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Abstract

We propose a level set based framework to segment

textured images. The snake deforms in the image do-

main in searching for object boundaries by minimizing

an energy functional, which is defined based on dynam-

ically selected local distribution of orientation invari-

ant features. We also explore the user initialization to

simplify the segmentation and improve accuracy. Ex-

perimental results on both synthetic and real data show

significant improvements compared to direct modeling

of filtering responses or piecewise constant modeling.

1 Introduction

Region based active contours have been increasingly

used in analyzing textured images, e.g. [8, 3]. Among

many others, filtering is a popular approach in deriving

texture features for contour based segmentation. For

example, in [8] the Gabor filter responses are used to

measure the difference between pixels in a piecewise

constant model. However, it largely ignores the spatial

distribution among local filtering coefficients and this

direct comparison of filter responses is error prone since

the responses can be misaligned due to the anisotropic

nature of most of the filters. Handling large dimensional

filtering responses can also be difficult. Moreover, it

is challenging to deal with textural variations, for ex-

ample, due to rotation or view point changes, since

most of the filters are orientation sensitive. The separa-

tion of background and foreground has been popularly

achieved through modeling of global distribution, e.g.

mixture of Gaussian modeling [6, 2], or fitting of local

distributions, e.g. piecewise constant assumption [1] as

used in [8, 7, 5].

In this paper, we propose a level set based segmenta-

tion using a regional force based on nonparametric rep-

resentations of local invariant features. These features

are dynamically selected as histograms which is con-

venient to differentiate in minimizing the energy func-

tional and more robust towards texture variation and

inhomogeneity. Unlike [5] where only image inten-

sity values are used, we advocate the use of filtering

responses to deal with highly textured images. Prior

knowledge extracted from user initialization can also be

conveniently incorporated in the model to achieve effi-

cient segmentation.

2 Proposed Approach

Briefly, we first extract compact and rotation invari-

ant filtering responses from the image. Their local dis-

tributions at every pixel, known as local spectral his-

tograms, are then collected. The optimal bin size for

these histograms are automatically derived. An energy

minimization problem is then formulated by fitting two

spectral histograms, one of which is used to approxi-

mate the foreground region and the other for the back-

ground. To reduce the ambiguities among local fea-

tures, a subset of filtering responses can be dynamically

selected while performing segmentation. Finally, we

present semisupervised segmentation based on initial-

ization to demonstrate its flexibility and efficiency.

2.1 Filters and Feature Selection

Filter bank based approaches have been very pop-

ular since they can analyze textures in arbitrary orien-

tations and scales. However, they often result in high

dimensional feature space which can be difficult to han-

dle for certain applications. Unlike image classification,

in snake based segmentation, we may not have enough

features extracted from a single image to populate the

high dimensional feature space in order to accurately

estimate the underlying distributions. Moreover, there

are usually significant amount of redundant information

among the filtering responses. It is also worth noting

that object in the scene may have inhomogeneous tex-

tures due to, for example, perspective projection. This

inhomogeneity will exhibit nonuniform responses af-

ter applying directional filters. Rotation invariance is

thus desirable in such circumstance. Here, we use a set

of directional filters derived from first and second or-

der derivatives of an anisotropic Gaussian function, i.e.

σy = 3σx. Each of these two types of filters are ro-

tated to be uniformly spaced in six different directions.
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This process is repeated in three progressive scales to

produce a total of thirty six directional filters. In the in-

terest of reducing feature space dimension and achiev-

ing rotation invariant, we follow [10] to condense the

filter responses by collecting only the maximum filter

response across all the six orientations, i.e. those thirty

six directional filter responses are reduced to six.

2.2 Local Spectral Histogram

The filtering responses can be directly used to drive

the active contours, e.g. [8]. However, we can fur-

ther incorporate local spatial dependency of filtering re-

sponses by computing the marginal distributions over

a local window. Thus, it captures local pixel depen-

dency through filtering and global patterns through his-

tograms. Misaligning of filter responses due to inho-

mogeneity of filter responses can be a serious problem

for direct approaches. Using local spectral histogram

further enhances our model in dealing with texture in-

homogeneity and helps to produce more coherent seg-

mentation. Let W denote a local window and W
(α)(x)

a maximum filter response patch centered at x, where

α = 1, 2, ..., 6. Thus, for W(α) the histogram is de-

fined as [4]:

P
(α)
W

(z1, z2) =
∑

x∈W

∫ z2

z1

δ(z −W
(α)(x))dz, (1)

where z1 and z2 specify the range of the bin.

The spectral histogram is then defined as PW =
1
W

(

P
(1)
W

, P
(2)
W

, ..., P
(6)
W

)

.

2.3 Deducing Optimal Bin Size

Automatically deducing suitable histogram bin size

is desirable because not only it reduces the risk of large

fluctuation or poor representation due to too small or

too large bin size, but also avoids the practical issues

associated with manual parameter tunning. We follow

[9] to estimate the optimal bin size. Let ∆ denote the

bin size. The expected frequency for s ∈ [0,∆] is θ =
1
∆

∫ ∆

0
λsds, where λs is the underlying true frequency

which is unknown. The goodness of fit of the estimated

λ̂s to λs is measured according to mean integrated

squared error: MISE = 1
∆

∫ ∆

0 〈E(θ̂−λs)
2〉ds, where E

denotes expectation and θ̂i ≡ ki/∆ (ki is the frequency

count for ith bin). The associated cost function is then

defined as: O(∆) = MISE − 1
∆

∫∆

0
〈(λs − 〈θ〉)2〉ds.

By assuming the number of events counted in each bin

obeys a Poisson distribution, the cost function can be

written as:

O(∆) =
2

∆
〈Eθ̂〉 − 〈E(θ̂ − 〈Eθ̂〉)2〉. (2)

The optimal bin size thus is obtained by minimizing

the above cost function, i.e. ∆̂ = argmin∆ O(∆).

Thus, local spectral histograms at each pixel position

are computed and combined together for those in the

same channel to produce a global representation, i.e.

mean local spectral histogram, followed by this optimal

bin size selection.

2.4 Unsupervised Snake Segmentation

The snake segmentation can be viewed as a

foreground-background partition problem. The snake

evolves in the image domain, attempting to minimiz-

ing the feature similarity for those inside and outside

the contours. Meanwhile, it tries to minimize the fea-

ture difference for those that belong to the same region.

Thus, we can formulate our snake based on the piece-

wise constant model [1]. Let Ω be the image domain,

Λ+ denote the regions inside the snake (foreground) and

Λ− those outside the snake (background). The snake

segmentation can be achieved by solving the following

energy minimization problem:

inf
Λ+

E(Λ+) =βL(Λ+) +

∫

Λ+

D(P (x), P+)dx

+

∫

Λ−

D(P (x), P−)dx, (3)

where β is a constant, L denote length, D is the metric

which measures the difference between two histograms,

and P+ and P− are the foreground and background

mean local spectral histograms to be determined. The

first term is the length minimization term which regu-

larize the contour. The next two are data fitting terms.

The Wasserstein distance (aka. earth mover’s dis-

tance) is used to compute the distance between two nor-

malized spectral histograms since it is a true metric (un-

like χ2). Thus, the distance between two histograms

(Pa and Pb) is defined as:

D(Pa, Pb) =

∫

T

|Fa(y)− Fb(y)|dy, (4)

where T denoted the range of the histogram bins, and

Fa and Fb are cumulative distributions of Pa and Pb,

respectively.

The level set method is implemented to solve this en-

ergy minimization problem so that topological changes,

such as merging and splitting, can be effectively han-

dled. Let φ denote the level set function. The fore-

ground is identified as Λ+ = {x ∈ Ω : φ(x) > 0},

which can be computed as
∫

ΩH(φ)dx where H is the

Heaviside function. The level set formulation can be

expressed as:

inf
Λ+

E(Λ+) =β

∫

Ω

|∇H(φ)|dx +

∫

Ω

D(P (x), P+)H(φ)dx

+

∫

Ω

D(P (x), P−)(1 −H)(φ)dx (5)
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Figure 1. First row: initializations; second row: CV results; third row: proposed unsupervised.

Thus, minimizing E with respect to φ gives us the fol-

lowing partial differential equation:

∂φ

∂t
= δ(φ)

[

β∇ ·

(

∇φ

|∇φ|

)

−

∫

T

|Fx(y)− F+(y)|dy

+

∫

T

|Fx(y)− F−(y)|dy
]

, (6)

where δ(x) = d
dx
H(x), F+ and F− are the spectral

cumulative histogram inside and outside the contours,

respectively. The minimization process thus moves the

contours towards object boundaries through competing

pixels by measuring the similarity of local cumulative

spectral histogram with those inside and outside current

foreground.

2.5 Dynamic Optimal Response Selection

Some of the maximum filter responses are inevitably

more discriminative than the others. Thus, it is desir-

able to use a subset of the local spectral histograms,

P (α), α = 1, 2, ..., 6, in solving (6). We empirically

choose three out of the six spectral histograms. How-

ever, since P+ and P− are unknown, we estimate the

optimal filter set by choosing those local spectral his-

tograms that maximize the distance between P+ and

P−. This estimation dynamically changes as the active

contour evolves itself, and reduces the ambiguities be-

tween foreground and background, as well as further

reduces feature space dimension.

2.6 Semisupervised Segmentation

When the prior knowledge of the region of interest

is available, it is useful to include them in segmenta-

tion to achieve accurate results. The proposed method

can be conveniently adapted to incorporate a reference

local spectral histogram, obtained at the training stage,

into the segmentation by forcing the foreground local

spectral histogram distribution close to the reference

histogram. However, extensive prior knowledge is not

always available, particularly when segmenting single

images. Here, we explore the user interaction of plac-

ing the initial contour. By placing the initial contour in-

side the region of interest, we can efficiently extract its

optimal local spectral histogram as our reference his-

togram, i.e. Pr =
∫
Ω
H(φ0)P

′(x)dx∫
Ω
H(φ0)dx

, where φ0 is the

initial level set and P ′ is the optimal local spectral his-

togram. Let Fr denote the cumulative histogram of Pr.

Thus, the semi-supervised segmentation can be written

as (cf. (6)):

∂φ

∂t
= δ(φ)

[

β∇ ·

(

∇φ

|∇φ|

)

−

∫

T

|Fx(y)− Fr(y)|dy

+

∫

T

|Fx(y)− F−(y)|dy
]

. (7)

The segmentation is simplified since it only needs to

find the fitting function F−. This approach is particu-

larly useful when dealing with background texture with

large variations.
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Figure 2. First column: initializations; second column: CV results; third column: proposed

unsupervised method; fourth column: proposed semisupervised method.

Figure 3. From left: a synthetic tex-

ture collage which contains an inhomo-
geneous background due to orientation

and scale changes; segmentation result

obtained using the CV model based on
Gabor features [8] (result reported in [7]);

and the proposed method.

3 Experimental Results

The proposed methods have been tested on both syn-

thetic and real world images. Fig. 1 shows some typical

example results obtained using unsupervised segmenta-

tion compared to the Chan-Vese (CV) method [1]. In all

cases, the proposed method achieved significantly bet-

ter segmentation results, only missing some very fine

and thin structures.

Fig. 2 provides two examples of the proposed

method using semisupervised approach. The initial

snakes only cover a very small part of the object of in-

terest. The images contain large variations in the back-

ground and are difficult to segment. The CV model

failed to provide meaningful segmentation, whereas the

proposed method managed to achieve reasonable re-

sults. It also demonstrates the advantage of incorpo-

rating even very limited prior knowledge.

Fig. 3 shows the proposed method performs signifi-

cantly better than that directly using filter responses [8]

when dealing with inhomogeneous textures.

4 Conclusions

In this paper, we introduced a region based snake

segmentation framework which is based on nonpara-

metric representations of condensed local filtering re-

sponses. Local spectral histograms are found to be ef-

fective and convenient in energy minimization formu-

lation. The experimental studies showed some very

promising results on various synthetic and real images.
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