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Abstract: Image restoration poses a significant challenge, aiming to accurately recover damaged images by delving into their
inherent characteristics. Various models and algorithms have been explored by researchers to address different types of image
distortions, including sparse representation, grouped sparse representation, and low-rank self-representation. The grouped sparse
representation algorithm leverages the prior knowledge of non-local self-similarity and imposes sparsity constraints to maintain
texture information within images. To further exploit the intrinsic properties of images, this study proposes a novel low-rank
representation-guided grouped sparse representation image restoration algorithm. This algorithm integrates self-representation
models and trace optimization techniques to effectively preserve the original image structure, thereby enhancing image restoration
performance while retaining the original texture and structural information. We evaluate the proposed method on image denoising
and deblocking tasks across several datasets, demonstrating promising results.

1 Introduction1

Image restoration serves as a fundamental task in image processing,2

aiming to reconstruct or recover the original image from degraded3

or corrupted signals [1]. This field has garnered extensive research4

attention and can generally be formulated as follows:5

Y = HX+E (1)

Here, X, Y, and E represent the original, degraded, and noise6

components of the image, respectively, while H denotes the degrada-7

tion matrix. The restoration problem represented by Eq. (1) can vary8

significantly depending on the degradation matrix H. For instance,9

an identity matrix for H corresponds to image denoising [2], a diag-10

onal masking corresponds to image inpainting [3], and a blurring11

operator corresponds to image deblurring [4].12

Image priors play a crucial role in image restoration, including13

total variation (TV) [5–7], sparsity [2, 8], low-rank [9–11], and14

deep image prior [12–20]. Particularly, sparsity prior is considered15

remarkable for natural images [2, 8, 21–24]. Current algorithms,16

based on strategies for manipulating sparsity prior, are roughly17

divided into two classes: patch-based [2, 25, 26] and group-based18

approaches [8, 22, 27–29].19

Patch-based image restoration has received considerable attention20

over the past decades [2, 30]. These algorithms aim to identify low-21

dimensional representations (patch codes) under the assumption that22

each patch can be modeled with a linear combination of learned23

basis elements, known as a dictionary [2]. Dictionary strategies typ-24

ically fall into two categories: analytic and learning-based. Analytic25

approaches include discrete cosine transform (DCT), wavelet, and26

curvelet [31]. Compared to traditional analytic methods, dictionar-27

ies learned from images are more adaptive and accurate since they28

comprehensively depict the local structure of images. For instance,29

the widely-used dictionary learning method K-SVD [30] exhibits30

strong adaptability and has been successfully applied to tasks like31

image denoising [2, 30]. Furthermore, by imposing sparse con-32

straints on patch representations, patch-based sparse representation33

(PSR) achieves excellent performance for image restoration, where34

each patch is represented with a linear combination of a few atoms35

from the learned dictionary.36

However, patch-based methods have been criticized for indepen-37

dently learning dictionaries and representations for each patch, lead-38

ing to two significant limitations. Firstly, these methods are compu-39

tationally time-consuming, hindering their application to large-scale40

image datasets. Secondly, they only exploit the intrinsic structure41

of each patch, disregarding the correlation among various patches,42

namely non-local self-similarity (NSS). To address these issues,43

group-based approaches, such as group sparse representation (GSR)44

[27, 28, 32], learn sparse coding and dictionaries from groups of sim-45

ilar patches, where strong correlations among them can be captured.46

In recent years, with the continuous development of deep neural47

networks (DNN), many image restoration methods based on DNN48

have emerged. [33] proposes a retractable transformer architecture49

based on attention mechanisms, which dynamically adjusts attention50

across different layers to restore images details more precisely. [34]51

proposes sparse transformer to solve deraining problems adaptively.52

The model leverage multi-scale features to improve the efficiency53

of removing rain streaks. [35] efficiently captures long-rang depen-54

dencies and preserves fine image details, enabling effective image55

restoration while reducing computational complexity. The image56

restoration algorithm based on DNN essentially achieves implicit57

patch similarity computation through the combination and cascad-58

ing of linear layers (especially convolutional neural networks) and59

nonlinear layers.60

Compared to patch-based methods, GSR models [25, 26] demon-61

strate outstanding performance in image restoration. For example,62

BM3D [26] performs collaborative filtering on groups of 3D patches.63

Mairal et al. [32] proposed LSSC, which simultaneously sparse64

encodes similar patches in a certain transform domain to enforce65

similar coefficients. Zhang et al. [27] introduced a GSR-based model66

for image restoration, designing a self-adaptive dictionary for image67

patch groups and solving sparse coding with ℓ0 minimization. Xu68

et al. [36] learned an NSS prior for patch groups based on exter-69

nal image databases before image denoising, achieving excellent70

results when the distribution of external patch groups and target71

image patch groups is similar. To preserve the characteristics of72

IET Research Journals, pp. 1–14
c⃝ The Institution of Engineering and Technology 2015 1



the target image itself, a series of models combining internal and73

external priors are proposed [37, 38]. To obtain more correct spar-74

sity solutions for image restoration, Wang et al. [29] incorporated75

nonconvex weighted ℓp minimization into the GSR framework for76

image denoising. To avoid learning dictionaries from image patches,77

principal component analysis (PCA) is adopted to construct dictio-78

naries [27, 29]. Recently, Zha et al. [39] proposed the LGSR model,79

utilizing low-rankness to guide dictionary learning.80

However, these group sparse representation models simply group81

similar image patches without fully exploiting the relationships82

between these patches and ignoring the specificity among patches83

within the same group. To address these issues, we propose a84

graph learning-guided group sparse representation image restora-85

tion algorithm. Firstly, this algorithm characterizes the similarity86

relationships between image patches through graph learning and per-87

forms initial reconstruction of the image to enhance the performance88

of subsequent sparse representation learning. Secondly, low-rank89

constraints are imposed during graph learning to fully explore the90

sub-group structure of the same group of image patches. Finally, to91

ensure that the learned representation satisfies sparsity while pre-92

serving the original similarity structure between image patches, the93

algorithm introduces trace optimization regularization. Extensive94

experiments are conducted to validate the superiority of the proposed95

algorithm over some currently popular image restoration algorithms.96

The following is a summary of this research’s main contribu-97

tions.98

- To enhance the quality of sparse representation learning, this study99

utilizes a graph learning model to characterize the similarity relation-100

ships between image patches and employs this model for the initial101

reconstruction of the image.102

- In order to fully exploit the relationships between image patches103

while preserving the specificity of each patch, low-rank constraints104

are imposed during the graph learning process to identify sub-group105

structures within the same group of image patches.106

- To ensure that the learned representation maintains sparsity while107

preserving the original similarity structure between image patches,108

this paper introduces a structural preservation regularization term109

into the model, thereby further improving the interpretability of110

sparse representation.111

- Extensive experiments on two image restoration tasks, namely112

image denoising and inpainting, are conducted to thoroughly vali-113

date the effectiveness and superiority of the proposed algorithm.114

The remaining sections of this article is arranged as follows. Section115

2 introduces the preliminaries, Section 3 elaborates the proposed116

algorithm for image restoration in detail, Section 4 presents the117

experimental results, and conclusions are drawn in Section 5.118

2 Preliminaries119

In this section, we will present the notations and preliminaries that120

are going to be used for the rest of the paper.121

2.1 Notations122

Let the bold upper, bold lower, and lower-case letters denote matri-123

ces, vectors, and scalars, respectively. Let X ∈ Rn×m be a n×m124

matrix, and x ∈ Rd be a vector with d elements, respectively. X
′

is125

the transpose of matrix X.126

The Frobenius norm of matrix X is defined as127

∥X∥ =

√
tr(X′X) =

√
tr(XX′

), (2)

where tr(X) is the trace of matrix X. ℓ0-norm of vector x is defined128

as the number of non-zero elements in x, i.e.,129

∥x∥0 =
∑
i

|xi|0. (3)

ℓ1-norm of vector x is the sum of absolute values of elements in x,130

i.e.,131

∥x∥1 =
∑
i

|xi|. (4)

ℓp-norm (0 < p < 1) of vector x is defined as132

∥x∥p = (
∑
i

|xi|p)1/p. (5)

∥X∥0, ∥X∥1 and ∥X∥p denotes imposing ℓ0-norm, ℓ1-norm, and ℓp-133

norm on each column of matrix X, respectively. Nuclear norm of134

matrix X is defined as135

∥X∥∗ =

min(m,n)∑
i=1

|λi|, (6)

where λi is the i-th singular value of matrix X.136

2.2 Image Restoration137

To simplify the model, we set the degradation matrix H as the iden-138

tity matrix. Then, given a degraded image Y, image restoration is139

formulated as140

Y = X + E, (7)

where X and E denote the original image and additive noise, respec-141

tively. Without loss of generality, image prior is denoted by θ142

and then maximum a posteriori (MAP) framework [8, 27, 40] is143

employed, i.e., a posteriori function of the form log p(X|Y, θ) is144

maximized145

log p(X|Y) = log p(Y|X, θ) + log p(X|θ). (8)

The likelihood term is the Gaussian distribution [8]146

p(Y|X, θ) =
1√

2πσE
exp(− 1

2σ2
E

∥Y − X∥2), (9)

where σ2
E is the noise variance. And then Eq. (8) is equal to147

min
X

1

2
∥Y − X∥2 + σ2

EΘ(X), (10)

where Θ(X) is regularization term derived from prior θ.148

2.3 Sparse Representation149

Given features d1, . . . , dn, representation learning for a vector x150

aims to obtain a linear function such that151

x ≈ a1d1 + · · ·+ andn, (11)

where ai is the coefficient for feature xi. Eq.(11) is solved by152

minimizing approximation, i.e.,153

min
1

2
∥x − Da∥2, (12)

where D = [x1, · · · , xn], and a = (a1, . . . , an)
′
, respectively. The154

sparse representation learning expects most of coefficients are 0,155

where Eq.(11) is formulated as156

min
1

2
∥x − Da∥2 + α∥a∥0, (13)

where α is a parameter.157

Furthermore, extension for sparse representation learning is158

needed. When multiple objects involve, i.e., X = [x1, . . . , xn], GSR159
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simultaneously handles n objects into an objective function, where160

Eq.(13) is re-written as161

min
1

2
∥X − DA∥2 + α∥A∥0, (14)

where ∥A∥0 is regularization item, denotes imposing ℓ0-norm on162

each column of A.163

There are various strategies for constructing sparsity, i.e., ℓ1-norm164

[41][42], and ℓp-norm (0 < p < 1), to bridge ℓ0 and ℓ1 [43][44]. In165

summary, sparse representation methods assume that image patches166

or pixels can be represented by a small number of basis elements167

(atoms). And graph-based sparse representation methods decompose168

the image into sparse components while considering the graph struc-169

ture of the image. Graph-based Sparse Coding exploits the graph170

structure to encourage similarity between adjacent patches, allow-171

ing for the recovery of missing parts of the image by leveraging the172

underlying relationships in the graph.173

3 Proposed Method174

In this section, we present the proposed method in detail, encom-175

passing the restoration model, optimization, parameter selection, and176

discussion on its computational complexity.177

The overview of the proposed algorithm is illustrated in Fig. 1,178

which comprises four major components: patch grouping, sparse179

representation learning, low-rank self-representation, and structure180

preservation. Patch grouping divides sub-blocks of the original181

images into different classes, where patches within the same groups182

exhibit high similarity. The low-rank self-representation module183

conducts self-representation learning through original image blocks184

and initiates the reconstruction of the image blocks. Group sparse185

representation learning projects each group of image blocks into a186

subspace spanned by dictionary matrix columns to obtain the repre-187

sentation of the image block, while the structure preservation module188

aims to ensure that the learned sparse representation maintains the189

original similarity structure of the image.190

3.1 Restoration Model191

In the patch grouping block, like other GSR-based restoration mod-192

els [27, 28, 32], a patch-matching based approach is utilized. Specif-193

ically, the degraded image Y is divided into patches, where the size194

of patches varies with downstream applications. For each reference195

patch, the closest m patches within window of l × l are selected as196

a group, where patches belonging to multiple groups are allowed.197

To ensure the quality of groups, the step size of selected reference198

patches is small, where window size is large. In general, we set step199

size of selection reference patches as 3 or 4, and that of windows200

as 25× 25. By stacking pixels each reference patch is denoted as201

yi, and the corresponding patch group is Yi, where each column202

corresponds to a patch within the group.203

In the sparse representation learning block, the most intuitive204

strategy is to project each group of patches into a subspace, where the205

the low-dimensional representation of patches is obtained. Specif-206

ically, given patch group Yi, the low-dimensional representation207

of patches is learned by minimizing the approximation, which is208

formulated as209

O(Yi) =
1

2
∥Yi − DiAi∥2, (15)

where Di and Ai denotes the dictionary and coefficient matrix of Yi,210

respectively. Sparse representation learning [30] expects the learned211

Ai is sparse, i.e., the most elements are 0, which improves com-212

putational efficiency and interpretability of solutions. By imposing213

ℓ1-norm constraint to coefficient matrix Ai, Eq.(15) is reformulated214

as215

O(Yi) =
1

2
∥Yi − DiAi∥2 + β∥Ai∥1, (16)

where parameter β determines the relative importance of sparsity216

constraint. Recently, evidence [43][44] demonstrates that ℓp-norm217

overcomes limitation of ℓ1-norm to fulfill sparsity of representation.218

Therefore, Eq.(16) is re-written as219

O(Yi) =
1

2
∥Yi − DiAi∥2 + β∥Ai∥p. (17)

In order to achieve better image restoration effects, in addition220

to utilizing image sparsity, the non-local self-similarity of the221

image should also be considered. This chapter uses low-rank self-222

representation to characterize the non-local self-similarity of images,223

that is, an image block can be represented by a linear combination224

of similar image blocks, and the coefficient matrix satisfies the block225

diagonal structure (low rank). Based on the group sparse representa-226

tion model, this chapter introduces the low-rank self-representation227

feature, and obtains228

O(Yi) =
1

2
||Yi −DiAi||2 + β||Ai||p

+
γ

2
||DiAi − Zi||2 + τ ||Wi||∗

s.t. Zi = ZiWi, Wi = W ′
i,

(18)

where Zi is an intermediate auxiliary variable, Wi is a self-229

represented sparse matrix, and ||Wi||∗ represents the nuclear norm230

of Wi. Different from the method proposed in the previous chapter,231

low-rank self-representation learning is used here to guide the learn-232

ing of dictionary matrices and sparse representations at the same233

time, thereby further improving the quality and interpretability of234

sparse representation learning.235

In order to prevent over-smoothing, this paper hopes that the236

learned sparse representation satisfies the sparsity constraints while237

still maintaining the similarity structure between the original image238

blocks. First, we perform self-representation learning on the sparse239

representation Ai, and the obtained self-representation matrix is as240

close as possible to the self-representation of the original image241

block, that is, minimizing242

O(Ai) = ||Ai −AiSi||2 − Tr(W ′
iSi), (19)

where Si is the self-representation matrix of sparse coding Ai. Tr(·)243

represents the trace of the matrix, Tr(W ′
iSi) measures the similar-244

ity between matrices Wi and Si. The combined expressions (18) and245

(19) can be obtained246

O(Yi) =
1

2
||Yi −DiAi||2 + β||Ai||p + λ(||Ai −AiSi||2

− Tr(W ′
iSi)) +

γ

2
||DiAi − Zi||2 + τ ||Wi||∗

s.t. Zi = ZiWi, Wi = W ′
i,

(20)

Without loss of generality, the above prior model can be sub-247

stituted into the general image restoration framework 10 to obtain248

249

O(Y ) =
1

2
||Y −X||+

∑
i

{α
2
||QiX −DiAi||2 + β||Ai||p

+
γ

2
||DiAi − Zi||2 + τ ||Wi||∗ + λ(||Ai −AiSi||2

− Tr(W ′
iSi))}

s.t. Zi = ZiWi, Wi = W ′
i, ∀i

(21)

where Qi represents the matrix operator for extracting the ith group250

of image blocks in image X , that is, QiX = Xi. Given the degra-251

dation image Y , the restored image X can be obtained by solving252

the above equation. The next section will introduce the optimization253

process of solving this objective function.254
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Sparse Representation 
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PCA-based dictionary Di Group sparse code Ai

Reconstructed sparse code  !"

 Weight matrix Wi

Aggregation

 Wi Si

×

PCA-based dictionary Di

Sparse Representation 

Structure Preserving

Fig. 1: Overview of the proposed image restoration algorithm, which consists of three major parts, including patch grouping, sparse
representation learning and group residual learning.

3.2 Optimization255

Due to the non-convex nature of the nuclear norm and lp norm, the256

objective function (21) cannot directly yield an analytical solution.257

Therefore, this paper employs an alternating iteration strategy for258

optimization, wherein a single variable is optimized while keeping259

other variables fixed until convergence or reaching the termination260

condition.261

1) Update Zi and weight matrix Wi: Fixing X and Ai, and simul-262

taneously eliminating irrelevant terms, the objective function (21) for263

Wi can be equivalently expressed as264

γ

2
||DiAi − Zi||2 + τ ||Wi|| ∗ s.t. Zi = ZiWi, ,Wi = W ′i.

(22)
According to the literature [45], equation (22) can be efficiently265

solved by performing singular value decomposition on DiAi, i.e.,266

DiAi = UiΣiV
′i, where Λi = diag(λi) is a diagonal matrix con-267

taining singular values, and Ui and Vi represent the left and right268

singular matrices, respectively. Then, the optimal solution for Zi in269

equation (22) can be expressed as270

Ẑi = Ui1Σi1V ′i1, (23)

where Σi1 contains singular values greater than
√

2τ
γ , while Ui1 and271

Vi1 contain the corresponding singular vectors. The optimal solution272

for Wi is273

Ŵi = Vi1V
′
i1. (24)

For the proof of the optimal solution of the above formula, please274

refer to the literature[45].275

2) Update the weight matrix Si: Eliminate terms irrelevant to Si,276

and the objective function (21) can be simplified to277

O(Ai) = ||Ai −AiSi||2 − Tr(W ′
iSi). (25)

Taking the partial derivative of Si yields278

A′
iAi +A′

iAiSi −Wi = 0. (26)

Setting it to 0, we obtain the update formula for Si as279

Ŝi = (A′
iAi)

−1(A′
iAi +Wi). (27)

3) Update group sparse representation Ai: Eliminate terms irrel-280

evant to Ai, and the objective function (21) can be simplified to281

282
α

2
||Xi −DiAi||2 +

γ

2
||DiAi − Zi||2 +

η

2
||Ai −AiSi||2 + β||Ai||p.

(28)
By merging the first two terms, we obtain283

1

2
||Gi −DiAi||2 +

η

2
||Ai −AiSi||2 + β||Ai||p, (29)

where Gi = (αXi + γZi)/(α+ γ). To better adapt to the local284

structure of the image, this section adopts the PCA sub-dictionary285

strategy, i.e., learning an orthogonal dictionary through each group286

Gi.287

After obtaining the dictionary Di, the lp norm makes the solu-288

tion of equation (29) non-convex. Therefore, this paper utilizes the289

generalized soft threshold (GST) algorithm [46], an efficient iterative290

strategy to obtain approximate solutions. Specifically, the update rule291

for Ai can be expressed as292

Âi = GST(Pi, µ, p, t), (30)

where t represents the number of iterations of the GST algorithm,293

and the specific definitions of Pi and µ are:294 {
Pi = α(Ai −D′

iXi) + γAi(I − Si − S′
i + SiS

′
i),

mu = β
α+γ||I−Si||2 .

(31)
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4) Update the restored image X: By fixing the matrices Ai and295

Wi, the objective function (21) can be simplified to296

1

2
||Y −X||2 +

α

2

∑
i

||QiX −DiAi||2. (32)

Since equation ((32)) is convex with respect to X , setting the partial297

derivative of (32) with respect to X to 0 yields the exact solution as298

X̂ = (I + α
∑
i

Q′
iQi)

−1(Y + α
∑
i

Q′
iDiAi), (33)

where DiAi represents the reconstruction of the image patch group299

Xi, and Q′
i can be regarded as a matrix operator that puts the300

reconstructed image patch group back into the original image. In301

fact, (I + α
∑

i Q
′
iQi) is a diagonal matrix, and its inverse can be302

obtained by element-wise division. Therefore, equation (33) can be303

regarded as superimposing the reconstructed image patches and per-304

forming a weighted average with the degraded image to obtain the305

restored image.306

3.3 Parameter Selection307

In order to obtain the best performance results, this algorithm adopts308

an adaptive parameter adjustment strategy to enable the proposed309

algorithm to adapt to various image structures. First, we update the310

noise variance σ2
E [6] using an iterative regularization strategy311

σ
(k)
E = c0

√
(σ2

E − ||Y − X̂(k)||2), (34)

Among them, k represents the current number of iterations, and c0312

is a positive constant.313

Inspired by the maximum posterior probability framework[8], it314

is assumed here that the sparse encoding Ai obeys the Laplace315

distribution[29, 47], and the sparse residual Ri obeys the Gaussian316

distribution, and then the parameters can be obtained. The update317

strategy of β and η is318

β =
σ2
E

δi + ϵ
, (35)

319

η =
σ2
E

δ2i + ϵ
, (36)

Among them, δi represents the standard deviation of Ai, and its esti-320

mation method can be found in the document [10]. At the same time,321

ϵ represents a very small constant to prevent the denominator from322

being zero.323

In addition, the parameters α and γ adopt the following update324

strategy:325

α = c1σ
2
E , (37)

326

γ = c2σ
2
E . (38)

Where c1 and c2 both represent positive constants. Formulas(37) and327

(38) mean that the parameters α and γ are respectively proportional328

to the standard deviation δi of the noise variance σ2
E .329

3.4 Method Overview330

To sum up, the image restoration algorithm proposed in this chap-331

ter can be realized through the above-mentioned alternating update332

steps and parameter adaptive adjustment mechanism. The pseu-333

docode of the proposed algorithm is shown in Algorithm1.334

3.5 Computational Complexity Analysis335

In this subsection, we analyze the computational complexity of the336

proposed method theoretically. Concerning the spatial complexity,337

Algorithm 1 The proposed algorithm for image restoration.

Input: The degraded image Y.
1: Initialize X̂

(0)
= Y, k = 0, σ(0)

E .
2: Set the parameters c0, c1, c2 and p.
3: while k <= Max-Iter do
4: for each reference patch xi do in X̂

(k)

5: Search similar patches to construct patch group Xi.
6: Update Zi and Wi by (23) and (24).
7: Update α and γ by (37) and (38).
8: Construct the dictionary Di through PCA on Gi by (29).
9: Update Ai by Ai = Di

′
Xi.

10: Update Si by (27).
11: Update β and η by (35) and (36).
12: Update Ai by (30).
13: end for
14: Update X̂

(k)
by (33).

15: Update σ
(k)
E by (34).

16: Until convergence conditions are met.
17: end while
Output: The restored image X̂.

the proposed algorithm requires space complexity of O(m2n). The338

matrices Wi and Si for each image block group require space of339

O(m2). The space complexity for Ai, Xi, and Zi for each image340

block group is O(dm), where d represents the number of rows in Ai,341

Xi, and Zi. Therefore, the total spatial complexity of the proposed342

algorithm is O(m2n), where n is the number of image block groups.343

Regarding the time complexity, it comprises four main compo-344

nents: 1) Low-rank self-representation learning, 2) Structure preser-345

vation, 3) Sparse representation learning, and 4) Image reconstruc-346

tion. The time complexity for updating Wi is O(tnm3), where t347

is the number of iterations. The time complexity for updating Si348

is O(tnm3). The time complexity for updating Ai is O(tndm).349

The time complexity for image group reconstruction is O(tnb2m).350

Hence, the total time complexity of the algorithm is O(tnm3).351

4 Experimental Results352

To fully validate the performance of the proposed algorithms, exten-353

sive experiments are conducted on two typical image restoration354

tasks: denoising and deblocking.355

4.1 Experimental Setting356

1) Benchmark: As the proposed algorithm follows a self-supervised357

learning approach, only test datasets are required to validate the358

performance of the proposed algorithm.359

For the image denoising task, experiments are conducted on three360

datasets: commonly used test images (including 13 natural images,361

as shown in Figure ??), the Set12 benchmark dataset [48] (consisting362

of 12 grayscale images), and the DND dataset [49]. DND consists of363

50 high-resolution images with realistic image noise, and the DND364

images have been resized to 256× 256. For the scene with man-365

made noise (the first two datasets), Gaussian noise at various levels366

is added to the original images to generate noisy images, which are367

then used for testing. For DND, there is no need to generate noisy368

images via manually adding Gaussian noise. Additionally, several369

real noisy images are also selected for experiments to thoroughly370

validate the algorithmâĂŹs effectiveness.371

For the image deblocking task, two widely used datasets are372

employed: the LIVE1 dataset [50] and the Classic5 dataset [51],373

comprising 29 and 5 natural images, respectively. Each test image374

is first encoded using the MATLAB JPEG encoder at different com-375

pression quality levels Q. Subsequently, the compressed images are376

decoded using a standard JPEG decoder to obtain the input images377
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for experimentation. Besides the LIVE1 and Classic5 datasets, 8 fin-378

gerprint images are also used to further validate the superiority of379

the proposed algorithm.380

This experimental setup ensures comprehensive evaluation of the381

proposed algorithm’s performance across various image restoration382

tasks.383

2) Parameter Setting: For image denoising, the parameter set-384

tings of the proposed algorithm are as follows: when the noise level385

σE is ≤ 30, 30 < σE ≤ 50, and 50 < σE ≤ 100, the patch sizes386

are set to 7× 7, 8× 8, and 9× 9, respectively. When σE ≤ 30,387

30 < σE ≤ 40, 40 < σE ≤ 50, 50 < σE ≤ 75, and 75 < σE ≤388

100, the number of patches per group is set to 60, 70, 80, 90, and 100,389

respectively. When σE ≤ 30, 30 < σE ≤ 40, and 40 < σE ≤ 100,390

the parameter p is set to 0.8, 0.85, and 0.9, respectively.391

For image deblocking, the patch size is set to 7× 7. The num-392

ber of similar patches per group is set to 60. When the compression393

quality Q is ≤ 10, 10 < Q ≤ 20, and 20 < Q ≤ 40, the parameter394

p is set to 0.9, 0.8, and 0.2, respectively.395

4.2 Compared Methods396

In the image denoising task, the proposed algorithm is compared397

with several state-of-the-art denoising methods, including BM3D398

[26], LSSC [32], EPLL [52], LPCA [53], NCSR [8], aGMM [54],399

NLN-CDR [55], SNSS [56], and LGSR [39]. Among them, algo-400

rithms such as BM3D [26], LSSC [32], EPLL [52], LPCA [53],401

aGMM [54], and NLN-CDR [55] utilize the prior of non-local self-402

similarity in images. The SNSS [57] algorithm further incorporates403

non-local self-similarity prior knowledge obtained through an exter-404

nal image database. Particularly, the NCSR [8] algorithm and the405

proposed algorithm in this paper are both based on sparse rep-406

resentation models and utilize non-local self-similarity in images407

for algorithmic improvement. Additionally, the proposed algorithm408

is compared with several deep learning-based denoising models,409

including TRND [58], DnCNN [48], and S2S [59]. Among these410

models, TRND and DnCNN are supervised learning models, while411

S2S is a self-supervised learning algorithm. These deep learning412

models serve as widely adopted baseline models.413

For the image deblocking task, the proposed method is com-414

pared with various classical image deblocking methods, including415

BM3D [26], SA-DCT [60], PC-LRM [61], WNNM [62], ANCE416

[63], SSR-QC [64], COGL [65], JPG-SR [57], NSSRC [22], as417

well as with deep learning-based deblocking models such as AR-418

CNN [66], TRND [58], DnCNN [48], DCSC [67], and MDDU419

[68]. Among these comparison methods, AR-CNN is a commonly420

used deep learning baseline model for compression artifact removal,421

while TRND and DnCNN are general-purpose image restoration422

models. Lastly, DCSC and MDDU are the latest and most advanced423

image deblocking models.424

It’s worth noting that the experiments in this section were con-425

ducted with the default parameters set by the original authors for426

the compared methods. For deep learning models, the experiments427

were conducted using the pre-trained models provided by the official428

sources.429

4.3 Image Denoising430

Image denoising is the most common and fundamental task in image431

restoration. To validate the effectiveness of the proposed image432

restoration algorithm in this chapter, experiments were conducted433

using MATLAB’s random number generator to synthesize Gaussian434

white noise (GWN) images for testing. Additionally, several real435

images were selected for denoising testing.436

1) Comparison with Classical Image Denoising Methods: The437

proposed method and other classical denoising methods were evalu-438

ated at noise levels σE of 20, 30, 40, 50, 75, and 100, respectively. To439

quantify the effectiveness of the algorithms, two evaluation metrics440

were used to assess the quality of the restored images: Peak Signal-441

to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [69].442

Table 1 (PSNR results) and Table 2 (SSIM results) show the denois-443

ing average results of all compared methods on 13 commonly used444

(a) (b) (c)

(d) (e) (f)

Fig. 2: Visualization of algorithms for denoising imageairplane
under σE = 75 noise: (a) Original image, (b) Noise image, (c)
BM3D (PSNR = 23.99 dB, SSIM = 0.7488), (d) EPLL (PSNR =
23.94 dB, SSIM = 0.7168), (e) NCSR (PSNR = 23.77 dB, SSIM =
0.7551), and (f) The proposed algorithm (PSNR = 24.25 dB, SSIM
= 0.7690).

test images, with the best results highlighted in bold. It is evident445

that the proposed algorithm outperforms all other compared methods446

overall in both PSNR and SSIM metrics. Particularly in terms of the447

SSIM metric, the proposed algorithm significantly outperforms other448

methods. The SSIM metric primarily focuses on the structural infor-449

mation of images, simulating human perception of image structure,450

and providing a more accurate assessment of image quality.451

Experiments setup on real-word dataset DND follows the main452

approach outlined in [49]. The algorithms are applied to the space453

of linear raw intensity(RAW data) and RAW data with a variance454

stabilizing transformation(VST). After denoising, the results are455

compared with RAW and sRGB for evaluation respectively. There-456

fore, there are four separate scenarios in the experiment results, as457

reported in Table 3 for average PSNR and Table 4 for average SSIM458

respectively, where the best performance if highlighted in bold. It is459

obvious that performance is better in scenarios where algorithms are460

evaluated on the RAW space, regardless which space the algorithm461

is applied to. Our proposed method outperforms most other baseline462

methods in nearly all scenarios, except for the third scenario, where463

both PSNR and SSIM are slightly weaker than BM3D.464

Human visual perception is the most intuitive judgment of image465

quality, which is crucial for evaluating image denoising algorithms.466

Figures 2 and 3 respectively illustrate the denoising visualization467

results of the proposed algorithm and other classical algorithms on468

images Airplane and Miss at noise level σE = 75. Among them,469

BM3D [26] adopts collaborative filtering for denoising, and it can be470

observed from the images that its result suffers from oversmoothing,471

leading to the blurring of the original texture structure. The EPLL472

algorithm [52] denoises based on image distribution, but the denois-473

ing result is not ideal, as there are still many artifacts remaining. The474

NCSR algorithm [8], like the algorithm proposed in this chapter, is475

based on group sparse representation model. However, it can be seen476

from the images that although NCSR can effectively remove noise,477

the image does not retain the original structure clearly, whereas the478

proposed algorithm in this chapter has addressed this issue as much479

as possible. Overall, both the SSIM results and the visualization480

results demonstrate the superiority of the proposed algorithm. This481

is attributed to the adoption of low-rank self-representation for graph482

learning and guiding the learning of sparse representation in this483

algorithm, which allows the learned sparse representation to main-484

tain the original graph structure, thus avoiding oversmoothing to a485

certain extent.486

2) Comparison with DNN-based Image Denoising Models: Deep487

Neural Networks (DNNs) have achieved significant success in both488
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Table 1 Average PSNR (dB) results of image denoising compared with classical methods on test image dataset

σE BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS LGSR Ours
20 31.87 31.98 31.44 31.31 31.85 31.78 31.21 32.09 32.15 32.20
30 29.86 29.88 29.88 29.40 29.72 29.69 29.02 30.11 30.21 30.25
40 28.25 28.41 27.95 27.48 28.29 28.22 27.84 28.68 28.65 28.77
50 27.26 27.26 26.82 26.25 27.16 27.10 26.73 27.62 27.62 27.68
75 25.31 25.16 24.82 24.09 25.08 25.02 24.82 25.65 25.67 25.69
100 23.92 23.69 23.46 22.61 23.60 23.63 23.58 24.33 24.35 24.30

Average 27.75 27.73 27.40 26.86 27.62 27.57 27.20 28.08 28.11 28.15

Table 2 Average SSIM results comparing image denoising with classical methods on test image dataset

σE BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS LGSR Ours
20 0.9014 0.9013 0.8950 0.8935 0.9004 0.8994 0.8905 0.9029 0.9056 0.9062
30 0.8659 0.8648 0.8549 0.8526 0.8645 0.8607 0.8357 0.8712 0.8760 0.8764
40 0.8303 0.8330 0.8177 0.8145 0.8346 0.8256 0.8183 0.8439 0.8456 0.8477
50 0.8058 0.8047 0.7836 0.7789 0.8079 0.7939 0.7879 0.8195 0.8202 0.8231
75 0.7440 0.7398 0.7096 0.6988 0.7518 0.7197 0.7320 0.7660 0.7658 0.7687

100 0.6925 0.6907 0.6477 0.6277 0.7042 0.6566 0.6964 0.7230 0.7260 0.7262
Average 0.8067 0.8057 0.7848 0.7777 0.8106 0.7927 0.7935 0.8211 0.8232 0.8247
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Visualization of algorithms for denoising imageMiss under
σE = 75 noise: (a) Original image, (b) Noisy image, (c) BM3D
(PSNR = 27.34 dB, SSIM = 0.7722), (d) EPLL (PSNR = 26.69 dB,
SSIM = 0.7422), (e) NCSR (PSNR = 27.01 dB, SSIM = 0.7927), and
(f) the proposed algorithm (PSNR = 27.55 dB, SSIM = 0.7956).

Table 5 Average PSNR (dB) / SSIM results comparing image denoising
with DNN-based methods on the Set12 dataset

Methods σE = 15 σE = 25 σE = 50 Average

TRND 32.51 30.04 26.78 29.78
0.8970 0.8523 0.7672 0.8388

DnCNN 32.50 30.17 26.98 29.88
0.8966 0.8549 0.7700 0.8405

S2S 32.07 29.94 26.12 29.38
0.8891 0.8475 0.7382 0.8249

Ours 32.51 30.17 27.01 29.90
0.8941 0.8538 0.7794 0.8424

high-level understanding and basic processing tasks of images.489

Therefore, this section compares the proposed algorithm with several490

mainstream DNN-based image denoising models, including TRND491

[58], DnCNN [48], and S2S [59]. The average results (PSNR and492

SSIM) on the Set12 dataset are shown in Table 5.493

The results indicate that the proposed method outperforms some494

popular deep image denoising models. For better visualization, this495

section selects some denoising results at σE = 50 for visual dis-496

play, as shown in Figures 4 and 5. The denoising results of TRND,497

DnCNN, S2S, and the proposed method are displayed in the fig-498

ures. It can be observed that deep learning-based methods tend to499

produce artifacts or oversmoothing during denoising, while the pro-500

posed method can avoid such issues and more clearly restore the501

details of the image. The results indicate that although supervised502

deep models can be trained on large-scale datasets to fit the distribu-503

tion of images as much as possible, the generalization ability of this504

distribution fitting is usually insufficient, resulting in unsatisfactory505

performance on images dissimilar to the training dataset distribution.506

These supervised deep models overlook the inherent structural priors507

of images, such as sparsity and NSS, while the proposed algorithm508

can effectively utilize these priors to achieve desirable results on509

various images. Although the S2S model and the proposed method510

are both self-supervised models, the deep network parameters of the511

S2S model lead to longer learning times compared to the proposed512

method.513

To thoroughly validate the effectiveness of the proposed514

algorithm, experiments were conducted using real noisy images. As515

the model proposed in this chapter requires the noise variance of the516

images as a prior parameter, a fast noise estimation method [70] was517

employed to obtain the noise variance of the real images in advance.518

The denoising results of real noisy images are shown in Figure 6.519

The proposed method is compared with the S2S [59] model, which is520

(a) (b) (c)

(d) (e) (f)

Fig. 4: Visualization of denoising results of algorithms for image
House in the Set12 dataset under σE = 50 noise: (a) Original image,
(b) Noisy image, (c) TRND (PSNR = 29.40 dB, SSIM = 0.8058),
(d) DnCNN (PSNR = 29.74 dB, SSIM = 0.8059), (e) S2S (PSNR =
27.47 dB, SSIM = 0.7032), and (f) the proposed algorithm (PSNR =
30.40 dB, SSIM = 0.8293).

(a) (b) (c)

(d) (e) (f)

Fig. 5: Visualization of denoised image Barbara in the Set12 dataset
under σE = 50 noise: (a) Original image, (b) Noisy image, (c)
TRND (PSNR = 25.78 dB, SSIM = 0.7450), (d) DnCNN (PSNR
= 25.53 dB, SSIM = 0.7361), (e) S2S (PSNR = 26.82 dB, SSIM =
0.7840), and (f) the proposed algorithm (PSNR = 27.88 dB, SSIM
= 0.8243).

(a) (b) (c)

Fig. 6: Visualization of denoising for real images by various
algorithms: (a) Real image, (b) S2S, and (c) the proposed algorithm.

also a self-supervised model based on deep learning. It can be clearly521

observed that the restoration results of S2S exhibit oversmoothing,522

while the proposed method preserves more image details.523
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(a) (b) (c) (d)

Fig. 7: Visualization of image buildings in the LIVE1 dataset (image
size: 256× 256) under compression quality Q = 10 deblocked by
various algorithms: (a) Original image, (b) JPEG compressed image
(PSNR = 23.83 dB, SSIM = 0.8232), (c) SA-DCT (PSNR = 24.66
dB, SSIM = 0.8177), and (d) the proposed algorithm (PSNR = 25.11
dB, SSIM = 0.8311).

(a) (b) (c) (d)

Fig. 8: Visualization of performance of various algorithms for
deblocking image sailing3 in the LIVE1 dataset (image size: 256×
256) under compression quality Q = 10: (a) Original image, (b)
JPEG compressed image (PSNR = 28.61 dB, SSIM = 0.7561), (c)
SA-DCT (PSNR = 29.62 dB, SSIM = 0.8310), and (d) the proposed
algorithm (PSNR = 29.96 dB, SSIM = 0.8457).

4.4 Image Deblocking524

To further comprehensively validate the effectiveness of the pro-525

posed algorithm, experiments were conducted on the JPEG com-526

pression artifact removal problem [60, 64, 66], which involves527

removing blocky artifacts from JPEG compressed images. Unlike528

image denoising tasks, in image deblocking, the additive noise E529

is quantization noise. Therefore, classic Gaussian models [60] were530

employed to estimate the noise standard deviation σE , characteriz-531

ing the noise quantization process.532

1) Comparison with Classical Image Deblocking Methods: To533

evaluate the performance of all classical deblocking methods534

involved in the comparison, experiments were conducted on two535

commonly used benchmark datasets: the LIVE1 dataset [50] and the536

Classic5 dataset [51]. Similar to image denoising, experiments uti-537

lized two evaluation metrics, PSNR and SSIM. The results are shown538

in Tables 6 and 7. It is evident that the proposed method outperforms539

other classical methods on the Classic5 dataset at a compression540

quality of Q = 40. Particularly, the proposed method significantly541

outperforms other comparison methods on low compression quality542

images (Q = 10, 20, 30) and approaches or even surpasses current543

state-of-the-art methods on high compression quality images (Q =544

40).545

To provide a more intuitive demonstration of the superiority of546

the proposed algorithm, Figure 7 and Figure 8 respectively illustrate547

the deblocking results of the images buildings and sailing3 from the548

LIVE1 dataset at a compression quality of Q = 10. A visual com-549

parison is made between the proposed algorithm and the popular550

SA-DCT image compression algorithm. From the images, it can be551

observed that the SA-DCT algorithm fails to fully restore the edge552

information of the images during the deblocking process. Portions553

of the edges still exhibit blocky artifacts, as highlighted by the red554

boxes in the figures. In contrast, the proposed algorithm is able to555

effectively remove the blocky artifacts while preserving the edge556

details of the images.557

2) Comparison with DNN-based Image Deblocking Models:To558

further demonstrate the superiority of the proposed method in the559

image deblocking task, experiments were conducted to compare it560

with several deep learning-based methods, including AR-CNN [66],561

TRND [58], DnCNN [48], DCSC [67], and MDDU [68]. The com-562

parison experiment was conducted on the Classic5 [51] dataset,563

which is a popular benchmark dataset in the field of image deblock-564

ing. Table 8 presents the average PSNR and SSIM results at different565

compression qualities Q.566

The results indicate that the proposed method achieves better567

results compared to AR-CNN and TRND, while performing com-568

parably to DnCNN, DCSC, and MDDU. It is worth noting that these569

supervised deep learning methods require large-scale image datasets570

to train the image deblocking models. It can be observed that if the571

training image dataset and the distribution of test images are simi-572

lar or identical, then deep learning models can effectively adapt to573

different image structures.574

Table 8 Average PSNR(db)/SSIM results comparing image deblocking
with DNN-based methods on dataset Classic5

Methods Q = 10 Q = 20 Q = 30 Average

AR-CNN 29.08 31.25 32.60 30.98
0.7909 0.8514 0.8808 0.8410

TRND 29.29 31.48 32.79 31.19
0.7996 0.8581 0.8841 0.8473

DnCNN 29.40 31.63 32.91 31.31
0.8026 0.8610 0.8861 0.8499

DCSC 29.62 31.81 33.06 31.50
0.8096 0.8641 0.8882 0.8540

MDDU 29.95 32.11 33.33 31.80
0.8171 0.8689 0.8916 0.8592

Ours 29.43 31.65 32.88 31.32
0.8047 0.8608 0.8855 0.8503

However, it was observed in the experimental results that deep575

learning methods tend to cause excessive smoothing in the restored576

images, especially for texture-rich images, as shown in Figure 10.577

To further validate this finding, experiments were conducted using578

eight fingerprint images collected from the NIST dataset as the test579

benchmark, as shown in Figure 9. The average deblocking results for580

the eight fingerprint images are presented in Table 9. The proposed581

method outperforms all other deep learning-based image deblocking582

methods. Visual comparison results are shown in Figure 11, where it583

can be observed that the proposed method reconstructs better texture584

details compared to other methods.585

Table 9 Average PSNR(db)/SSIM results comparing image deblocking
with DNN-based methods on fingerprint image dataset

Methods Q = 10 Q = 20 Q = 30 Average

AR-CNN 30.23 33.04 34.76 32.68
0.8859 0.9291 0.9480 0.9210

TRND 30.42 33.19 34.87 32.83
0.8899 0.9317 0.9492 0.9236

DnCNN 30.31 33.07 34.73 32.70
0.8894 0.9308 0.9485 0.9229

DCSC 30.52 33.13 34.78 32.81
0.8934 0.9330 0.9497 0.9254

MDDU 30.45 32.95 34.35 32.58
0.8961 0.9349 0.9508 0.9273

Ours 30.81 33.54 35.20 33.18
0.8967 0.9344 0.9507 0.9273

4.5 Convergence586

Since the proposed algorithm involves block grouping operations,587

non-convex optimization, and parameter updates, it is challenging588

to provide theoretical proof for the local convergence of the pro-589

posed algorithm. Therefore, this subsection provides experimental590

evidence to validate the convergence of the proposed algorithm. Five591

test images were selected from the test dataset, and the process of592

restoring these images was recorded. Figures 12(a) and 12(b) show593
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Fig. 9: Eight fingerprint test images selected from the NIST dataset.

(a) (b) (c)

(d) (e) (f)

Fig. 10: Deblocking imageBarbara in the Classic5 dataset under
compression quality Q = 10: (a) Original image, (b) JPEG com-
pressed image (PSNR = 25.78 dB, SSIM = 0.7621), (c) ARCNN
(PSNR = 26.89 dB, SSIM = 0.7934), (d) TRND (PSNR = 27.24 dB,
SSIM = 0.8104), (e) DnCNN (PSNR = 27.59 dB, SSIM = 0.8161),
and (f) the proposed algorithm (PSNR = 28.26 dB, SSIM = 0.8335).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Performance of algorithms for deblocking imageimage 01
in the Classic5 dataset under compression quality Q = 10: (a) Orig-
inal image, (b) JPEG compressed image (PSNR = 28.41 dB, SSIM
= 0.8737), (c) ARCNN (PSNR = 29.57 dB, SSIM = 0.8969), (d)
TRND (PSNR = 29.73 dB, SSIM = 0.9008), (e) DnCNN (PSNR =
29.72 dB, SSIM = 0.9019), (f) DCSC (PSNR = 29.82 dB, SSIM =
0.9045), (g) MDDU (PSNR = 29.82 dB, SSIM = 0.9081), and (h)
the proposed algorithm (PSNR = 30.13 dB, SSIM = 0.9083).

the variation curves of PSNR values during the iterations of the594

image denoising with noise level σE = 50 and image deblocking595

with compression quality Q = 10 algorithms, respectively. It can be596

clearly observed that as the number of algorithm iterations increases,597

the PSNR curves of all restored images first monotonically increase598

and then gradually stabilize. Therefore, it can be proved that the599

proposed algorithm exhibits good convergence.600
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Fig. 12: Convergence of the proposed algorithm with various strate-
gies: (a) how PSNR changes as the number of iterations increases
with noise level σE = 50, and (b) how PSNR changes as the number
of iterations increases with compression quality Q = 10.

4.6 Ablation Study601

From the objective function 21, it can be seen that the proposed602

algorithm consists of three main modules: group sparse representa-603

tion (SR), low-rank self-representation (LR), and structure preserva-604

tion (SP). In order to investigate the effectiveness of these different605

modules in the proposed algorithm, this subsection conducts ablation606

experiments by separately removing the low-rank self-representation607

guidance module (γ = 0), the sparse constraint (β = 0), and the608

structure preservation term (λ = 0), to verify the roles played by609

each module. The ablation experiments are conducted using 13610

widely used test images (as shown in Figure ??) and applying these611

modules to image denoising. The average PSNR results are shown612

in Table 10. It can be observed that the low-rank self-representation613

also has the effect of noise removal, and the group sparse repre-614

sentation model guided by low-rank self-representation achieves a615

significant improvement in denoising performance compared to the616

single group sparse representation model. Additionally, the intro-617

duced structure preservation module in this chapter also contributes618

to the improvement in performance.619

Table 10 Average PSNR (dB) results of image denoising and ablation experiments on
13 commonly used test images

Modules 20 30 40 50 75 100 Average
SR 30.26 27.61 27.27 26.70 24.90 23.72 26.74
LR 25.70 23.23 17.59 15.70 12.30 9.18 17.28

SR+LR 32.24 30.13 28.56 27.60 25.66 24.23 28.07
SR+LR+SP 32.20 30.25 28.77 27.68 25.69 24.30 28.15

To further reveal the roles of each module in the proposed620

algorithm, Figure 13 and 14 respectively demonstrate the denois-621

ing results of each module on images Lena and Plants. As shown622
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Table 11 Comparison with the method proposed in [71] in the image denoising task
Methods 20 30 40 50 75 100

SRLR 32.23 30.24 28.81 27.73 25.72 24.40
0.9046 0.8711 0.8450 0.8198 0.7662 0.7255

LRSR-SP 32.20 30.25 28.77 27.68 25.69 24.30
0.9062 0.8764 0.8477 0.8231 0.7687 0.7262

(a) (b) (c)

(d) (e) (f)

Fig. 13: Visualization of algorithms for denoising image Lena under
noise σE = 75: (a) Original image, (b) Noisy image, (c) SR (PSNR
= 25.04 dB, SSIM = 0.7487), (d) LR (PSNR = 12.31 dB, SSIM =
0.1234), (e) SR+LR (PSNR = 25.50 dB, SSIM = 0.7554), and (f)
SR+LR+SP (PSNR = 25.51 dB, SSIM = 0.7562).

(a) (b) (c)

(d) (e) (f)

Fig. 14: Visualization of algorithms for denoising image Plants
under noise σE = 75: (a) Original image, (b) Noisy image, (c) SR
(PSNR = 25.51 dB, SSIM = 0.7116), (d) LR (PSNR = 12.32 dB,
SSIM = 0.0820), (e) SR+LR (PSNR = 26.46 dB, SSIM = 0.7270),
and (f) SR+LR+SP (PSNR = 26.50 dB, SSIM = 0.7278).

in Figure 13(c) and Figure 14(c), the sparse representation mod-623

ule indeed serves as an effective tool for image restoration, but it624

is susceptible to noise, resulting in some undesirable artifacts such625

as pseudo structures. Although the low-rank self-representation has626

a minor effect on denoising, combining the sparse representation627

model with the low-rank self-representation significantly improves628

the denoising performance, as illustrated in Figure 13(e) and Figure629

14(e). Similarly, by introducing the structure preservation module, it630

can be observed from Figure 13(f) and Figure 14(f) that the images631

retain well-preserved texture details.632

In addition, our previous work[71] also integrated the sparsity633

and low-rank self-representation properties of images. However, that634

method was based on sparse coding for self-representation learning,635

leading to suboptimal solutions because each set of sparse coding636

coefficients could not guarantee low-rank self-representation proper-637

ties. In this ablation experiment, we compared the proposed method638

with the method proposed in our previous work. The PSNR and639

SSIM results are shown in Table 11. From the table, it can be seen640

that the proposed algorithm outperforms the previous method in641

terms of SSIM, which is closer to the human visual system’s intuitive642

evaluation mechanism for image quality. This further demonstrates643

the effectiveness of the proposed method.644

5 Conclusion645

Most existing group sparse representation models overlook the sim-646

ilarity relationships between non-local image blocks, while leverag-647

ing these relationships can effectively preserve texture information648

in images. Group sparse representation models apply simple spar-649

sity constraints only to each image block within a group, neglecting650

other beneficial characteristics of images. To further explore the651

intrinsic properties of natural images, this chapter proposes a low-652

rank self-representation guided group sparse representation image653

restoration algorithm. Specifically, in addition to utilizing the group654

sparse representation regularization term, this algorithm also uti-655

lizes the low-rank self-representation property to jointly estimate the656

reconstructed image block groups. This low-rank self-representation657

model can better characterize the intrinsic properties of natural658

images, namely the correlation between similar image blocks. Addi-659

tionally, to ensure that the learned sparse representation also pre-660

serves the similarity structure between image blocks, the algorithm661

also performs self-representation learning on the sparse represen-662

tation, making the self-representation obtained as close as possible663

to the original self-representation between image blocks. Extensive664

experimental results demonstrate that this algorithm performs excel-665

lently in image restoration tasks such as image denoising and image666

deblocking.667

However, this research still has limitations because it can only668

achieve excellent performance in scenarios with additive Gaus-669

sian noise. In future research, we will consider other noise dis-670

tributions or multiplicative noise. Furthermore, since the proposed671

algorithm is self-supervised, it only utilizes the intrinsic information672

of the degraded images themselves without leveraging external prior673

knowledge, which limits the improvement of the current algorithm’s674

performance. This is also a challenge that needs to be addressed in675

future work.676
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Table 3 Average PSNR(dB) results of image denoising compared with classical methods on DND dataset
Applied Evaluated BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS Ours
RAW RAW 46.52 45.04 46.32 46.22 42.04 45.58 42.47 43.58 46.63
RAW sRGB 37.91 37.11 37.37 36.55 36.28 36.02 36.23 35.99 37.99
RAW+VST RAW 47.05 46.98 46.85 46.72 45.58 45.09 45.39 44.98 47.01
RAW+VST sRGB 36.78 36.85 35.89 36.56 36.12 36.84 36.28 36.44 36.91

Table 4 Average SSIM results of image denoising compared with classical methods on DND dataset
Applied Evaluated BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS Ours
RAW RAW 0.9701 0.9655 0.9583 0.958 0.9537 0.962 0.9674 0.9532 0.9724
RAW sRGB 0.9218 0.919 0.9012 0.9242 0.9273 0.9242 0.9101 0.9154 0.9313
RAW+VST RAW 0.9542 0.9172 0.9143 0.9111 0.9204 0.9044 0.9174 0.9077 0.9502
RAW+VST sRGB 0.9135 0.8995 0.9045 0.9235 0.9005 0.9141 0.9006 0.9133 0.9258

Table 6 Average PSNR (dB) results of image deblocking compared with the classic method on the datasets LIVE1 and Classic5 (image size: 256 × 256)

LIVE1 dataset (image size: 256× 256)
Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 26.37 27.16 27.23 27.24 27.24 27.25 27.26 27.38 27.29 27.43 27.45
20 28.55 29.21 29.24 29.28 29.29 29.29 29.33 29.46 29.37 29.53 29.55
30 29.86 30.45 30.48 30.54 30.57 30.55 30.60 30.74 30.75 30.85 30.86
40 30.80 31.35 31.37 31.45 31.51 31.46 31.57 31.66 31.71 31.82 31.81

Average 28.90 29.54 29.58 29.63 29.65 29.64 29.69 29.81 29.78 29.91 29.92
Classic5 dataset (image size: 256× 256)

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 27.57 28.69 28.72 28.79 28.77 28.78 28.83 28.93 28.78 28.97 29.03
20 29.90 30.87 30.89 30.98 30.96 30.98 31.07 31.13 31.12 31.23 31.26
30 31.21 32.07 32.09 32.21 32.22 32.21 32.34 32.39 32.50 32.55 32.54
40 32.14 32.94 32.96 33.09 33.16 33.10 33.30 33.29 33.46 33.54 33.51

Average 30.21 31.14 31.17 31.27 31.28 31.27 31.39 31.43 31.47 31.57 31.59

Table 7 Average SSIM results of image deblocking compared with the classic method on the datasets LIVE1 and Classic5 (image size: 256 × 256)

LIVE1 dataset (image size: 256× 256))
Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 0.7611 0.7877 0.7869 0.7835 0.7879 0.7824 0.7859 0.7957 0.7931 0.7956 0.7971
20 0.8423 0.8591 0.8571 0.8550 0.8585 0.8542 0.8576 0.8642 0.8630 0.8645 0.8651
30 0.8791 0.8917 0.8903 0.8892 0.8913 0.8888 0.8913 0.8952 0.8967 0.8963 0.8970
40 0.8998 0.9103 0.9093 0.9089 0.9102 0.9087 0.9099 0.9129 0.9145 0.9148 0.9144

Average 0.8456 0.8622 0.8609 0.8592 0.8620 0.8585 0.8612 0.8670 0.8668 0.8678 0.8684
Classic5 dataset (image size: 256× 256))

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours
10 0.7715 0.8087 0.8060 0.8043 0.8081 0.8033 0.8094 0.8134 0.8134 0.8168 0.8195
20 0.8519 0.8753 0.8728 0.8723 0.8730 0.8714 0.8740 0.8751 0.8796 0.8802 0.8807
30 0.8844 0.9018 0.9002 0.9003 0.9002 0.8998 0.9017 0.9012 0.9063 0.9060 0.9061
40 0.9036 0.9178 0.9168 0.9170 0.9172 0.9167 0.9180 0.9175 0.9225 0.9226 0.9217

Average 0.8529 0.8759 0.8740 0.8735 0.8746 0.8728 0.8758 0.8768 0.8805 0.8814 0.8820
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