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Abstract—A growing elderly population suffering from incur-
able, chronic conditions such as dementia present a continual
strain on medical services due to mental impairment paired
with high comorbidity resulting in increased hospitalization
risk. The identification of at risk individuals allows for pre-
ventative measures to alleviate said strain. Electronic health
records provide opportunity for big data analysis to address such
applications. Such data however, provides a challenging problem
space for traditional statistics and machine learning due to high
dimensionality and sparse data elements.

This paper proposes a novel machine learning methodology:
entropy regularization with ensemble deep neural networks
(ECNN), which simultaneously provides high predictive per-
formance of hospitalization of patients with dementia whilst
enabling an interpretable heuristic analysis of the model archi-
tecture, able to identify individual features of importance within
a large feature domain space.

Experimental results on health records containing 54,647
features were able to identify 10 event indicators within a
patient timeline: a collection of diagnostic events, medication
prescriptions and procedural events, the highest ranked being
essential hypertension. The resulting subset was still able to pro-
vide a highly competitive hospitalization prediction (Accuracy:
0.759) as compared to the full feature domain (Accuracy: 0.755)
or traditional feature selection techniques (Accuracy: 0.737), a
significant reduction in feature size.

The discovery and heuristic evidence of correlation provide
evidence for further clinical study of said medical events as
potential novel indicators. There also remains great potential for
adaption of ECNN within other medical big data domains as a
data mining tool for novel risk factor identification.

Index Terms—Deep learning, dementia, electronic health
records, feature selection, hospitalization, machine learning, risk
factors, weight regularization
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I. INTRODUCTION

Dementia: a decline in mental ability severe enough to
interfere with daily life. The primary cause of which being
Alzheimer’s diseases making up 60-80% of cases [1]–[4].
Other causes include vascular dementia, thyroid problems
and vitamin deficiencies [5]. Current estimates indicate 47.5
million individuals living with dementia in the world with
predictions showing the figure to triple by 2050 [6], [7].
Around 100,000 individuals with dementia die each year [8],
with a worldwide cost of 818 billion US Dollars in 2015 [9].

Dementia poses a significant increase in risk due to con-
tinued degradation of mental ability. As such, coupled with
a generally higher level of comorbidity as compared to indi-
viduals with no dementia, it is often associated with adverse
health outcomes resulting in higher rates of institutionalization
and hospitalization [10]–[12], followed by lower survival rates
[13]–[15]. Accordingly, the prediction of potential hospitaliza-
tion of individuals with dementia allows for the identification
of high-risk individuals in need of pre-emptive or preventative
care.

With such a vast domain encompassed by the medical and
social services potentially experienced by a patient, big data
of such nature will invariably suffer from the curse of di-
mensionality, resulting in data domains consisting of upwards
of thousands of dimensions. Consequent data sparsity follows
behind as population size is vastly outpaced by the required
sample size needed to maintain statistical significance for the
size of feature space. For example, with over 100,000 potential
medical event codes within the predominantly used ICD-10
system [16], healthcare data poses a significant challenge for
the traditional statistical approaches generally applied within
health informatics [17]. The use of such data within gen-
eral predictive machine learning approaches poses additional
challenges on interpretability and application on a human
level. Without a reduction of feature size to a manageable
size, the practicality of such approaches will remain outside
of medical application, and firmly within the confines of
academic interest.

To address such challenges, this paper proposes a novel
methodology for predicting hospital admission for individuals
with dementia whilst simultaneously performing feature reduc-
tion on a sparse, high-dimensional dataset of medical events.
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The proposed methodology includes the use of a modified
snapshot ensemble methodology originally proposed by [18]
through the inclusion dynamic learning rate (LR) scheduling to
produce a novel training methodology. The use of integrated
entropy regularization [19], originally proposed for support
vector machine (SVM), is also proposed with an adaption
towards deep neural networks (NNs) used as the baseline
modelling methodology within this study, henceforth referred
to as ECNN.

By performing feature selection in parallel with classi-
fication training, selection of features can be focused on
identifying effective discriminative features relevant primarily
to the required task at hand. Being generic electronic health
records of patient history without any direct relationship to
dementia analysis or diagnosis, the reduction of the hundreds
of thousands of potentially unrelated medical events to only a
handful minimizes the number of redundant variables in need
of further clinical or statistical study in identifying potential
risk factors. The collection of electronic health records via
the Secure anonymised information linkage (SAIL) data-bank
[20] allows for the linkage of anonymized patient records
across the various healthcare providers such as general practice
(GP), in/out-patient hospital records, population deprivation,
etc. This provides the potential of novel research applications
involving the entirety of a patient time-line from birth to death.

II. RELATED WORK

Various studies have gone on to explore common causes
of hospitalization within the population of dementia sufferers
with a focus on clinical study and survey data with limited
population scope. Kalisch et al. [21] identified, through a
retrospective cohort study, a significantly increased risk of
hospitalization for demented individuals when taking two or
more anticholinergic medications with an adjusted incident
rate ratio of 2.58. Chan et al. [22] follows a similar line of
investigation indicating that 53.4% of cases of hospitalization
of the elderly due to adverse drug events were preventable
due to non-compliance or omission of indicated treatments.
Phelan et al. [23] identified causes of hospitalization such
as bacterial pneumonia, congestive heart failure, dehydration,
duodenal ulcer and urinary tract infection as being significantly
higher among those with dementia. Naalwala et al. [24]
provides similar conclusions while also including causes such
as bronchopneumonia. Bynum et al. [10] provides a more
extensive list of hospitalization causes whilst also identifying
the number of comorbidities as a consistent association with
the odds of hospitalization. Toot et al. [25] establishes factors
such as behavioral problems including agitation and wandering
as well as changes in daily living routine to have an increased
risk of hospitalization for people with dementia.

While the studies mentioned have provided informative
results, the resulting causes of hospitalization all refer to a
root cause in hindsight of the actual hospitalization event.
Little research has been performed on identifying influential
risk factors and clinical events from previous health records
in an attempt to predict patient hospitalization. Related fields
of research such as dementia diagnosis decision support sys-
tems have seen comparatively greater interest in the use of

big data machine learning (ML) approaches. The resulting
methodologies created from such fields of study provide great
opportunity for adaptation into data mining and risk factor
analysis.

Advances of information technology have led to a marked
increase in information collected on patients in healthcare
services. With surges in concepts of big data within other
fields of research, ML applications are moving towards the
forefront for data analysis. ML approaches within the field
of medical informatics has already been ongoing with current
research involving ML within dementia greatly focusing on
early diagnosis with great success. The majority of the existing
applications are based upon the analysis of magnetic resonance
imaging (MRI) scan data which show impressive predic-
tive performance. Marthotaarachchi et al. [26] uses a single
PET & MRI scan to identify individuals with progressive
mild cognitive impairment (MCI) as opposed to stable MCI.
Through the use of a random forest (RF) and a novel ran-
dom under-sampling methodology to resolve imbalanced class
distributions, classification accuracy of 84% on a set of 273
patients was reported. Wolf et al. [27] tries to classify between
individuals of MCI and full dementia based upon correlations
between volume ratios of various brain regions. Brain regions
were identified using boundary guided region growing whilst
final classification was performed using a logistic regression
model to reported accuracy of 78%. Lao. et al. [28] uses
a novel mass preservation transformation methodology on
MRI scans in addition to wavelet decomposition and SVM
to classify between brain atrophy categories to produce a final
accuracy of 87% over 153 patients. There exists several other
studies involving MRI based dementia diagnosis [29]–[31].
The reliance on MRI scans for such methodologies, provides
limited application in dementia diagnosis due to expense and
availability of MRI technology [32]. As such, much akin to the
established diagnosis procedure for dementia, cheaper more
readily available methodologies such as Neuropsychological
assessments remain the primary tool for initial mass screening.

Accordingly, Neuropsychological assessments such as the
commonly used Mini Mental State Exam (MMSE) are used
regularly as predictors for a ML based approach to patient
screening [2], [33]. Maroco et al. [32] provides a thorough
comparison of several ML methodologies including linear
discriminant analysis (LDA), logistic regression (LogReg),
SVM, RF and NN on a dataset of 10 neuropsychological
tests with a sample size of 400 patients. With the task
of classifying patients as having MCI or Dementia, results
showed SVM with the largest overall classification accuracy.
Meanwhile, more niche examples of ML within Dementia
have shown highly remarkable results such as identifying
semantic dementia patients through the use of natural language
processing on descriptions of images made by demented and
non-demented patients by Garrard et al. [34]. Using a naive
Bayes multinomial algorithm, Garrard was able to classify
dementia patients with an accuracy of greater than 90%.

Making use of limited datasets, the existing studies have
provided encouraging results in dementia diagnosis. With fur-
ther advances in information technology, the potential for large
scale data analysis within medical informatics is apparent.
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Several major limiting challenges exist however; first and
foremost being data protection and ensuring the privacy of
an individual on a large scale. Secondly, with the timeline of
an individual expanding across a range of discrete health and
social service providers; the accurate, effective linkage of the
various service database systems still presents as an ongoing
research challenge [35], [36].

III. METHOD

The proposed method, ECNN, consists of a four-stage
pipeline: initial training using entropy weight regularization,
snapshot ensemble training and aggregation, feature impor-
tance grouping and ranking, backward-stepwise feature selec-
tion & validation for risk factor analysis. The proceeding sec-
tion presents initial data preprocessing following the individual
pipeline stages in detail.

A. Data Preprocessing

ECNN emphasizes the use of patient records consisting of
GP read codes over a time period of multiple years. More
detail of the experimental dataset is presented in section IV.
All unique read codes were one-hot encoded as individual
features with each patient sample indicating total occurrence of
read code over the relevant time-period (see section IV). Data
normalization of feature vectors to the range [0, 1] provides the
final high-dimensional, sparse dataset for initial training. Class
labels for samples are simply standard classification indicators,
the set of {0, 1} indicating a positive or negative instance of
any hospitalization event after official diagnosis of dementia
as indicated within patient records.

B. Deep Neural Networks

The foundational architecture of ECNN is the deep NN,
commonly used in a wide selection of disciplines and research
domains [37]–[42]. The remainder of this section provides a
quick overview of NNs, highlighting the strengths over tradi-
tional statistical and machine learning methodologies already
commonly in use within the health informatics domain.

Given an input space, X ∈ Rn×p comprised of n samples
containing p features: NNs consist of multiple layers of
perceptrons, each aggregating the given input space through a
weighted and biased sum before being mapped to an activation
function. The result of which provides a final activation output
shown in the following equation:

al=1
k = σ

 p∑
j=1

wl
ja

l−1
j + blj

 ,

a0j = Xj (1)

where weight, w and bias, b are trainable parameters trans-
forming each input feature vector, Xj before summation and
transformation using activation function, σ to provide the
indexed perceptron k’s, activation result a within the first
layer, l. The vector of activations, al are passed as the input
vector for the subsequent layer of perceptrons. A deep NN
constitutes an architecture containing multiple preliminary

Fig. 1. Exploded view of a perceptron contained within a NN architecture
consisting of an input, hidden, and output layer. Also shown, are the forward
pass formulae for producing overall model loss using an example mean
squared error loss function. Additionally, back-propagation formulae are also
shown, used for updating network parameters, perceptron weight, s and bias
b. To note, is the propagation of remaining error being passed back up each
perceptron layer via partial derivatives, δCi

δbl
k

and δCi

δwl
jk

for weight and bias

respectively.

embedding layers between the input and output layer allowing
for non-linear transformations and subsequent embeddings of
the original data space. Each snapshot NN within the overall
ECNN architecture consists of a 2 hidden layer architecture
containing 50 and 30 perceptrons accordingly. Perceptron
counts were chosen using a simplistic grid search hyper-
parameter optimization algorithm to provide best model per-
formance.

Training consists of the minimization of the cross entropy
cost function:

min
ŷ

[−(y log(ŷ) + (1− y) log(1− ŷ)) + λf(w)] (2)

based on the forward-pass and back-propagation methodology
to adjust model parameters in (1), regularized by the λ
weighted function f(w); where ŷ is the model probability
output and y, the classification target. Said regularization will
be the aforementioned entropy weight regularization function
examined in Section III-C.

C. Entropy Weight Regularization

As mentioned previously, dimensionality and sparsity are
the main challenges of data analytics using electronic health
records. With data dimensionality potentially numbering in
the hundreds of thousands and individual observations hav-
ing perhaps tens of values, the leveraging of such data in
producing an effective predictive model whilst maintaining
comprehensibility is a hard prospect.

Traditional dimensionality reduction pipelines such as prin-
cipal component analysis (PCA), relying on orthogonal trans-
formations of the dataset, suffers on a comprehensibility
standpoint. After said orthogonal transformation into the new
embedding space, with axes not necessarily parallel to the
original feature space axes and based off orthogonal vectors
of most variance, each of the resulting orthogonal dimensions
or principal components become fully dependent on every
original feature.

After the removal of low-variance principal components, the
traditional methodology for PCA dimensionality reduction, a
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transformation back into original feature-space would result
in a information loss across multiple features due to the
aforementioned dependence. Consequently, the selection of a
single principal component of high-importance would trans-
form into a vector spanning across the entire feature space.
Subsequent selection or ranking of individual read codes for
clinical significance would thus become highly impractical.

Furthermore, a final application involving the use of such
dimensionality reduction methodologies will still require the
evaluation of every medical event within a patient time-line.
Another major disadvantage of such methods is the apparent
disconnect between dimensionality reduction and prediction.
PCA bases dimensionality reduction on the variance of a
dataset and as such performs reduction without any feedback
as to its effectiveness.

The method proposed below seeks to solve both issues.
By performing feature selection during the training of the
predictive model, feedback on the performance of the pre-
dictive model based upon the reduced features can be fed
back into selecting features relevant to the trained task at
hand. In addition, reduction will be performed directly on
feature dimensions and as such, allows for the direct removal
of redundant events within a patient time-line.

This paper proposes a novel adaption of the entropy regu-
larization technique, originally proposed by Zhou et al.(3) for
SVM models, towards the NN architecture. The measure of
information entropy defines the potential information content
of a data source or the unpredictability of a certain state
occurring. As such, within a probability mass function, P (X),
of a binary variable, X , the information entropy of said vari-
able will approach zero where the probability mass function
approaches near certainty of one or the other action. The infor-
mation entropy is highest at the midpoint, P (X) = 0.5, where
the probability of either action is exactly equal. Consequently,
this property of information entropy can be leveraged into
enforcing weight sparsity within our methodology.

By incorporating entropy regularization based on the
bounded weights of the first layer of the NN within the cost
function, weight updates will seek to minimize entropy, thus
driving said first layer weights towards {0,1}. The original
cost function seeks to push weights in either direction towards
improving predictive accuracy. With a linear activation func-
tion, weights approaching zero will filter out activation signals
whilst weights approaching one will remain unaltered. Entropy
regularization will emphasize the need to push weights towards
boundary extremes. The combination of the aforementioned
functions will result in activation signals of importance being
driven towards one whilst redundant signals in the scope of
predictive performance will be pushed towards zero and thus
filtered out. The resulting weight matrix will be of a sparse
form consisting of only activation signals which contribute to
the model prediction.

f(w) = −λ
JK∑
jk

wjk log(wjk) (3)

where W 1
jk is the weight representing the connected edge

between the k-th multilayer perceptron (MLP) in layer l and

the j-th MLP in layer l−1. The hyper-parameter, λ is a regular-
ization coefficient to fine-tune the balance between predictive
performance and weight sparsity. Consequently, weights close
to zero will map to θ = 0 while highly positive weights will
map towards θ = 1. The resulting sparse weight matrix of
the first layer will act as a filter, removing inconsequential
connections between MLPs within the first and second layer.
By evaluating this matrix, the resulting input features can
be categorized into three types shown in ascending order of
importance:

In reference to the traditional cross entropy cost function
for overall prediction cost minimization:

C = −(y log(ŷ) + (1− y) log(1− ŷ)) + λ0f(w) (4)

where model prediction, ŷ are driven towards
a) Disconnected: Features whose weighted connections

have been driven close to zero are completely excluded from
the remaining model and as such, are non-meaningful features
for classification.

b) Partially Connected: Features where only some
weighted connections have been driven close to zero. Con-
sequently, these features exhibit element-wise sparsity and as
such remain partially used.

c) Fully Connected: Features whose weights exhibit non-
sparsity indicates a favorable feature which remains in use for
the remainder of the model.

By selecting favorable features whose associated weights
are large whist being fully or partially connected allows for
redundant features to be removed. Through associating feature
selection based upon parameters within the predictive model
during training, feature selection can be tailored towards se-
lecting features which favor heavily into the overall predictive
performance.

D. Snapshot Ensembles

The training procedure used involved the use of a modified
snapshot ensemble training procedure proposed by Huang et
al. [18] allowing for multiple ensemble NNs to be gener-
ated through training a single model. Ensembles comprise
of periodic model snapshots taken during training. Diversity
between each model snapshot is encouraged through specific
LR scheduling between each snapshot. Specifically, a cyclic
cosine function [43] repeating based on set training iterations:

α(t) =
α0

2

(
cos

(
π mod

(
t− 1, d T

M e
)

d T
M e

)
+ 1

)
(5)

where the LR, α, is dictated by scaling the original LR, α0,
based off the current epoch, t’s position within the shifted sub-
cosine function. Each of the M number of cosine functions is
spread equally along to the total epoch count, T .

The resulting LR progression over a cosine cycle resembles
a rapidly descending LR from an initial large value, gradually
reducing in gradient to a set iteration and an assumed model
convergence at local minima. At which point, model param-
eters are saved as a single ensemble snapshot before a large
spike in LR is introduced to repeat the cosine cycle. Said LR
spike ”dislodges” the model from the local minima allowing
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for descent into a potentially new local minima and resulting
new unique ensemble model.

The resulting unique snapshot sub-models form a large
combined final model for use in the testing stage. Final
predictions are formed from the combined predictions of each
snapshot model based off the combined average.

The result of which, as indicated by Huang et al., provides
superior model accuracy and generalizability with similar
training durations as compared to traditional momentum based
learning rate schedulers. Such behaviour additionally provides
potential to encourage divergent sparse first layer weights in
combination with the aforementioned entropy weight regular-
ization (See Fig. 6). The result of which, provides diverse
feature combinations for analysis.

E. Feature Ranking & Selection

Features can be categorized based upon the sparse weight
matrix into three categories as detailed in section III-C. An
evaluation metric was designed as shown in (6) called Feature
Sparsity Importance to provide the capability to rank and
identify possible features. Overall, feature ranking is based
off the perceptron weight parameters directly associated to
each feature between the input and first hidden layer of each
snapshot using the following equation:

Rk =
|W 1

k | − σ2(|W 1
k |)

max(|W 1
k |)

(6)

where |W 1
k | is the mean absolute weight on a column by

column basis representing the mean weight associated with
feature k. A higher mean absolute weight will generally
indicate a feature of higher importance. In order to account for
element-wise sparsity within the weight matrix, the variance
of the absolute weights, σ2(|W 1

k |), is also taken into account:

σ2(W l
k) =

∑J
j (w

l
jk − wl

k)
2

J − 1
(7)

where a high value indicates high element-wise sparsity and
vice versa. The maximum mean absolute weight used within
the denominator ensures a non-dimensional value normalised
to 0, 1. The feature sparsity importance metric will evaluate
fully connected features with high mean and low variance
highly, partially connected features with high mean and high
variance lower and finally disconnected features of low mean
and low variance to a value near zero indicating low overall
importance to the predictive model. Feature importance values
from each snapshot model were averaged to obtain the final
Feature Sparsity Importance value for use in thresholding.

Feature thresholding can be performed using various
schema. Methodologies such as selecting based off a 95%
importance cut-off would provide an effective adaptive thresh-
old emphasising predictive performance. Such a cut-off would
however produce a 107 feature subset, whilst a significant
reduction, would still remain cumbersome in an application
standpoint. A simple top k = 10 cutoff threshold provides
a rather naive threshold policy, however coincidentally, as
shown in Fig. 3, a normal distribution fitted across a feature
importance histogram highlights the predominance of low

importance features whilst 10 features lie high outside the
three standard deviation range. As such, these features are
selected as the subset for further analysis.

Such feature ranking within the original data space contrasts
highly with traditional statistical modelling techniques such
as PCA or LDA requiring orthogonal transformation into an
embedding space for dimension ranking. As such, ECNN
enables a direct interpretable ranking of individual medical
events as predictive indicators of future hospitalization.

IV. EXPERIMENT

The dataset population was extracted through the SAIL
data-bank which consists of linked and coded patient records
catalogued from various primary and secondary health services
provided by the Welsh NHS, UK. Accordingly, data coverage
encompasses the majority of the Welsh population, a total of
3 million individuals [44].

The Primary Care GP dataset (GP) contains individual med-
ical records obtained from the various primary care practices
around Wales. Every individual contains timestamped records
of various events ranging from prescribed medication to lab
test results to diagnoses coded as NHS read codes. The Patient
Episode Database for Wales (PEDW) dataset comprises of
attendance and clinical information for all hospital admissions
within Wales. A continuous period of treatment for an individ-
ual can be traced from entry to diagnosis to hospital transfer,
if any, to treatment to exit. Information such as date of birth,
gender, area of residence, deprivation score, etc. are provided
if available for both datasets.

TABLE I
TABLE CONTAINING READ CODES ASSOCIATED WITH A POSITIVE

DEMENTIA DIAGNOSIS.

Read Codes

E00.. E003. Eu001 Eu021 E000. E004.
Eu002 Eu022 E001. E0040 Eu00z Eu023
E0010 E0041 Eu01. Eu024 E0011 E0042
Eu010 F11x2 E0012 E0043 Eu011 F11x5
E0013 E004z Eu012 F11x6 E001z E012.
Eu013 F11x7 E002. E0120 Eu01y F11x8
E0020 E041. Eu01z F11x9 E0021 Eu00.
Eu02. F11xz E002z Eu000 Eu020 Fyu30

Data preparation involved the selection of all patients with
a positive diagnosis of dementia based upon NHS read codes
as indicated in Table I [45]. Of note is the hierarchical nature
of said read codes allows for a general broad consolidation of
dementia diagnosis for simplification. Such examples include
codes such as ‘E00..’ indicating all variations of code values
possible on positions containing the decimal point. In practice
however, there is inconsistent inclusion of both categorical
and sub-categorical read codes within the dataset. As such,
all categorical and sub-categorical read codes for dementia
were included to ensure thorough consideration of all indicated
dementia patients.

The overall dataset consists of the medical history from
1908 to 2017. However, dataset distribution by year as shown
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Fig. 2. Graph indicating distribution of patient and event counts aggregated
by year across the GP and PEDW datasets used for evaluation. As shown,
the majority of patients and events span across a timeframe between 1982 to
2015. Of note, is the non-linear correlation between patient count and event
count highlighting an increased frequency of recorded events over the years.

in Fig. 2, indicates the vast majority of patient events dis-
tributed between 1982 to 2015. As such, patients and cor-
responding records have been limited to the aforementioned
time window. The selected population variation results in
a gender split of 34.9% male and an overall mean age of
91.8 and a standard deviation of 10.50. The generally older
population characteristic of our dataset provides opportunity
for analysis into an especially more vulnerable age range of the
general population more prevalent to dementia and resulting
hospitalization or institutionalization.

Further statistical population characteristics are shown in
table II.

The resulting dataset consists of 59,298 patients diagnosed
with dementia. Patient time-lines were selected one year
before dementia diagnosis up to hospital admission if at all.
An individual patient history, or sample within the input
dataset consists of a frequency table counting number of
times specific medical events occur in a one year lead up
to first hospitalization event. With a formatting similar to
traditional one-hot encoding, the feature set comprises of all
possible unique medical events which have occurred within the
considered population resulting in 54,649 unique features or
event codes. Whilst, the sum total frequency of all occurring
medical events with in the population totals 52.5 million
events, with a single individual medical history only using
a small subset of said unique events, a significantly sparse
dataset is produced, effectively highlighting the challenging
extent of high dimensionality and data sparsity inherent within
patient medical histories constructed into datasets for ML
modelling. Consequently, such dataset properties provide an
excellent opportunity for verification of ECNN.

As mentioned previously, the evaluation criteria for our
methodology will be in predicting whether a dementia pa-
tient stays within a GP setting with minor accidents and
events (condition negative) or whether a patient is admitted
into a hospital setting due to major accidents or continued
degradation of mental ability (condition positive). This will
be indicated through a lack of hospital data throughout a
patient’s time-line. The resulting patient dataset split consists

TABLE II
STATISTICAL CHARACTERISTICS OF SAMPLED POPULATION

Category Gender Cond. +ve Cond. -ve Total

Mean Age
Male 85.18±9.44 93.62±10.56 89.04±10.82

Female 88.98±8.51 97.41±9.62 93.27±10.02
Total 87.56±9.05 96.19±10.09 91.80±10.50

Mean Event Male 1256±1127 443±565 885±1000
Count / Female 1318±1220 469±624 886±1053
Person Total 1295±1187 461±605 872±884

Population
Male 11233 9441 20674

Female 18945 19679 38624
Total 30178 29120 59298

of 30,178 patients admitted to hospital and 29,120 patients
which remained within a GP setting.

A comparative evaluation between a similar traditional
classification model with capability for feature ranking, RF
was performed using the exact same dataset. Feature ranking
on RF was produced through the use of traditional out-of-
bag error comparison to perturbed datasets [46]. Additional
comparative evaluation was also performed with a baseline
methodology through a subset of 10 random features selected
amongst the original overall feature-set via random number
generator.

V. RESULTS

Experimental evaluation can be categorized into three dis-
tinct categories: predictive performance using the full dataset
(section V-A), analysis of model characteristics to produce a
feature ranking (section V-B), and final evaluation of feature
ranking and selection against baseline methods (section V-C.
All experimentation was cross-validated using a 5 fold, tra-
ditional k-fold validation paradigm. In which, three folds are
designated as the training set, one for validation and one for
final testing in a cyclic sequence; repeated twice over. The
resulting 5 × 2 test fold sequences of results are aggregated
and presented within the remainder of this section.

A. Full Feature Results

The performance of ECNN as a pure classification model
was assessed on the full set of features in comparison to a
traditional classification methodology with combined feature
ranking capability, RF. The intuition of such an assessment,
in combination with section V-C, being the evaluation of the
validity of resulting feature rankings from ECNN.

Results are presented in table III showing aggregated pre-
dictive performance across various metrics with T-test to
distinguish significance between the two methodologies. As
shown, ECNN provides significant improvements (< 0.05 P-
value), around 5%, in true negative rate (TNR) and positive
predictive value (PPV) compared to RF whilst maintaining
insignificantly near similar performance in true positive rate
(TPR) and negative predictive value (NPV) resulting in an
overall superior model performance in accuracy. A major
consideration however, is the larger variation in predictive
performance of ECNN as compared to RF. Such variation



7

TABLE III
FULL FEATURE SET CLASSIFICATION RESULTS.

Evaluation Metric
ECNN RF

P-Value
Mean±Std. Dev. 95% CI Mean±Std. Dev. 95% CI

TPR 0.746±0.036 0.719 0.773 0.746±0.005 0.742 0.750 0.986
TNR 0.762±0.043 0.729 0.794 0.714±0.007 0.709 0.718 0.004
PPV 0.766±0.024 0.748 0.785 0.710±0.005 0.706 0.713 2.27E-06
NPV 0.744±0.019 0.730 0.758 0.750±0.003 0.747 0.752 0.404

Accuracy 0.755±0.005 0.750 0.757 0.729±0.002 0.728 0.731 2.61E-11

Comparative analysis of predictive performance between ECNN and random forest - a traditional classification model with the capability to perform feature
ranking and selection. As shown, ECNN provides statistically significant, superior accuracy whilst providing superior feature selection (see table VII).

was found during testing to be caused in part from the use
of entropy regularization settling into perhaps a sub-par local
minima of sparse weights producing inferior performing model
snapshots affecting overall stability during the final prediction
aggregation of the ensemble models.

The resulting overall performance improvement over RF
however, comes with a major compromise of training com-
plexity and duration as is standard in a comparison of RF
to NN trade-offs. With a significant difference between RF
and ECNN of 44 seconds to 2 hours average training duration
respectively, such vast differences highlights the greatest disad-
vantage of ECNN and deep NN complexity overall. However,
with a significant improvement in both predictive performance
and feature ranking capability, as shown in section V-C, such
performance may justify the differences in training times.

B. Feature selection

Within this section, we will present and analyse the resulting
ensemble snapshots using the aforementioned feature ranking
metric presented in section III-E.

As shown in Fig. 3, entropy regularization was able to
successfully separate the majority of layer weights into a
sparse filter mapping of values close to zero and one. Fig. 5
alternatively provides a heatmap representation of the sparse
first layer weights of each snapshot ensemble model produced.
As seen, each ensemble mostly resembles each other with
subtle differences highlighted in Fig. 6 showing normalized
difference of first layer weights between each pair of ensemble
models. As such, snapshot ensembles are shown to success-
fully dislodge settled weights to generate new feature maps.
Of note is how weight variance between ensembles centers
around specific features; as opposed to across layer 2 nodes
or a combination of both. Consequently, such behaviour can
be interpreted as high feature variance between ensembles
indicating uncertainty of feature importance whilst low vari-
ance indicates a convergence of such features into a stable
configuration of importance.

The proposed feature ranking metric was applied to the
first layer weights of each ensemble and aggregated into a
single normalized feature importance value for each indi-
vidual feature. Fig. 3 indicates the distribution of features
across the feature importance spectrum. As seen, the majority
of features form a normal distribution low on the feature
importance metric with mean, µ = 0.0777, and standard

deviation, σ = 0.0265; whilst several features lie high on
feature importance outwith the normal distribution by greater
than three standard deviations. Consequently, these 10 outlier
features were selected as the subset of important features used
for continued further analysis, in addition to subset predictive
performance testing in section V-C.

These 10 medical events, summarized in table IV, form a
varied collection of medical diagnoses, medication prescrip-
tions and procedural events. Qualitative analysis and literature
review of the identified medical events show effective feature
selection from ECNN with every event occurrence being either
positively associated to an increased hospitalization risk or
present an entirely novel or inconclusive association.

In regards to established direct risk factors identified by
ECNN, a literature review is presented highlighting each
positive correlation. As shown, a diagnosis of essential hyper-
tension or idiopathic hypertension was identified as the highest
ranked feature with an average importance factor of 0.481,
vastly exceeding the exhibited normal feature distribution
mentioned previously. Of course, such a correlation between
hypertension and hospitalization incidence has already been
shown to exist through cohort studies [47], [48]. Previous
literature have also studied several other risk factors identified
by ECNN. In regards to the second most highly ranked
event, prescription of Adcal-D3 - calcium and vitamin D
supplements, under the assumption of a resulting vitamin D
or calcium deficiency in the individual, studies have shown
general increase in hospitalization risk for the elderly from
resulting co-morbidities [49] in addition to direct potential
risk [50], [51]. Influvac, a flu vaccine, the third highest ranked
event, regularly prescribed to highly at risk elderly individuals,
highlights established risk factors of influenza on functional
decline within the elderly [52]. Additionally, blood glucose
lab tests for potential diabetes and simvastatin, prescribed for
high blood cholesterol are further established risk factors for
general hospitalization risk in the elderly demented population
[48]. Osteoarthritis, a condition with a common prescription
of Ibugel [53] - a gel based ibuprofen medication identified
as 7th on the list, is also widely regarded as a hospitalization
risk factor of the elderly [54].

Prescription of Serc-16 tablets, prescribed for Ménière’s
disease, presents an interesting secondary indicator of hospi-
talization risk. With symptoms of vertigo, titinnus, and hearing
loss - Ménière’s disease associates with increased fall risk in
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the elderly [55] resulting in indirect risk of hospitalization.
As shown, the identification of already established risk fac-

tors by ECNN demonstrates effective risk factor recognition,
highlighting the potential for further clinical analysis on the
remaining medical events for potential correlations. Of the
remaining event indicators: Social group 3 - skilled, occur-
rence of nightmares and encounter between GP and a third
party in regards to the patient; little or inconclusive studies
have attributed such events as a precursor to hospitalization.
Van de Vorst et al.indicates no statistical significance for
hospitalization risk between mid-tier socioeconomic status,
generally associated with a skilled individual, and high or low-
tier status. There was however, positive significant correlation
from low to high-tier status [56]. Nightmares have potential to
be associated with symptoms of delirium, the result of which,
hospitalization risk is increased [57]; however, such a generic
medical event with multiple associations to various conditions
would require further study to be presented as an indicator
on it’s own. Finally, third party encounter addresses a wide
range of situations involving reports by individuals related to
the individual suffering from dementia. Whilst it has been
established that dementia detection is predominantly reliant
on self-reporting or by relatives [58], no literature was found
studying hospitalization resulting from non-emergency third
party reports.

Linear independent correlations between the identified med-
ical events to hospitalization incidence was analysed through
Pearson’s correlation and reported in table IV. Interestingly,
there seems to be little correspondence between r value and
ECNN ranking and in some cases, little statistical significance.
Such behaviours indicate a distinct lack of independent linear
correlations on individual risk factors. Tests on modelling
hospitalization prediction using NN and RF on the individual,
identified features provide no discriminative capability; requir-
ing all 10 features to produce predictive performance indicated
in section V-C. Such observation hints at the capability of the
underlying NN architecture of ECNN being able to formulate
non-linear relationships between features, consequently being
unable to produce individually discriminative medical events.
The extraction and interpretation of non-linear combinatorial
relationships between features remains an open avenue for
further research of great benefit within the medical informatics
field.

C. Reduced Feature-set Predictive Performance
Several comparisons were evaluated to determine feature se-

lection performance. The reduced subset of features produced
by ECNN were used to train on various standard classification
methodologies as a comparison to the full dataset. The top
10 features ranked by RF, shown in table V, were also used
as a baseline comparison of a traditional effective feature
selection procedure while a random 10 feature selection was
also evaluated to provide an indicator of dataset baseline
predictability. The results are shown in table VII.

In a direct pair-wise comparison of predictive performance
of feature ranking based on ECNN versus RF for each of
the baseline NN and RF classification models shows gener-
ally superior performance using features ranked by ECNN.

Fig. 3. Histogram of features over mean importance factor across all snapshot
ensembles of a randomly selected cross-validation run. As seen, the majority
of features are normally distributed (µ = 0.0777, σ = 0.0265) around a low
overall feature sparsity value, indicating the majority of features introduced
to ECNN are of low importance in prediction of hospitalization. Unable to
be effectively shown, due to graph scaling constraints, 10 features lie outside
3 standard deviations of the distribution, shown in table IV.

Fig. 4. Shown, is the log scaled histogram of final model weights of the first
layer of a randomly selected model within cross-validation. As seen, the vast
majority of weights have converged to values close to {0, 1} in response to
the proposed entropy weight regularization. As mentioned, a comparatively
small set of weights (an order of magnitude less than successfully separated)
show a non-perfect separation towards either extreme. Further analysis of said
weights indicate belonging to specific features, contributing to the ultimate
variance between each ensemble, as highlighted in Fig. 6.

Highlighted by a 4.1% improvement in F1 score between RF
and proposed when using a NN baseline classification model
and a 1.4% improvement using a RF baseline classification
model.

A definitive superior baseline model in an application
standpoint for our feature subset use case however, is not as
clear cut; with RF providing superior TNR with comparable
accuracy scores and NN providing overall best F1 score and
accuracy. In consideration of an application based hospitaliza-
tion warning system, NN provides the superior NPV and as
such, the superior screening type test for high risk demented
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TABLE IV
TOP 10 EVENT CODES RANKED IN ORDER OF IMPORTANCE AS DETERMINED BY ECNN.

Importance Event CD Definition Pearson’s r P-Value

0.481 G20.. Essential Hypertension 0.1504 4.65E-297
0.318 ip3j. Adcal-D3 1.5g/10ug chewable tablet 0.0695 1.98E-64
0.300 n473. Influvac sub-unit prefilled syringe 0.5mL 0.0635 4.44E-54
0.259 44Uz. Blood glucose raised NOS 0.0223 5.71E-08
0.254 bxd5. Simvastatin 40mg tablet 0.1879 0.0
0.247 1323. Social group 3 - skilled 0.0040 0.326
0.234 dh12. Serc-16 Tablet 0.0107 9.39E-03
0.234 ja1I. Ibugel gel 100g 0.0154 1.71E-04
0.231 E2749 Nightmares 0.0070 0.087
0.227 9N32. Third Party Encounter 0.0626 1.23E-52

A Pearson’s r statistic was used to measure linear correlation between medical event occurrence and hospitalization incidence in dementia patients. As shown,
most of the ranked events show statistically significant linear positive correlation to hospitalization incidence highlighting potential predictors of hospitalization
events post indication of such medical events. Of, note is the ranking of event codes based off r statistic being non-similar to the ranking produced by ECNN.
Of course, with r statistic analysing only linear bivariate correlations, any non-linear multi-variate associations between event and hospitalization incidence
detected by ECNN are lost, explaining the discrepancy between r statistic ranking and ECNN ranking. Multi-variate statistical analysis is further warranted
on the identified events is a potential avenue of further investigation.

Fig. 5. Heat map of individual weights of the first layer across the five
snapshot ensemble models of a single cross-validation run where yellow hot
are values close to 1 and purple cold are values close to 0. As seen, most
weights have converged to values close to {0, 1} indicating the success of
entropy regularization. Rough patterning between each heat map indicates
a potential pattern in variation between each ensemble. As similarities and
differences between each ensemble weight matrix are difficult to see, Fig. 5
provides a clear indication of the feature-wise variation.

patients.
In regards to the baseline random feature selection process,

both feature selection methodologies produced results signifi-
cantly improved over that of random guessing. Of note how-
ever, is the inability of NN in training an effective classification
model when using the randomly selected feature subset, with
final inactive models producing continuous positive predictions
resulting in a ‘superior’ TPR. Additionally, RF also produced
generally inactive models using the random feature subset,
swinging between continuous positive or continuous negative
predictions indicated by significantly large standard deviations.
As such, random feature subset results do not provide an
effective comparison of proportional predictive performance

TABLE V
TOP 10 EVENT CODES RANKED IN ORDER OF IMPORTANCE AS

DETERMINED BY RANDOM FOREST.

Importance Event CD Definition

0.0164 44M3. Serum total protein
0.0162 42L.. Basophil count
0.0136 44D6. Liver function test
0.0112 44M4. Serum albumin
0.0100 451E. GFR calculated abbreviated MDRD
0.0085 44P5. Serum HDL cholesterol level
0.0083 44I5. Serum sodium
0.0083 44I8. Serum calcium
0.0080 1Z12. Chronic kidney disease stage 3
0.0071 9N36. Letter from specialist

Whilst RF highlighted entirely separate features of importance compared to
ECNN, several event codes can be hypothesised to indicate similar clinical
significance. For instance, serum calcium indicates the use of calcium level
blood tests potentially related to the dispensing of Adcal-D3 tablets as
indicated by ECNN. Similar indications can be found with cholesterol level
and the dispensing of Simvastatin. Interestingly, a high focus on blood work
is shown with 8 of the top 10 event codes shown being lab results of blood
work.

as compared to non-random feature selection methodologies
but instead highlight the difficulties of selecting small subsets
of features able to adequately model patient hospitalization.

In reference to table VI, feature ranking and selection
using ECNN shows a statistically significant improvement
in overall predictive performance as opposed to the use of
the full feature dataset using a traditional logistic regression
classification model. Said results highlight the challenges of
such a high-dimensional and sparse dataset and the advantages
of effective feature selection, enabling effective modelling of
the problem space in a significantly reduced subset of features.
Such complexity reduction is emphasised in the contrast of
average training durations with logistic regression trained on
the full set of features requiring 33 minutes whilst training on
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Fig. 6. Shown, is a complete comparative heat map matrix of the absolute differences in weights between the first hidden layer of every possible pair of
the 5 produced snapshot ensembles. Colour values are mapped so that yellow hot represents values close to 1 whilst purple cold represent values close to 0.
Left-top to right-bottom diagonals show weight difference between the same ensemble and are thus irrelevant for analysis. Of note, the vertical patterning for
each heat map indicates any weight differences between snapshot pairs are focused on specific individual features across all snapshot pairs. This suggests a
convergence in importance factor for the vast majority of features with a small but consistent subset of edge-case features producing variation amongst the
snapshot ensembles.

a subset of 10 features requiring seconds.

VI. CONCLUSION

This study proposes a novel combination of methodologies
for the prediction of hospitalisation potential with patients
suffering from dementia. Using a novel adaption of snapshot
ensembles to use a dynamically generated learning rate sched-
ule, in addition to an adaption of entropy weight regularization
for use with NNs and subsequent novel evaluation of model
parameters: we were able to identify 10 medical events highly
indicative of future hospitalization of demented individuals
out of an extremely high dimensional and sparse dataset
of 54,647 unique medical events. Comprising of diagnostic
events, medication prescriptions and procedures, said events
were able to model and predict future hospitalization to a
performance equal (and in certain cases better) than that of
the full dataset. ECNN provides significant advantages to
statistical feature selection methods in interpretability and in
ML based modelling techniques in predictive performance.

The identification of said medical events, opens avenues
for the potential creation of early warning systems to iden-
tify demented individuals at high risk of hospitalization or
institutionalization. With multiple indications of nutritional
health being a major impact in hospitalization risk factor, such
information can be further investigated for potential prevention
through an emphasis in improved nutritional care for dementia
patients. Such examples highlight the many possibilities fo-
cusing on pre-empting and preventing hospitalization through
alteration of secondary care practices. Overall contributions
such as those indicated allow for a potential reduction in
critical healthcare utilization, itself a positive advancement,
whilst reducing risk in a statistically elderly and vulnerable

population through reduction in exposure to hospital induced
risk factors such as infection.

Multiple avenues exist for the improvement of ECNN as
future work. Most significantly would be the inclusion of
times-series based modelling methods able to acknowledge the
continually changing health of the individual patient over time.
Further avenues of improvement also include greater statistical
analysis of ranked features for improved ranking, larger scale
datasets extending coverage beyond the Wales region cur-
rently handled by SAIL, and adoption of state-of-the-art deep
learning modelling such as event code representation using
word embedding techniques for overall improved prediction
performance. Additional application can be considered through
the use of more novel modelling methodologies such as evolu-
tionary algorithms to at once compare predictive performance
whilst simultaneously providing feature reduction.

The collection of medical events highlight already es-
tablished risk factors for hospitalization indicating effective
capability whilst novel events present opportunity for further
focused traditional clinical analysis as potential risk factors
and indicators. As such, ECNN provides future potential
for use within other medical informatics domains as risk
factor identification. The general nature of patient medical
records, in conjunction with ECNN enables application within
other domains to provide interpretable, small-scale indicators
allowing for ease of identification of at risk individuals for
pre-emptive care.
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