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Abstract

] Aortic valve disorder is one of the common diseases affecting elderly people. To
provide visual assessment and improve success of surgical treatment, a segmentation
technique equipped with a reliable statistical shape model is required. This in turn
requires reliable dense correspondences establishment. This paper develops a reliable
3D registration technique targeting aortic region. Given a few easily identifiable land-
mark correspondences, our technique obtains a much denser set of point correspondences
across a set of 3D aortic sources meshes to the target mesh. We proposes to use geodesic
interpolation, a new mesh based similarity metric, and a two-stage local transformation
to develop a better registration technique for 3D aortic meshes. It results in better corre-
spondences compared to existing work, shows an average Hausdorff distance of 3.65mm
and point-to-mesh distance of 0.41mm. Visual comparison is also provided to assess the

quality of the point correspondences.

1 Introduction

Aortic valve disorder is one of the valvular heart diseases common among elderly people
affecting 3% of global population. Lots of the cases of aortic diseases often require sur-
gical treatment. A non-invasive segmentation technique, which is capable to segment and
visualise the 3D aortic valve and root region from volumetric medical images, is essential
to patient pre-selection, planning and post-evaluation of surgical result. The development of
such a non-invasive segmentation technique is challenging because of the wide difference in
the shapes of 3D aortic regions among patients. Most literatures use statistical shape mod-
els (SSM) to provide prior knowledge to constraint the possible shape space trained from
training samples. To build a SSM, a set of segmentation of training 3D shapes, and their
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corresponding landmarks surface points are required. Manually segment and label all corre-
spondences across all training 3D shapes is a time-consuming and tedious process. Here, we
try to develop a semi-automatic technique for obtaining a good set of point correspondences.

A number of approaches to find correspondences in anatomical shapes have been pro-
posed, many of which work directly on the meshes themselves. These include [1, 2, 7, 8].
However, most of these techniques establishes only a set of sparse correspondences. Our ob-
servation is that this is useful to characterise the regions of shapes close to these landmarks
correspondences, but not those that are far away. These often lead to an SSM that inade-
quately describes the difference among the shapes. This is particular true for 3D aortic data
where only a few landmarks can be easily identified. Our ideas in this paper is to obtain a
denser set of corresponding landmarks through (a) interpolation by geodesic distances, (b) a
new mesh based similarity metric two-stage local transformation following the earlier work
of [2]. As demonstrated in our experiment, our technique can find point correspondences
among aortic shapes better than [2].

2 Method

This section describes how to find a dense set of landmark correspondences across a set of
triangular training meshes. A target mesh M; = (V;, E;, F;) with |V;| = n vertices is selected
from the mesh set, and the remaining meshes are regarded as the source meshes. Assume
there is a source mesh My = (V;, E;, Fy) where |V| = p, and n # p, and m manually labelled
corresponding landmark points on both meshes such that P, C V; and P; C V, where m << n,
the problem now is to find a complete set of n vertex correspondences on the source mesh
M;. Our method obtains a set of source vertices Qs C V; that are correspondent with V;.

Our method is similar to that of Frangi er al. [2]: 1) estimates a global affine trans-
formation through the manually labelled landmark correspondences, and aligns all meshes
into a natural coordinate system; 2) estimates local non-rigid transformation through free-
form-deformation (FFD) and aligns the source meshes to target; 3) finds a complete set of
correspondences by nearest neighbour search. Our work innovates in three ways: a) be-
fore applying global transformation, we interpolate a denser set of correspondences through
geodesic interpolation; b) instead of using image-based similarity metric [2], we define a
mesh-based similarity metric instead; c) we employ a coarse-to-fine strategy to define our
two-stage local transformation.

2.1 Input and Geodesic interpolation

Each aortic root mesh was labelled with 10 corresponding landmark points. Three of these
were aortic valve hinge points; the first of which was the nearest to the aortic arch, with
the remaining two labelled in a clockwise fashion. Three commissure points were labelled
between the hinges, with the first commissure point between hinges 1 and 2, and the remain-
ing labelled in a clockwise fashion. Three points were labelled on the sinotubular junction,
directly below the three hinge points. The first of which was below the first hinge point, with
the remaining two once again labelled in a clockwise fashion. Finally, a centre point was
labelled on the surface at the centre of the root (see Figure 1 (left)).

Using the 10 landmarks, a denser set of corresponding landmarks were found using an
interpolation approach. Pairs of landmark points were defined and the surface paths be-
tween them were determined using Dijkstra’s shortest path algorithm. Fifteen paths were
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Figure 1: Initial landmark labelling. (left) Initial sparse landmark points showing the hinges
(red), commissures (green), and sinotubular junction points (blue); (middle) Interpolation
paths between pairs of initial landmarks; (right) New landmarks after path interpolation.

determined in all; six between the hinge points and their nearest commissure points, three
between the hinge points and the centre point, three between the hinge points and their cor-
responding sinotubular junction points, and three between the sinotubular junction points. 5
evenly spaced points were then interpolated along each path, leaving a total of 65 landmark
points. Figure 1 (middle) shows the interpolation paths and (right) the new landmark points.

2.2 Transformation Estimation

Let T'(x,y,z) be the transformation that deforms mesh M so that T : M — M. It consists of
a global affine transformation, followed by two local transformations.

T(x,y,2) = T (x,3,2) + [T, (%,3,2) + T2 (x,,2)] (1)

The global transformation 7, accounts for the global alignment between the source M, and
target M; meshes. Similar to [2], we estimate an affine transformation using the denser set
of landmark points to align P to P (results from Section 2.1).

To allow a more flexible matching between the source and target meshes, a local transfor-
mation 7; is also estimated based on B-spline FFD. Our approach estimates 7; in two separate
stages; a coarser transformation 7;,, followed by a finer transformation 7;,. For both cases,
the FFDs themselves are also estimated using a multi-resolutional procedure TIH , where H is
the number of mesh resolutions [2, 5, 6].

H(x,y,2) ZT, X,,2) )

At each mesh resolution 4, the voxel lattice is warped by moving a set of voxel lattice
control points q)lf’ ik of size [n, x ny x n;], and an FFD is estimated [3, 4]. These control points
act as parametefs of the B-spline FFD. If & is the original control point spacing, then at each
resolution £, the spacing is defined as §, = 8/2". Decreasing & decreases the flexibility of
the spline, whereas increasing & allows a more local deformation. The FFD is defined as

3 3
Tlh(xaya Z) = Z Z Z Bl(u)Bm(V)Bn (W)¢i}-l&-l,j+m,k+n 3)

where B; represents the /th basis function of the cubic B-spline [3, 4], and i = |x/n,| — 1, j=

Ly/ny| =1 k= |z/n] =1, u=x/ny— |x/n|, v=y/ny = y/ny]. and w = z/n. — |z/n.]. The
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B-spline parameters (szlj,k are optimised using gradient descent with the objective function
E(¢) = E,(target, source) + AE,(T;), where E, is a smoothness cost and A is a regularisation
term. Eg, is a similarity metric based on the sum-of-squared-distance (SSD) measure between
sets of mesh vertices. The transformations are applied sequentially. First 7;, is estimated and
applied to M to get M. Tj, is then estimated and applied to M, to get M} .

Differs from existing approach, we apply the above FFD transformation in a two-stage
process through 7;, and Tj,. T;, is a coarser transformation than 7;,. The intuition is that the
first local transformation 7;, provides a better alignment between the overall structure of the
two meshes. Once the meshes are aligned, a local transformation 7;, with a higher resolution
is used. This alleviates over-fitting problem, avoids sharp peaks or troughs in the surface of
the meshes, while reduces the chance of edge overlapping.

Two factors contribute to making 7;, a coarser transformation than 7;,. The first is the
similarity metric calculation. For T;, this is estimated from the SSD between the sparse
landmarks Py and F;. The similarity metric for 7;, however is based on the SSD between all
vertices in V; and V;. The other factor is the control point spacing &, during FFD estimation.
T;, has spacing of &,, and 7, has spacing of &,, where &, > &,. For our estimation
of 7;, we decided to use H; = 3 mesh resolutions, and an initial control point spacing of
0 = 15mm. A relatively large 8y was selected here as to suppress the amount of local
deformation as the FFD was estimated using the sparse set of corresponding landmarks.
H = 3 was also used for the estimation of 7;,, however here we decided to use 8o = 5mm in
order to capture a more local deformation by giving the FFD more degrees of freedom.

2.3 Finding Complete Correspondence

Once the source has been deformed to M. and properly aligned to M;, establishing point
correspondences between two similar shapes becomes simpler. We apply simple nearest
neighbour algorithm to find complete point correspondences. For every vertex in V;, the
nearest neighbour based on Euclidean distance is found in V. The nearest neighbour in V,’
is considered the corresponding vertex, and this leads to a new set of re-ordered deformed
source vertices /. Finally, the inverse local transformation (7}, +7,) ! is applied to Q) to
get the complete source correspondences Qg in the natural coordinate system.

3 Results

An experiment was conducted using 37 aortic root meshes, where each mesh was used as
the target in a leave-one-out fashion. The aortic root, including the ascending aorta and
aortic arch were labelled in CT TAVI images, of size [512 x 512 x (500 — 800)], and voxel
size was [0.48mm x 0.48mm x 0.62mm]. In order to ensure that the hinges were clearly
seen, multi-planar-rotation software was used during image labelling. This was followed
by the marching-cubes algorithm for mesh generation, and the 10 landmarks (3 hinges, 3
commissures, 3 sinotubular junction points and a root centre point) were manually labelled.
The ascending aorta and aortic arch were then discarded from the meshes below the plane
on which the 3 sinotubular junction points lay. The average local mesh size was [34.46 +
5.56mm x 34.19 £ 4.04mm x 24.02 £+ 3.98mm).

Registration of source to target was evaluated using the mean symmetrical Hausdorff
distance Hy;s, and mean point-to-mesh distance E pmy;; between M, and M}'. The results
were Hy;; = 3.65+ 1.19mm and E pmy;; = 0.41 +0.25mm. This represents a mean distance
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Figure 2: Deformation comparison. (a) source meshes; (b) target meshes; (c) our estimation;
(d) results form image based technique [2].

error of <1 voxel, and a deformed mesh with no distant outlying vertices from the surface.
Figure 2 compares the deformation of source to target using an image-based metric [2, 5],
and our method using the mesh-based approach. This shows that our method deforms the
source meshes so that they have a greater visual resemblance to the target than the deformed
meshes using image-based transformation estimation. In addition, the resulting meshes using
our method have no compressed or stretched mesh faces, and no tangled mesh edges, leaving
a smooth, regularized mesh. This is in contrast to the deformed meshes using an image-based
similarity metric, where the meshes appear stretched and compressed in numerous areas.

The close similarity in appearance between M, and M allowed more accurate corre-
sponding vertices to be found using the nearest-neighbour calculation. Figure 3 compares
the vertex correspondences using our method, and the image-based technique [2].

4 Conclusion

We have presented a semi-automatic method for finding complete vertex correspondence
from a set of sparsely spaced corresponding landmarks across a set of 3D meshes of aortic
regions. In particular, we have demonstrated this method using complex aortic root meshes,
which have corresponding images with varying appearance. This data is challenging to ex-
isting technique like [2]. Future work will focus on building accurate SSMs using these
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Figure 3: Visual comparison of vertex correspondences (left) image-based transformation
estimation; (middle) target mesh; (right) our results.

corresponding vertices, and implementing the statistical model in a fully-automatic aortic
root segmentation technique.

Acknowledgement

The authors would like to thank Feng Zhao and Jingjing Deng for their generous help in
preparing the dataset groundtruth. We also would like to acknowledge Daniel Rueckert for
the Image Registration Toolkit (https://www.doc.ic.ac.uk/~dr/software/).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

A.D. Brett and C. J. Taylor. A method of automated landmark generation for automated
3d pdm construction. Image and Vision Computing, 18(9):739-748, 1999.

A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. Automatic construction
of multiple-object three-dimensional statistical shape models: Application to cardiac
modeling. Transactions On Medical Imaging, 21(9):1151-1166, 2002.

S. Lee, G. Wolberg, K. Y. Chwa, and S. Y. Shin. Image metamorphosis with scattered
feature constraints. Tansactions on Visualization and Computer Graphics, 2(4):337-354,
1996.

S. Lee, G. Wolberg, and S Y. Shin. Scattered data interpolation with multilevel b-splines.
Tansactions on Visualization and Computer Graphics, 3(3), 1997.

D. Rueckert, L. I. Sonoda, C. Hayes, D. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid
registration using free-form deformations: Application to breast mr images. Transac-
tions on Medical Imaging, 18(8):712-721, 1999.

D. Rueckert, A. F. Frangi, and J. A. Schnabel. Automatic construction of 3-d statistical
deformation models of the brain using nonrigid registration. Transactions on Medical
Imaging, 22(8):1014-1025, 2003.

G. Subsol, J. P. Thirion, and N. Ayache. A scheme for automatically building three-
dimensional morphometric anatomical atlases: Application to a skull. Medical Image
Analysis, 2(1):37-60, 1998.

Y. Wang, B. S. Peterson, and L. H. Staib. Shape-based 3d surface correspondence using
geodesics and local geometry. Pattern Analysis and Machine Intelligence, 22(7):738-
743, 2000.


https://www.doc.ic.ac.uk/~dr/software/

