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Abstract—The prediction of financial time series data is a
challenging task due to the unpredictable behaviours of investors
that are influenced by a multitude of factors. In this paper,
we present a novel deep Long Short-Term Memory (LSTM)
based time-series data modelling for use in stock market index
prediction. A dataset comprised of six market indices from
around the world were chosen to demonstrate the robustness
in varying market conditions with an aim to forecast the next
day closing price. With experimental results showing an average
annual profitability performance of up to 200%, our method
demonstrates its feasibility and significant results in time-series
modelling and prediction of financial markets.

I. INTRODUCTION AND RELATED WORK

Stock market data, and by extension any financial time
series data, is highly complex and difficult to predict. With
investors being influenced by volatile and unpredictable market
conditions, financial market trends tend to be non-linear,
uncertain and non-stationary. Great strides in financial data
modelling and prediction have occurred over the past 50
years with very early research declaring the task almost
impossible [1]. Recently, there have been many attempts made,
which have shown the negative judgement was overstated and
great improvements in accuracy have been observed in price
prediction for financial products [2], [3]. Sequential machine
learning methods have been widely adopted for financial time-
series prediction, where pricing models are built to find the
correlations among target values, movement trends, technical
indicators and social sentiments. Choudhry et. al. [4] proposed
a hybrid method based on Genetic Algorithm (GA) and
Support Vector Machines (SVM) for stock market prediction,
which makes use of the correlation between stock prices of
different companies and technical indicators. A GA is used for
feature selection among 35 technical indicators, where a binary
SVM classifier is followed to predict drop or rise movement of
target stock price. Similarly, Iacomin [5] proposed a combina-
tion of SVM and feature selection using Principal Component
Analysis (PCA) to predict 16 foreign exchange stocks around
the world. Instead of predicting price movement, Iacomin [5]
uses SVM to make the selling or buying decision a binary
classification problem in order to maximize profit. In addition,
there are many works investigating the influences of social
sentiments on price movement. For instance, a L1 regularised
logistic regression model was proposed by Luo et. al. [6]
using specific events extracted from target companies together
with financial, macro and technical indicators to model price

fluctuations after major announcements, but a limited success
was observed. It is still controversial on what variables have
the most significance in prediction performance. However,
traditional machine learning methods heavily rely on hand-
crafted feature selections which have proved to be non-trivial
tasks and have limited success in forecasting the actual product
price directly.

Recent advances in Deep Learning (DL) [7], more specif-
ically Deep Neural Networks (DNNs) [8], have shown great
successes in the fields of computer vision, speech recognition
and health informatics to name a few. However, there are a
limited number of published works on financial modelling
using deep learning methodologies reported in the field [9].
Existing works show that Neural Networks (NNs) are able
to provide effective means of modelling markets through
its ability to learn robust and non-linear correlation, and it
also draws a parallel to that of investment decisions where
various verdicts are made based upon many known factors
and the complex associations between them. As a result of
representation learning, the limitation caused by feature hand-
crafting no longer exists. The family of Recurrent Neural
Networks (RNN) have recursive feedback connections be-
tween neuron cells forming a directed cycle, which are able
to retain and leverage information from past data to aid
the prediction of future events. Similar to Hidden Markov
Models (HMMs), such recurrent architectures by nature are
suitable for modelling sequential data with delayed temporal
correlations. Many recent works with RNN family have shown
good promise in stock price prediction using either technical
indicators [10] or social sentiments [11].

Among those works, of significant interest is the work by
Bao. et. al. [12] showing significant results of a Wavelet
Stacked AutoEncoders-Long Term Short Memory (WSAEs-
LSTM) model integrating wavelet transforms, Stacked Au-
toEncoders (SAEs) and Long Short Term Memory (LSTM).
WSAEs-LSTM consists of a three stage pipeline. Initially,
a Haar wavelet transform is used to denoise the original
highly oscillated signal and produce localised coefficients
in frequency domain as inputs for the next stage. A five
layer SAE with sigmoid activations is trained using stan-
dard gradient descent with Mean Average Error (MAE) loss
and Kullback-Leibler (KL) Divergence sparsity penalty. The
further generalised representations of technical indicators are
given by SAE encoder, and then passed into a 5 layer, 10 unit



LSTM network to forecast next day closing price.
In this work, we show that the WSAEs-LSTM method

suffers from detailed feature loss due to denoising with hard
thresholding, poor initialisation and under-training issues. We
propose a financial time-series prediction method which fol-
lows the overall concept of preprocessing followed by feature
generalization and then sequential modelling using SAEs and
LSTMs. However, compared to [12], several improvements
have been made to the overall model. Firstly, preprocessing
and denoising were performed using soft Symlet wavelet
thresholding to produce a denoised variant of original market
data. This was then used to pre-train a 5 layer L2 regularised
SAE using Exponential Linear Unit (ELU) activation func-
tions and trained using the AdaDelta optimiser [13]. Such
combination ensures the learning of a deep representation
throughout the deep architecture without the drawbacks of
vanishing gradients due to the use of sigmoid activations. The
trained SAE is then incorporated into a 2 layer LSTM network
to perform final prediction. Training, using the AdaDelta
optimiser, was a matter of fine tuning the overall network
to each dataset. As seen in the experimental results of this
paper, our proposed model greatly improves upon prediction
and profitability performance of WSAEs-LSTM across all 6
datasets.

The structure of paper is organised as follows. In Section II,
the algorithms and properties used in the presented framework
are described. Section III introduces the experimental dataset
and provides evaluation procedure and metrics. Section IV
summarises the observed results, and provides our concluding
remarks.

II. METHOD

The framework presented in this paper comprises of a 3-
stage pipeline as illustrated in Fig. 1. At the preprocessing
stage, the orginal financial time-series data is denoised in the
spatial and spectral domain jointly using wavelet thresholding.
Market modelling utilises SAEs and finally one-day-ahead
prediction of market closing price using LSTM are then
followed in stage 2 and 3 respectively. Further details of each
stage are presented within the remainder of this section.

Fig. 1. The pipeline of proposed model.

A. Preprocessing

Each subset was normalised based only upon the minimum-
maximum values of their corresponding training set in order
to eliminate any prior knowledge of overall scale as would
occur in real-time prediction. Wavelet thresholding was used
for signal denoising due to its capability in handling highly
irregular financial time series data. Through the ability to
denoise whilst preserving localised features in both space and

time, wavelet thresholding is superior to regular Fourier based
denoising methods in regards to time series data.

Wavelet thresholding consists of a three stage process con-
sisting of multilevel wavelet decomposition, soft thresholding
of coefficients and finally signal reconstruction. Wavelet de-
composition involves the transformation of a basis function,
called the Mother Wavelet, into closely matching the original
signal using the following equation:

Wψf(k, s) =
1√
|k|

∫ ∞
−∞

ψ

(
t− k
s

)
f(t)dt (1)

where Wψf(k, s) is the transformed mother wavelet, ψ is the
mother wavelet (Symlet-8), k is the wavelet shift along the
time axis, s is the scaling factor along time and t the current
point in the time series data. An important aspect to note is
that s is inversely proportional to t, resulting in an inverse
relationship between the wavelet frequency and wavelet scale
along time. Accordingly, wavelet decomposition captures both
long, low frequency trends over a long period of time and
short term high frequency noise. The generation of wavelets
was performed through the use of the Mallat Algorithm
which involves passing a signal through a series of high and
low pass convolution filters derived from the mother wavelet
[14]. The two signals are then down-sampled to half size to
generate a detail and approximation coefficients accordingly.
The approximation coefficients are then recursively devolved
to the desired or maximum level.

Soft thresholding consists of reducing detail coefficients at
each level below a adaptive threshold to zero and reducing the
remaining by said threshold. Threshold selection per level was
performed using the SURE-Shrink method [14], due to it being
smoothness adaptive and as such, able to handle irregular
signals. Reconstruction involves passing the altered detail and
approximation coefficients back through up-sampling and a
series of reconstruction convolution filters to arrive back at
the denoised signal.

B. Stacked Autoencoder

Autoencoders are used to pre-train a network into learning
latent encoding in data. Once trained, the encoding layers
of an AE can be incorporated into a larger network which
can make use of the consistent representations learnt. SAEs
have proven to be an effective pre-training method consistently
outperforming non-encoded networks [15]. SAEs consist of
iteratively layering single-layer AE on top of each other where
the encoded output of the previous layer is used as the input for
the next. Each layer is individually and progressively trained
much like a regular AE until the desired depth is achieved.

The aim of AE is to non-linearly transform the input into
a higher level abstraction before reconstructing back into
the original input. Sigma function selected for all encoding
layers within this framework is the Exponential Linear Unit
(ELU) providing all the advantages of Rectified Linear Unit
(ReLU) function such as eliminating vanishing gradients on
deep neural networks while also removing the drawback of
dying neurons due to highly negatively weighted inputs. A



L2 weight regularisation parameter is also included within the
objective function to reduce over-fitting:

C = Co +
λ

2n

∑
w

w2 (2)

w → w′ = w

(
1− ηλ

n

)
− η ∂Co

∂w
(3)

where co is the chosen loss distance function, w are the weight
parameters across the network, n is the number of weight
parameters and λ is the L2 regularisation hyper-parameter
used to tweak the regularisation amount. Eq. 3 is the derived
weight change w → w′ during back-propagation, influenced
by η the learning rate and reduced by the regularisation term.
Once trained, the decode layer is discarded whilst the encoded
activation produced in the encode layer will be used as the
input for the next single layer SAE.

C. LSTM

LSTM is an extension of RNN, a class of neural network
in which each node contains the addition of a weighted, time
delayed, unidirectional feedback link that loops back in as
input vectors forming a recurrent connection [16]. By delaying
the recurrent signal, each node is able to store past information
and thus be referred to during future predictions. This short
term memory is especially effective in time series data which
would otherwise lose time dimensionality. However, RNNs in
practice are limited to only referring back several steps due
to the vanishing and exploding gradient problem. As a result,
RNNs would be unable to capture long term trends within the
dataset. LSTMs provide a solution to said problem through the
use of forget and update gates to modify memory cell state.
LSTM units comprise of four components: the forget, input,
update and output gates as shown in Fig. 2. The update gate
(Eq. 4) dictates update of the previous cell state Ct−1. The
forget gate (Eq. 5) controls memory loss, ft. Throughout this
section, ht−1 is the activation of the previous time-step, Xt is
the input vector from the previous network layer, while W &
b denotes weight and bias respectively of the corresponding
gate.

Fig. 2. Model of LSTM Cell.

Ct = ftCt−1 + itC
′
t (4)

ft = σ(Wf · [ht−1, Xt] + bf ) (5)

The input gate encodes, C ′t (Eq. 6) and selectively incorpo-
rates, it (Eq. 7) input from [ht−1, Xt] into the new cell state.

C ′t = tanh(Wc · [ht−1, Xt] + bc) (6)
it = σ(Wi · [ht−1, Xt] + bi) (7)

The output gate calculates the activation signal ht by rescaling
the updated cell state using (Eq. 8) before being filtered by
Ot, calculated using (9).

ht = Ot · tanh(Ct) (8)
Ot = σ(Wo · [ht−1, Xt] + bo) (9)

As shown in Fig. 3, the proposed framework contains a ten
LSTM unit hidden layer receiving encoded input from the
aforementioned AE. This layer uses a tanh activation function
with a delay of four time-steps. The final output layer contains
a single LSTM unit with a non-linear activation function
which produces a normalised prediction of the next day market
closing price.

Fig. 3. Diagram of the proposed neural network architecture.

III. EXPERIMENT AND DISCUSSION

A. Dataset

The dataset provided by [12], comprises of six market
indices from countries in varying states of development in
order to demonstrate robustness from the varying market
conditions. The market indices provided are S&P 500 and
DJIA from New York, CSI 300 from China, Nifty 50 from



TABLE I
DESCRIPTION OF DATASET VARIABLES

Daily Trading Data
Open/Close Price Nominal daily open/close price

High/Low Price Nominal daily highest/lowest price

Trading Volume Daily trading volume

Technical Indicators
MACD Moving average convergence divergence

CCI Commodity channel index

ATR Average true range

BOLL Bollinger band

EMA20 20 day exponential moving average

MA5/MA10 5/10 day moving average

MTM6/MTM12 6/12 month momentum

ROC Price rate of change

SMI Stochastic Momentum Index

WVAD Williams’ variable accumulation/distribution

Economic Factors
Exchange Rate US dollar index

Interest Rate Interbank offered interest rate

India, Hang Seng from Hong Kong and Nikkei 225 from
Tokyo. For each market, a selection of 19 daily variables
separated into 3 sets of categories the first of which being the
historical trading data of each index representing basic trade
information. The second set of categories are the technical
indicators which show a statistical evaluation of each index.
The third set provides a broad economic overview of the
region. Individual variables and their definition are shown in
Table I. The time period available within the dataset is from
2008-07-01 to 2016-09-30 giving just over 2000 time-steps.

B. Training

In order to facilitate a continuous prediction cycle over the
dataset, subsets of data were extracted using sliding window
style with a length of two and a half years and a step
size of three months. Each subset were then further split
into a training set for the first two years, a validation set
for the following three months and a test set for the final
three months. The resulting combined test set for each market
index spans a continuous period of six years or 24 quarterly
test runs. The SAE was trained on the first test run with
the AdaDelta optimiser using an MAE loss function with
L2 regularisation. The initial learning rate and batch size
chosen through experimentation were 1.0 and 100 respectively.
Training was done until the minimum MAE delta between
time-steps was 0.0001 where the model providing the lowest
validation loss was chosen as the candidate for testing. The
combined encode and LSTM layers are then retrained with the
Adam optimiser [13] using an initial learning rate of 0.001,
using an MAE loss function. Again, training was performed
until a minimum loss delta of 1e−5 and the best model, based
upon validation loss, chosen for testing. Subsequent test runs
are fine-tuned on the same model with a learning rate of 1e−4.

C. Evaluation

This section presents the evaluation metrics used to judge
framework performance. Notation wise, N is the total number
of time-steps within the testing duration, yt is the true closing
price at time-step t while y′t is the predicted closing price at
t.

1) MAPE: Mean Absolute Percentage Error measures the
relative percentage size of error and as such a smaller value in-
dicates better performance. The scale independence of MAPE
meant it was chosen over more traditional evaluation metrics
such as RMSE or MAE allowing for direct comparison against
various market indices.

MAPE =

∑N
t=1|

yt−y′t
yt
|

N
(10)

2) PCC: Pearson’s Correlation Coefficient measures the
linear correlation between two variables. Values range between
+1 and -1, where +1 is a positive linear correlation, -1 is an
inverse linear correlation and 0 is no linear correlation.

PCC =

∑N
t=1(yt − ȳt)(y′t − ȳ′t)√∑N
t=1(yt − ȳt)2(y′t − ȳ′t)2

(11)

3) UC: Uncertainty Coefficient measures the degree of
association between two variables and performs similarly to
that of MAPE while also emphasising large relative errors. As
such, a smaller value indicates better performance.

UC =

√
1
N

∑N
t=1(yt − y′t)2√

1
N

∑N
t=1(yt)2 +

√
1
N

∑N
t=1(y′t)

2

(12)

4) PP: In order to evaluate the Profitability Performance
of the proposed framework, a trading strategy is developed
which is able to leverage the predicted results into producing
a profit. Following the strategy proposed by Yao et. al. [17],
trading is based upon the relative difference between predicted
and current levels. As such the strategy is as shown in (13).
Simply put, buy when an increase in price is predicted and
sell when a decrease is predicted.

if (y′t+1 − yt) > 0, then buy else sell (13)

As such, the profit earned through this trading strategy can be
dictated by Eq. 14 following Bao et. al. [12]. At the suggestion
of Yao et. al. [17], the addition of transaction costs T of 0.01%
was also introduced.

P =
∑
t−1

{
(yt+1 − yt − T (yt + yt+1))/yt, for buy
(yt − yt+1 − T (yt + yt+1))/yt, for sell (14)

Profitability performance will be compared against two clas-
sical benchmarks for simulated profit. The first being the buy
and hold method, in which an index is bought on the first day
of testing and sold on the last day, providing a baseline trend
to determine framework profitability and non-profitability.



TABLE II
COMPARISON OF PREDICTIVE ACCURACY

CSI 300
MAPE PCC UC

Proposed 0.009±0.009 0.994±0.003 0.014±0.009
WSAEs-LSTM [12] 0.019±0.007 0.944±0.041 0.013±0.005

LSTM [12] 0.056±0.015 0.617±0.239 0.035±0.009

Nifty 50
MAPE PCC UC

Proposed 0.005±0.001 0.999±0.010 0.003±0.001
WSAEs-LSTM [12] 0.019±0.002 0.841±0.110 0.013±0.002

LSTM [12] 0.034±0.006 0.569±0.301 0.023±0.004

Hang Seng
MAPE PCC UC

Proposed 0.006±0.002 0.996±0.003 0.004±0.002
WSAEs-LSTM [12] 0.015±0.004 0.931±0.022 0.011±0.004

LSTM [12] 0.024±0.002 0.847±0.076 0.015±0.001

Nikkei 225
MAPE PCC UC

Proposed 0.008±0.004 0.999±0.005 0.007±0.003
WSAEs-LSTM [12] 0.017±0.002 0.937±0.043 0.011±0.001

LSTM [12] 0.031±0.003 0.814±0.137 0.020±0.002

S&P 500
MAPE PCC UC

Proposed 0.004±0.001 0.999±0.005 0.003±0.001
WSAEs-LSTM [12] 0.011±0.002 0.946±0.036 0.007±0.002

LSTM [12] 0.017±0.004 0.875±0.085 0.012±0.003

DJIA
MAPE PCC UC

Proposed 0.003±0.002 0.999±0.018 0.003±0.002
WSAEs-LSTM [12] 0.011±0.003 0.949±0.022 0.007±0.002

LSTM [12] 0.021±0.003 0.809±0.083 0.013±0.002

• Benchmark 1 is calculated using Eq. 15 where m is the
testing duration in months.

P =

(
yN
y0

) 12
m

− 1 (15)

• Benchmark 2 is the trend following method in which the
decision to buy, sell or hold is determined by the trend
set by the previous three price indices as shown in Eq. 16
while profit earned is calculated using Eq. 14.

if (yt−1 > yt−2) ∩ (yt−2 > yt−3), then buy
if (yt−1 < yt−2) ∩ (yt−2 < yt−3), then sell (16)

D. Discussion

Evaluation of results are shown in Fig. 4, Table II and
Table III. All values in Table II are mean performance with
standard deviation over several experimental runs. Best per-
formance in each category has been highlighted. As seen in
Table II and Table III, our proposed framework outperforms
the original model proposed by Bao. et. al. [12] across almost
every category over all six stock markets with significantly
lower average and deviation. While our model suffers from

underestimating large low frequency increases, as evident in
the CSI 300 index subplot of Fig. 4 and in the limited im-
provement of the uncertainty coefficient, correlation between
prediction and truth remain exceedingly high. This translates
especially well to a high profitability performance with an
average profit increase of 91% across the six datasets. In
regards to performance across each dataset, the Hang Sent
index provided the best predictive accuracy while CSI 300
provided the worst. However, this does not follow profitability
performance metrics, with the Nikkei 225 index providing
the most profit and DJIA the least. Both benchmark models
also provide a lack of correlation between profitability of
the model and the market capacity for profit. This is due to
classical prediction evaluation metrics not translating well into
the evaluation of market trend prediction as proposed by Yao
et. al. [17]. Fig. 4 also shows that the large errors are mainly
come from time period 1000 to 1200 in both CSI 300 and
Hang Seng, where the predictions are deviated from the truth
values when large and high frequent pricing are fluctuating.
An reasonable explanation is that such pricing fluctuation
patterns have never occurred in previous training periods, and
the model itself is not able to make correct prediction. We also
observed that the predicted signals trend to be smoothed in its
local time window, which may not suitable for the scenarios
where high-frequency trading strategies are involved.

IV. CONCLUSION

This paper improves upon a previous framework while
also providing the novel use of adapting SAEs to pre-train
deep LSTM networks for use in financial time series pre-
dictions. It provides a highly effective prediction model of
various stock markets across the globe of varying market
conditions. Through the use of more advanced optimisation
methods and an improved network structure, the proposed
framework outperformed the original by significant margins
in both profitability and predictive accuracy.
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