding value of d. Each
pixel position contributes one coordinate of a space. Each
point in a space corresponds to a patch in Z. Then, each texem
represents a class of patches in the corresponding space. We
assume that each class is a multivariate Gaussian distribution
with mean��k and covariance matrix!!k, which corresponds to
mk in the patch domain. Thus, given the kth texem the
probability of patch Zi is computed as

pðZijmk;  Þ ¼ N ðZi;��k; !!kÞ; ð1Þ

where  ¼ f��k; ��k; !!kg
K
k¼1 is the parameter set containing

��k, which is the prior probability of kth texem constrained
by
PK

k¼1 ��k ¼ 1, the mean ��k, and the covariance matrix !!k.
Since all the texems mk are unknown, we need to compute
the density function of Z given the parameter set  by
applying the definition of conditional probability and
summing over k for Zi,

pðZij Þ ¼
XK
k¼1

pðZijmk;  Þ��k; ð2Þ

and then optimizing the data log-likelihood expression of
the entire set Z, given by

log pðZjK; Þ ¼
XP
i¼1

log
XK
k¼1

pðZijmk;  Þ��k

 !
: ð3Þ

Hence, the objective is to estimate the parameter set for a
given number of texems. EM can be used to find the
maximum-likelihood estimate of our mixture density para-
meters from the given data set Z. That is to find  ̂, where

 ̂ ¼ arg max logðLð jZÞÞ ¼ arg max
 

log pðZjK; Þ: ð4Þ

Then, the two steps of the EM stage are as follows: The
E-step involves a soft assignment of each patch Zi to texems,
MM, with an initial guess of the true parameters,  . This
initialization can be set randomly (although we use K-means
to compute a simple estimate with K set as the number of
texems to be learned). We denote the intermediate parameters
as ðtÞ, where t is the iteration step. The likelihood ofkth texem
given the patch Zi may then be computed using Bayes’ rule

pðmkjZi;  
ðtÞÞ ¼ pðZijmk;  

ðtÞÞ��kPK
k¼1 pðZijmk;  ðtÞÞ��k

: ð5Þ

The M-step then updates the parameters by maximizing the
log-likelihood, resulting in new estimates

�̂�k ¼
1

P

XP
i¼1

pðmkjZi;  
ðtÞÞ;

�̂�k ¼
PP

i¼1 ZipðmkjZi;  
ðtÞÞPP

i¼1 pðmkjZi;  ðtÞÞ
;

!̂!k ¼
PP

i¼1ðZi � �̂�kÞðZi � �̂�kÞ
T pðmkjZi;  

ðtÞÞPP
i¼1 pðmkjZi;  ðtÞÞ

:

ð6Þ

The E-step and M-step are iterated until the estimations
stabilize. Then, the texems can be easily obtained by

projecting the learned means and covariance matrices back
to the patch representation space.

Later, in Sections 3.3 to 3.5, we describe how texems are
implemented in a multiscale framework and the results
from the different multiscale levels are consolidated into a
single defect map.

3.2 Color Texems

Surface inspection tasks are often adequately dealt with
using gray-level images. However, due to increasing
processing power and the availability of relatively inexpen-
sive color cameras, there are good prospects for more
accurate visual inspection using color when appropriate.
Furthermore, some defects are chromatic defects by nature,
so the use of color then becomes of paramount importance.

Visual inspection using random color texture analysis is
nevertheless still largely underdeveloped in the literature
and only a limited number of works have been reported so far.
In [7] and [17], the authors performed color clustering,
followed by binarized spatial pixel distribution analysis to
identify textural defects in color ceramic tile images. The color
clustering and binarization in the spatial domain partially
took into account both spatial and spectral interactions.
Mäenpää et al. [18] measured color percentiles based on the
accumulated histogram in each RGB channel as chromatic
features and co-occurrence matrices and LBP features as
textural features to inspect wood surfaces. In [5], the authors
used similar features as [18], but performed self-organizing
map-based clustering for wood surface inspection. Recently,
Tsai et al. [19] transformed color images into theL�a�b� space
to derive hue and chroma channels in each of which they
performed Gabor filtering. The authors argued that their
application processing images in these two chromatic
channels only could be resilient to illumination changes
assuming that defects are chromatically differentiable.

In this section, we explore different schemes to extend
gray-level texems to color images with differing computa-
tional complexity and rate of accuracy.

3.2.1 Texem Analysis in Separate Channels

More often than not, color texture analysis is treated as a
simple dimensional extension of techniques designed for
gray-level images and, so, color images are decomposed
into separate channels to perform the same processes. For
example, in [20], Lumbreras et al. decomposed each RGB
channel using wavelet analysis to sort ceramic tiles based
on color and texture characteristics.

Thus, if we are willing to sacrifice some information, we
can learn gray-level texems in each RGB channel of an image.
However, this gives rise to difficulties in capturing both the
interchannel and spatial properties of the texture. Special care
is usually necessary, e.g., in [21], opponent features that
capture the interaction between color channels are enhanced
with spatial features from individual channels to represent
color textures. Alternatively, we can decorrelate the image
channels using Principal Component Analysis (PCA) and
then perform texems analysis in each independent channel
separately. We prefer this approach and use it to compare
against our full color texem model introduced later.

As the patterns on each image within the same texture
family can still be different, the individually derived principal
components can also differ from one image to another.
Furthermore, defective regions can affect the principal
components resulting in different eigenspace responses from
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different training samples. Thus, instead of performing PCA
on each training image separately, a single eigenspace is
generated from several training images. This results in a
reference eigenspace in which defect-free samples are
represented. Then, all new, previously unseen images under
inspection will be projected onto this eigenspace such that the
transformed channels share the same principal components.

Let ci ¼ ½ri; gi; bi�T be a color pixel, C ¼ fci 2 R3; i ¼
1; 2; . . . ; qg be the set of q three-dimensional vectors made
up of the pixels from several defect-free samples, and �c ¼
1
q

P
c2C c be the mean vector of C. Then, PCA is performed

on the mean-centered color feature matrix C to obtain the
eigenvectors E ¼ ½e1; e2; e3�, ej 2 R3. Singular Value Decom-
position can be used to obtain these principal components.
The color feature space determined by these eigenvectors is
referred to as the reference eigenspace ��c;E , where the color
features are well represented. The tile images are then
projected onto this reference eigenspace

C0 ¼ PCA���!ðC;��c;EÞ ¼ ET ðC� �cJ1;qÞ; ð7Þ

where J1;q is a 1� q unit matrix consisting of all 1s. Fig. 3
shows a comparison of direct RGB channel separation and
PCA-based channel separation. The eigenchannels clearly
are more differentiating.

Once we obtain the reference eigenspace, ��c;E , defect
detection and localization are then performed in each of the
three corresponding channels by examining the local
context using the gray-level texem model described earlier
in Section 3.1 (more details can be found in [22]).

3.2.2 Full Color Model

By decomposing the color image and analyzing image
channels individually, the interchannel and intrachannel
spatial interactions are not taken into account. To facilitate
such interactions, we use a different formulation for texem
representation and consequently change the inference
procedure so that no vectorization of image patches is

required and color images do not need to be transformed into
separate channels. Contrary to the way gray-level texems
were developed, where each texem was represented by a
single multivariate Gaussian function, for color texems we
assume that pixels are statistically independent in each
texem with Gaussian distribution at each pixel position in the
texem. This is similar to the way the image epitome is
generated by Jojic et al. [10]. Thus, the probability of patch Zi

given the kth texem can be formulated as a joint probability at
each pixel position, i.e.,

pðZij�kÞ ¼ pðZij��k; !!kÞ ¼
Y
j2S
NðZj;i;��j;k; !!j;kÞ; ð8Þ

where �k denotes the kth texem’s parameters with mean ��k
and variance !!k, S is the pixel patch grid, NðZj;i;��j;k; !!j;kÞ is
a Gaussian distribution over Zj;i and ��j;k and !!j;k denote
mean and covariance matrix at the jth pixel position in the
kth texem. For our mixture model, similar to (2) but using
the component probability function as given in (8), we
assume the following probabilistic model

pðZij�Þ ¼
XK
k¼1

pðZij�kÞ��k; ð9Þ

where the parameters are � ¼ f��k; �kgKk¼1 and can be
determined by optimizing the data log-likelihood given by

log pðZjK;�Þ ¼
XP
i¼1

log
XK
k¼1

pðZijmk; �kÞ��k

 !
: ð10Þ

The EM technique can be used again to find the maximum-
likelihood estimate

�̂ ¼ arg max logðLð�jZÞÞ ¼ arg max
�

log pðZjK;�Þ: ð11Þ

The new estimates, denoted by �̂�k, �̂�k, and !̂!k, are updated
during the EM iterations

�̂�k ¼
1

P

XP
i¼1

pðmkjZi;�
ðtÞÞ;

�̂�k ¼ f�̂�j;kgj2S;
!̂!k ¼ f!̂!j;kgj2S;

�̂�j;k ¼
PP

i¼1 Zj;ipðmkjZi;�
ðtÞÞPP

i¼1 pðmkjZi;�ðtÞÞ
;

!̂!j;k ¼
PP

i¼1ðZj;i � �̂�j;kÞðZj;i � �̂�j;kÞ
T pðmkjZi;�

ðtÞÞPP
i¼1 pðmkjZi;�ðtÞÞ

;

ð12Þ

where

pðmkjZi;�
ðtÞÞ ¼ pðZijmk;�

ðtÞÞ��kPK
k¼1 pðZijmk;�ðtÞÞ��k

: ð13Þ

The iteration continues till the values stabilize. Various sizes
of texems can be used and they can overlap to ensure they
capture sufficient textural characteristics. We can see that
when the texem reduces to a single pixel size, (12) becomes
Gaussian mixture modeling based on pixel colors.

Fig. 4 illustrates six 9� 9 texems extracted from one of
the images shown in Fig. 1. They are arranged according to
their descending order of priors ��k. We may treat each prior,
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Fig. 3. Channel separation—first row: Original collage image; second
row: individual RGB channels; third row: eigenchannel images.



��k, as a measurement of the contribution from each texem.
The image then can be viewed as a superposition of various
sizes of image patches taken from the means of the texems,
a linear combination, with added variations at each pixel
position governed by the corresponding variances.

3.3 Multiscale Texems

In order to capture sufficient textural properties, texems can
be from as small as 3� 3 to larger sizes such as 20� 20.
However, the dimension of the space patches Z are
transformed into will increase dramatically as the dimension
of the patch size d increases. This means that a very large
number of samples and high-computational costs are needed
in order to accurately estimate the probability density
functions in very high-dimensional spaces, [23], forcing the
procurement of a large number of training samples.

Instead of generating variable-size texems, fixed-size
texems can be learned in multiscale. This will result in
(multiscale) texems with a small size, e.g., 5� 5. Besides
computational efficiency, exploiting information at multi-
scale offers other advantages over single-scale approaches.
Characterizing a pixel based on local neighborhood pixels
can be more effectively achieved by examining various
neighborhood relationships. The corresponding neighbor-
hood at coarser scale obviously offers larger spatial interac-
tions. Also, processing at multiscale ensures the capture of
the optimal resolution, which is often data dependent. A
simple multiscale approach by using a Gaussian pyramid is
found sufficient.

Let us denote IðnÞ as the nth level image of the pyramid,
ZðnÞ as all the image patches extracted from IðnÞ, l as the total
number of levels, and S# as the down-sampling operator. We
then have

Iðnþ1Þ ¼ S#G�ðIðnÞÞ; 8n; n ¼ 1; 2; . . . ; l� 1; ð14Þ

where G� denotes the Gaussian convolution. The finest scale
layer is the original image, Ið1Þ ¼ I. We then extract multiscale
texems from the image pyramid using the method presented
in the previous section. Similarly, let mðnÞ denote thenth level
of multiscale texems and �ðnÞ the parameters associated at the
same level, which will then be used for novelty detection at
the corresponding level of the pyramid.

During the EM process, the stabilized estimation of a
coarser level is used as the initial estimation for the finer
level, i.e.,

�̂ðn;t¼0Þ ¼ �ðnþ1Þ; ð15Þ

which helps speed up the convergence and achieve a more
accurate estimation.

3.4 Unsupervized Training

Novelty detection frees the application from having to
provide a portfolio of defects within a supervized training
stage. In fact, for our example, application of randomly
textured color ceramic tiles, texems lend themselves well to
performing unsupervized training and testing for novelty
detection. This is achieved by automatically determining
the threshold of statistical texture variation of defect-free
samples at each resolution level.

For training, a small number of defect free samples (e.g.,
4 or 5 only) are arranged within the multiscale framework,
i.e., each image is presented as a pyramid in the multiscale
fashion as denoted in (14) and patches with the same texem
size are extracted. The probability of a patch Z

ðnÞ
i belonging

to texems in the corresponding nth scale is

pðZðnÞi j�ðnÞÞ ¼
XKðnÞ
k¼1

pðZðnÞi jm
ðnÞ
k ;�ðnÞÞ��ðnÞk ; ð16Þ

where �ðnÞ represents the parameter set for level n, m
ðnÞ
k is

the kth texem at the nth image pyramid level and
pðZðnÞi jm

ðnÞ
k ;�ðnÞÞ is a product of Gaussian distributions

shown in (9) with parameters associated to texem set MM.
Based on this probability function, we then define a novelty
score function as the negative log-likelihood

VðZðnÞi j�ðnÞÞ ¼ � log pðZðnÞi j�ðnÞÞ: ð17Þ

The lower the novelty score, the more likely the patch
belongs to the same family and vice versa. Thus, it can be
viewed as a same source similarity measurement. The
distribution of the scores for all the patches ZðnÞ at level n of
the pyramid forms a 1D novelty score space which is not
necessarily a simple Gaussian distribution. In order to find
the upper bound of the novelty score space of defect-free
patches (or the lower bound of data likelihood), K-means
clustering is performed in this space to approximately model
the space. The cluster with the maximum mean is the
component of the novelty score distribution at the boundary
between good and defective textures. This component is
characterized by mean uðnÞ and standard deviation �ðnÞ. This
K-means scheme replaces the single Gaussian distribution
assumption in the novelty score space, which is commonly
adopted in a parametric classifier in novelty detection, e.g.,
[24] and for which the correct parameter selection is critical.
Instead, dividing the novelty score space and finding the
critical component, here called the boundary component, can
effectively lower the parameter sensitivity. The value of K
should be generally small (we empirically fixed it at 5). It is
also notable that a single Gaussian classifier is a special case of
the above scheme, i.e., when K ¼ 1. The maximum novelty
score (or the minimum data likelihood), �ðnÞ of a patch Z

ðnÞ
i at

level n across the training images is then established as

�ðnÞ ¼ uðnÞ þ ��ðnÞ; ð18Þ

where � is a simple constant (� ¼ 2 in the experiments in
Section 4). This completes the training stage in which, with
only a few defect-free images, we determine the texems and
an automatic threshold for marking new image patches as
good or defective.
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Fig. 4. Six 9� 9 texems extracted from the images shown in Fig. 1. Top
row: The six means. Bottom row: Their corresponding variance images
(Images are enhanced for viewing purposes). Note each element in a
texem mean is a 3� 1 color vector, and each element in a texem
variance is a 3� 3 matrix characterizing the covariance in the color
space. Thus, for visualization purposes, each element in the variance
images is represented using total variance.



3.5 Novelty Detection and Defect Localization

In the testing stage, the image under inspection is again

layered into a multiscale framework and patches at each pixel
position x at each level n are examined against the learned

texems. The probability for each patch and its novelty score
are then computed using (16) and (17) and compared to the
maximum novelty score, determined by �ðnÞ, at the corre-

sponding level. Let QðnÞðxÞ be the novelty score map at the
nth resolution level. Then, the potential defect map, DðnÞðxÞ,
at level n is

DðnÞðxÞ ¼ 0 if QðnÞðxÞ � �ðnÞ

QðnÞðxÞ � �ðnÞ otherwise;

�
ð19Þ

DðnÞðxÞ indicates the probability of there being a defect.

Next, the information coming from all the resolution levels
must be consolidated to build the certainty of the defect at

position x. We follow a method described in [3] which
combines information from different levels of a multiscale
pyramid and reduces false alarms. It assumes that a defect

must appear in at least two adjacent resolution levels for it
to be certified as such. Using a logical AND, implemented
through the geometric mean of every pair of adjacent levels,

we initially obtain a set of combined maps as

Dðn;nþ1ÞðxÞ ¼ ½DðnÞðxÞDðnþ1ÞðxÞ�1=2: ð20Þ

Note each Dðnþ1ÞðxÞ is scaled up to be the same size as

DðnÞðxÞ. This operation reduces false alarms and yet
preserves most of the defective areas. Next, the resulting
Dð1;2ÞðxÞ;Dð2;3ÞðxÞ; . . . ;Dðl�1;lÞðxÞ maps are combined in a

logical OR, as the arithmetic mean, to provide

DðxÞ ¼ 1

l� 1

Xl�1

n¼1

Dðn;nþ1ÞðxÞ; ð21Þ

where DðxÞ is the final consolidated map of (the joint
contribution of) all the defects across all resolution scales of
the test image.

The multiscale, unsupervized training, and novelty
detection stages are applied in a similar fashion as
described above in the cases of gray-level and the full color

model texem methods. In the separate channel color
approaches (i.e., before and after decorrelation), the final

defective maps from each channel are ultimately combined.

4 EXPERIMENTAL RESULTS

In this section, several sets of experiments are presented.

Initially, the results of applying the proposed method to
detecting defects on ceramic tiles are given. We can not
compare and evaluate these localized defects against a

groundtruth since the defects in our data set are difficult to
localize by hand. However, whole tile classification rates,

based on overall “defective” and “defect-free” labeling by
factory-floor experts is presented. Moreover, in order to
evaluate the proposed method, we outline the result of our

experiments on texture collages made from textures in the
MIT VisTex texture database [11]. A comparative study of
three different approaches to texem analysis on color

images and a Gabor filter bank-based method is given.

4.1 Ceramic Tile Application

We applied the proposed full color texem model to a variety of
randomly textured tile data sets with different types of
defects including physical damage, pin holes, textural
imperfections, and many more. The 256� 256 test samples
were preprocessed to assure homogeneous luminance,
spatially and temporally.1 In the experiments, only five
defect-free samples were used to extract the texems and to
determine the upper bound of the novelty scores �ðnÞ. The
number of texems at each resolution level were empirically
set to 12 and the size of each texem was set to 5� 5 pixels.
The number of multiscale levels was l ¼ 4. These para-
meters were fixed throughout our experiments on varieties
of random texture tile prints.

Fig. 5 shows a random texture example with a defect in
the upper right region introduced by a printing problem.
The potentially defective regions detected at each resolution
level n, n ¼ 1; . . . ; 4, are marked on the corresponding
images in Fig. 5. It can be seen that the texems show good
sensitivity to the defective region at different scales. As the
resolution progresses from coarse to fine, additional
evidence for the defective region is gathered. The final
image shows the defect superimposed on the original
image. As mentioned earlier, the defect fusion process can
eliminate false alarms, e.g., see the extraneous false alarm
regions in levels n ¼ 1 and n ¼ 4 which disappear after the
operations in (20) and (21).

More examples of different random textures are shown
in Figs. 6 and 7. In each family of patterns, the textures are
varying but have the same visual impression. In each case,
the proposed method could find structural and chromatic
defects of various shapes and sizes.

Fig. 8 shows three examples when using gray-level texems.
Various defects, such as pin holes, bumps, dips, and print
errors, are successfully detected. Gray-level texems were
found adequate for most defect detection tasks where defects
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1. Template profile-based luminance correction was used to effectively
and efficiently compensate spatial and temporal luminance inhomogeneity
due to cosine-fourth fall-off, vignetting effect, dust interference, and other
nonlinear interferences in the image acquisition chain. The template profile
was obtained from a standard white surface with uniform reflectance. In
case of any abrupt changes in the imaging system, the profile was updated
after a certain time period, similar to [2].

Fig. 5. Localizing textural defects—from top left to bottom right: original

defective tile image, detected defective regions at different levels

n ¼ 1; 2; . . . ; 4, and the final defective region superimposed on the

original image.



were still reasonably visible after converting from color to
gray scale. However, color texems were found to be more
powerful in localizing defects and better discriminants in
cases involving chromatic defects. Two examples are com-
pared in Fig. 9. The first shows a tile image with a defective
region, which is not only slightly brighter but also less
saturated in blue. The color texem model achieved better

results in localizing the defect than the gray-level one. The
second row in Fig. 9 demonstrates a different type of defect
which clearly possesses a different hue from the background
texture. The color texems found more affected regions, more
accurately.

The full color texem model was tested on 1,018 tile samples
from 10 different families of tiles consisting of 561 defect-free
samples and 457 defective samples. It obtained a defect
detection accuracy rate of 91.1 percent, with sensitivity at
92.6 percent and specificity at 89.8 percent. The gray-level
texem method was tested on 1,512 gray-level tile images from
eight different families of tiles consisting of 453 defect-free
samples and 1,059 defective samples. It obtained an overall
accuracy rate of 92.7 percent, with sensitivity at 95.9 percent
specificity at 89.5 percent. We compare the performance of
gray-level and color texem models on the same dataset in the
next set of experiments.

As patches are extracted from each pixel position at each
resolution level, a typical training stage involves examining a
very large number of patches. For the gray-level texem model,
this takes around 7 minutes, on a 2.8GHz Pentium 4 Processor
running Linux with 1GB RAM, to learn the texems in
multiscale and to determine the thresholds for novelty
detection. The testing stage then requires around 12 seconds
to inspect one tile image. The full color texem model is
computationally more expensive and can be more than
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Fig. 6. Defect localization (same texture family)—first row: original

images; second row: superimposed defective regions on original

images, from left—print error, surface defect, and small bump.

Fig. 7. Defect localization (different textures)—The first row shows
example images from three different tile families with different chromato-
textural properties. Defects shown in the next row, from left to right,
include cracks, print error, and surface bumps. The third row shows
another three images from three different tile families, two in color and
one in gray-level. Defects shown in the last row, from left to right, include
print errors and missing print.

Fig. 8. Defect localization using gray-level texems: bump and pin holes,

dimps, and print error

Fig. 9. Defect localization comparison: left column—original texture with

print errors, left column—results using gray-level texems, right

column—results using color texems.



10 times slower. However, this can be reduced to the same
order as the gray-level version by performing window-based,
rather than pixel-based, examination at the training and
testing stages.

4.2 Evaluation Using VisTex Collages

To evaluate the accuracy of the proposed method, we

generated a set of 28 image collages (some are shown in

Fig. 10) from textures in the MIT VisTex database [11]. In each
case the background is the learned texture for which color

texems are generated and the foreground (disk, square,

triangle, and rhombus) is treated as the novelty to be detected.

Note this is not a texture segmentation exercise, but rather
defect segmentation. It should also be noted that the textures

used were selected to be particularly similar in nature

between the foreground and the background, e.g., see the

collages in the first or third columns of Fig. 10. The testing

results were quantified using specificity to show how
accurately defect-free samples were classified, sensitivity to

show how accurately defective samples were classified, and

accuracy as the correct classification rate of all samples. They

are defined as

spec: ¼ Nt\Ng

Ng
� 100%

sens: ¼ Pt\Pg
Pg
� 100%

accu: ¼ Nt\NgþPt\Pg
NgþPg � 100%;

8>>><
>>>: ð22Þ

where P is the number of defective samples, N is the
number of defect-free samples, and the subscripts t and g
denote the results by testing and groundtruth, respectively.
The foreground is set to occupy 50 percent of the whole

image to allow the sensitivity and specificity measures have
equal weights.

We compared channel separation-based gray-level tex-
ems for novelty detection on these color collage images. The
PCA-based decomposition showed a significant improve-
ment over correlated RGB channels with an overall
accuracy of 84.7 percent compared to 79.1 percent (see
Table 1). Gray-level texem analysis in image eigenchannels
appear to be a plausible approach to perform color analysis
with relatively economic computational complexity. How-
ever, the full color texem model, which modeled inter-
channel and intrachannel interactions simultaneously,
further improved the performance with an overall detection
accuracy of 90.9 percent, with 91.2 percent sensitivity and
90.6 percent specificity. Example segmentations (without
any postprocessing) using gray-level texems in RGB
channels, in eigenchannels, and color texems are shown in
the third, fourth, and last row of Fig. 10, respectively.

We also compared the proposed method against a Gabor
filtering-based novelty detection method [3] and a nonfilter-
ing method using LBPs [9]. The LBP coefficients were
extracted from each RGB color band. The estimation of the
range of coefficient distributions for defect-free samples and
the novelty detection procedures were the same as that
described in Section 3.5. We found that LBP performs very
poorly, but a more sophisticated classifier may improve the
performance. Gabor filters have been widely used in defect
detection, see [3], [4] as typical examples. The work by Escofet
et al. [3], referred to here as Escofet’s method, is the most
comparable to ours, as it is 1) performed in a novelty detection
framework and 2) uses the same defect fusion scheme across
the scales. Thus, following Escofet’s method to perform
novelty detection on the synthetic image collages, the images
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Fig. 10. Collage samples made up of materials such as foods, fabric, sand, metal, water, and novelty detection results (without any postprocessing).

Rows from top: original collage images, Escofet et al.’s method [3], gray-level texems directly in RGB channels, gray-level texems in PCA

decorrelated RGB eigenchannels, and full color texem model.



were filtered through a set of 16 Gabor filters, comprising four
orientations and four scales. The texture features were
extracted from filtering responses. Feature distributions of
defect-free samples were then used for novelty detection. The
same logical process was used to combine defect candidates
across the scales. An overall detection accuracy of 71.5 percent
was obtained by Escofet’s method; a result significantly lower
than the proposed method (see Table 1). Example results are
shown in the second row of Fig. 10. Again, a more
complicated and traditional classification scheme and more
finely tuned parameters may improve Escofet’s Gabor filter-
based performance; however, the training stage and the
detection process will inevitably become lengthier and more
difficult to control. This demonstrates the good general-
ization and yet good discriminant abilities of texems.

There are two important parameters in the texem model,
the size of texems and the number of the texems. In theory,
the size of the texems is arbitrary. Thus, it can easily cover
all the necessary spatial frequency range. However, for the
sake of computational simplicity, a window size of 5� 5 or
7� 7 across all scales generally suffices. The number of
texems can be automatically determined using model order
selection methods, such as MDL, though they are usually
computationally expensive. We used 12 texems in each
scale for over 1,000 tile images and collages and found
reasonable, consistent performance for novelty detection.

5 CONCLUSIONS

We presented an automatic defect detection and localiza-
tion algorithm for randomly textured surfaces. The pro-
posed method only trained on a small number of defect-free

samples with the aid of novel texture exemplars, i.e.,

texems, which contain primitive textural information of a

given image or set of images. We demonstrated their

derivation for gray-level and color images using two

different mixture models and applied them within a novelty

detection framework to localize defects on new images.

While we present this work with respect to ceramic tiles, the

proposed method should be suitable to other flat textured

surfaces, such as textiles, where defect detection can be

viewed as texture abnormality detection.
In terms of industrial inspection as an application area,

the computational needs of the method are somewhat

demanding for a real-time factory installation, however,

they are not far off. We shall investigate various avenues,

including dedicated hardware and software, to achieve a

rate of around 1-2 (tile) surfaces per second which is an

acceptable tile industry norm.
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