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ABSTRACT

In this paper, we propose a clustering approach embedded in
deep convolutional auto-encoder (DCAE). In contrast to con-
ventional clustering approaches, our method simultaneously
learns feature representation and cluster assignment through
DCAE. DCAE have been found effective in image processing
as it fully utilizes the properties of convolutional neural net-
works. Our method consists of clustering and reconstruction
objective functions. All data points are assigned to their new
corresponding cluster centers during the optimization, after
that, clustering centers are iteratively updated to obtain a sta-
ble performance of clustering. The experimental results on
MNIST and USPS datasets show that the proposed method
substantially outperforms deep clustering models in term of
clustering quality.

Index Terms— deep learning, deep convolutional auto-
encoder, embedded clustering.

1. INTRODUCTION

Clustering as one of unsupervised machine learning approach,
it aims to group a set of unlabelled data based on homoge-
neous patterns in the given feature space. Traditional clus-
tering algorithms are limited to demonstrate satisfying per-
formance as the dimensionality goes higher. Therefore, deal-
ing with high-level representation provides beneficial compo-
nents, benefiting the achievement of such a clustering task. As
there is no supervision knowledge to provide information of
categories labels, representative features with compact clus-
ters are much more beneficial. Deep auto-encoder (DAE)
and deep convolutional auto-encoder (DCAE) are unsuper-
vised models for representation learning. They map inputs
into new space representation, allowing to obtain useful fea-
tures through encoding procedure. The data is projected into
a set of feature spaces, using the encoding part, from which
the decoding part reconstructs the original data. The train-
ing is performed in an unsupervised manner via minimizing
the differences between original data and reconstructed data
with distance metrics. The major difference between DAE
and DCAE is that the former adopts fully-connected layers
to reconstruct signal globally while the later utilizes local in-
formation to achieve the same objective. DCAE can benefit
from such local model. These methods have been exploited

for the purpose of clustering where features learned through
deep networks (e.g. AE or CAE) provide an abstracted latent
representation which is used for clustering analysis. Existing
works can be classified into four categories summarized in
Table 1. Huang et al. [2] and Tian et. al [1] used AE to learn

Method Separated Clustering Embedded Clustering
AE Tian [1], Huang [2] Song [3], Xie [4]

CAE Li et. al [5] Guo et. al [6]

Table 1. Deep Clustering Methods

a lower dimensional representation space, seeking to obtain
effective features used for clustering, thereafter, k-means is
applied to cluster the obtained features while Lia at el. [5]
utilizes the CAE to learn representation, thereafter, the de-
coder part is neglected and a soft k-means model is added on
top of the encoder to make a unified clustering model. Even
though such scheme takes advantages of a deep neural net-
work to map the original data into a representative feature
space followed by clustering analysis, feature space learning
and clustering are two separated steps procedures, objectives
of which are not optimized jointly. Song et al. [3] and Xie et
al. [4] embedded clustering objective into an AE framework,
while Guo et al. [6] recently propose clustering with CAE.
Developing embedded clustering approach in a deep network
allows extracting latent features and clustering assignments
simultaneously. This scheme usually leads to a more compact
latent feature space.

In this paper, we present a clustering approach embedded
into a DCAE framework which aims to learn feature repre-
sentation and cluster assignment simultaneously. In contrast
to conventional clustering approaches, our method makes use
of representation learning with deep neural networks, which
helps to find a compact and representative latent feature
spaces for further recognition tasks. Most of existing meth-
ods fundamentally rely on pre-training the parameters, using
different settings, while we train our model in an end-to-end
way in fixed settings without any pre-training or fine-tuning
procedures, enabling faster training process. In contrast to
Guo work, our proposed method differs in several key re-
spects. First, for clustering approach, instead of clustering
with KL divergence, we apply an objective function that re-
stricts the distance between learned feature representations,



in a latent space, and their identical centroids, producing
a stable representation, which is appropriate for clustering
process. Accordingly, the centroids are iteratively updated.
Second, our work particularly differs in the term of archi-
tecture, cost functions, and optimization. Finally, our results
show that our model yield substantially better for both recon-
struction and clustering quality. We evaluate our proposed
methods model on MNIST and USPS datasets and compare
our method with three baselines, showing that our method
substantially outperforms others in both reconstruction and
clustering quality.

2. METHOD

The proposed approach embeds K-means clustering algo-
rithm into a DCAE framework which is trained in a fully
unsupervised manner. The architecture is shown in Fig. 1.
It consists of two objective functions, one minimizes the
distance between feature representations and their identical
cluster centers, and another minimizes the reconstruction
error. Both two objectives are simultaneously optimized.

2.1. Deep Convolutional Auto-encoder (DCAE)

In contrast to DAE model, DCAE [7] uses convolutional
and deconvolutional layers instead of fully connected lay-
ers. DCAE can be better appropriate in image-processing
tasks because it takes advantage of the convolutional neu-
ral networks (CNN) properties [8]. Local connections and
parameter sharing distinguish CNN to have a property in
translation latent features [9]. In the encoding part, convolu-
tional layers are used, as feature extractors, to learn features
through mapping the data into an internal layer. A latent
representation of the nth feature map of the existing layer is
given by the following form:

hn = σ(x ∗Wn + bn) (1)

where W identifies the filters and b is the corresponding bias
of the nth feature map, σ is the activation function (e.g. sig-
moid, ReLU), and ∗ denotes the 2D convolution operation.

In contrast, the deconvolutional layers invert this process
and reconstruct the latent representation back to its original
shape, so this process maps the obtained features into pixels
[10] by using the following form:

y = σ(
∑
n∈H

hn ∗ W̃n + c) (2)

where H denotes the group of latent feature maps, W̃ is the
flip operation over both dimensions of the weights, c is the
corresponding a bias, σ is the activation function, and ∗ de-
notes the 2D convolution operation.

DCAE allows extracting latent representation through its
internal layer by minimizing the reconstruction error. We use

the cross-entropy (logistic) loss via Eq.(3) because experi-
ments have shown that the euclidean (L2) loss function is not
robust to convolutional neural networks designed with decon-
volutional layers, and networks trained with perceptual loss
tend to produce much better results [11–13]. In a like manner
of standard networks, the backpropagation method computes
the gradient of the error with respect to all parameters.

E1 = − 1

N

N∑
n=1

(yn log ŷn + (1− yn) log(1− ŷn)) (3)

Where ŷ is the pixel value of the reconstructed image, and y is
the pixel value of the target image. For further detail of CAE
readers can refer to [7].

2.2. Clustering Embedded on Deep Convolutional Auto-
encoder

Using DCAE model described in Section 2.1, we now uti-
lize the strength of such model as training procedure for fea-
ture transformations. The goal of our clustering model is to
learn feature representation and cluster assignment simulta-
neously. Using DCAE, as features extractor, supports the
achievement of such a clustering process. This idea allows
clustering method to deal with learned features instead of raw
data. We follow [3] to develop deep clustering model, instead
of classic AE, we apply DCAE for clustering task. Although
DCAE provides an effective representation in a new latent
space, it does not internally impose compact representation
constraints using clustering. Therefore, we add a clustering
objective function to the DCAE framework, which minimizes
the distance between data samples and assigned centroids in
latent space follows [3]:

E2 = λ · 1

2N

N∑
n=1

‖ ht(xn)− c∗n ‖2 (4)

where N denotes the number of samples, λ is clustering
weight-parameter that control the contribution percentage of
clustering cost function in the overall cost function Eq.(5),
ht(∗) is the internal representation obtained by the encoder
mapping at the tth iteration, (xn) is the nth sample in the
dataset, and c∗n is the assigned cluster center to the nth sam-
ple. The overall cost function is a combination of two parts:
the first part is essentially cross-entropy loss minimizing
the reconstruction error, while the second part is clustering
objective function minimizing the distance between data rep-
resentations in a latent space and their corresponding cluster
centers.

min
W,b

E1 + E2 (5)



2.3. Optimization

At each epoch, our model optimizes two components using
stochastic gradient descent and backpropagation: (1) CAE
parameters as well as mapping function h, and (2) cluster cen-
ters c. At each epoch, the model optimizes the mapping func-
tion h, while keeps the cluster centers fixed at c. Thereafter,
each obtained new internal representation is assigned to the
closest centroid, following [3], this is defined as:

c∗n = argmin
ct−1
m

‖ ht(xn)− ct−1m ‖2 (6)

where ct−1m denotes the cluster centers computed at the pre-
vious epoch. After each internal representation is assigned to
the closest cluster center, the cluster center is updated using
the sample assignment computed in the previous epoch via
the following equation as [3]:

ctm =

∑
xn∈ct−1

m
ht(xn)∑

ct−1m

(7)

where ct−1m is all samples that belong to the mth cluster at
the previous epoch, and

∑
ct−1m is the number of samples that

belong to the mth cluster.

2.4. Architecture

We utilize the architecture of classic DCAE. Our contribu-
tions to the DCAE architecture are the following. First, we
exploit the learned features via the internal layer and feed it
to clustering loss which minimizing the distance between data
points and their assigned cluster centers, embedding cluster-
ing techniques in a DCAE framework. Second, instead of
optimizing CAE to reach optimal reconstruction, we sequen-
tially optimize the mapping function h and cluster centers to
obtain efficient clustering results.

For MNIST, we adopt the base architecture proposed in
[14], instead of two-loss function to minimize the reconstruc-
tion error, we only use cross-entropy loss as previous stud-
ies have shown that euclidean loss function is not robust to
convolutional neural networks designed with deconvolutional
layers [11–13]. Also with only the cross-entropy loss, our ex-
periments have shown that only cross-entropy reconstruction
loss can provide good training convergence. The network ar-
chitecture consists of two convolutional layers with filter sizes
of 9 × 9 with 8 kernels in the first convolutional layer and 4
kernels in the second convolutional layer. This followed by
two fully-connected layers, which have 250 neurons and 10
neurons respectively, in the encoding part. In the decoding
part, a single fully-connected layer of 250 neurons followed
by two deconvolutional layers. The first deconvolutional layer
consists of 4 kernels with the size of 12× 12, and the second
deconvolutional layer consists of 4 kernels with the size of
17 × 17. The final architecture of our deep clustering model
embedded in DCAE is presented in Fig. 1.

Fig. 1. The architecture of our proposed model For MNIST.

3. EXPERIMENT AND DISCUSSION

The proposed method was implemented using MatConvNet
[15] and evaluated on MINST and USPS datasets. The model
was trained end-to-end in an unsupervised manner. There
is no pre-training and fine-tuning procedures involved. All
weights were initialized using Xavier method [16] and biases
were set to 0, and the cluster centres is initialized randomly.
Stochastic gradient descent with mini-batch was used where
each batch contains 100 random shuffled images. We set λ,
the clustering weight-parameter that controls the loss contri-
bution percentage of clustering error to 0.2.

CAE is trained to transform the data into latent represen-
tation and then reconstruct the original input or obtain an op-
timal approximation of the underlying data representation by
minimizing the reconstruction error. Some examples of orig-
inal inputs and reconstruction images obtained by our model
are demonstrated in Fig. 3, allowing to visually differenti-
ate and evaluate the reconstruction quality of the proposed
model. In Fig. 3, the reconstructed images (bottom row) look
qualitatively identical to original ones (top row) with certain
levels of blurring, which helps to capture common patterns
instead of subtle details at local regions for reconstruction.
It is noteworthy that due to such smoothness the digit 5 has
similar structure with digit 6. One reasonable explanation is
that the proposed method is designed for unsupervised repre-
sentation learning with signal reconstruction objective, where
such supervision information i.e. differentiating 5 and 6 are
no available to aid forming discriminative features.

To evaluate the cluster quality, two evaluation metrics,
accuracy (ACC) and normalized mutual information (NMI)
were computed. We compared our method with three base-
line methods, DEC [4], AEC [3] and DCEC [6], the results are
summarized in Table. 2. Our proposed method outperforms
the baseline methods by a significant margin on both ACC
and NMI metrics, where 84.97% and 92.14% were achieved
respectively. Especially, proposed method substantially out-
performs the second place by 6.85% which also uses CAE
approach with jointed clustering loss. Fig. 4 shows that both
the changes of ACC and NMI with the number of training cy-



Fig. 2. Visualization of Latent Representation on MNIST Testing Set. Left: CAE without clustering loss; Middle: CAE with
clustering; Right: Ground-Truth.

Fig. 3. Visualization of input and reconstruction images with
respect to digits 0, 3, 5 and 9

cles, which clearly indicates that clustering stably converges
using iterative training scheme.

MNIST USPS
NMI ACC NMI ACC

Xie et. al [4], DEC - 84.30% - -
Song et. al [3], AEC 66.90% 76.00% 65.10% 71.50%

Guo et. al [6], DCEC - 85.29% - 79.00%
Proposed 84.97% 92.14% 79.89% 89.03%

Table 2. Comparison of clustering quality with baselines on
MNIST and USPS datasets

In addition, we carried out visual assessment where the t-
SNE visualization method [17] was applied to evaluate clus-
tering results of the proposed method. Fig. 2 shows a 2D
projection of latent representation of our proposed method,
where the clustering results are visualized with color coding
using ground truth label. It shows that with jointed clustering
loss, the learned latent representation space has more com-

pact structures forming significant clusters which has better
matching with true labels. Especially, with jointed cluster-
ing loss (Fig. 2, Right), the learned features has larger inter-
cluster distances and tighter structures (see clusters labelled
with green, magenta and dark blue colors) compared to the
method using no clustering constraint (Fig. 2, Left).

Fig. 4. Changing of accuracy and NMI during training on
MNIST

4. CONCLUSION

In this paper, we introduce an unsupervised deep clustering
method where a non-linear latent representation and compact
clusters are learned jointly. The experimental results have
demonstrated the effectiveness of our proposed method to
cluster data into their appropriate group. Our potential future
work is to experiment more difficult datasets and improve the
accuracy of such deep clustering model.
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