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Abstract— A statistical shape model that accurately general-
izes a family of 3D shapes requires establishing correspondences
across the set of shapes. However in 3D anatomical meshes,
finding a sufficient number of landmarks to accurately describe
the shape can be a challenge, and often only a few points
are easily identifiable due to the smooth nature of the object
surface. Using a sparse set of landmarks, this paper finds a
dense set of vertex correspondences across a set of 3D aortic root
meshes. This is achieved by non-rigidly transforming a source
mesh to a target mesh. Then, for every vertex on the target, a
corresponding vertex on the deformed source is found, resulting
in complete correspondence. A more accurate transformation
results in better correspondence establishment, and our mesh
registration experiments show an average Hausdorff distance
of 3.65mm, and an average point-to-mesh distance of 0.41mm,
i. e. within one voxel.

I. INTRODUCTION

One of the most popular approaches to deformable model
based segmentation is through the use of active shape model
(ASM) [1] to statistically generalize shape variations and
subsequently impose such generalization as a shape con-
straint, e.g. [2]. A common problem in deformable image
segmentation is that certain vertices may deform towards
the erroneous boundaries that may have strong features.
Applying a statistical shape model (SSM) to the deformed
model can ensure that those vertices do not deviate too far
away from the training shapes, and this iterative process often
leads to better segmentation. SSMs can be generated from a
set of corresponding landmark points, however, finding the
same number of well-defined, corresponding landmarks in
all training shapes is not a trivial task. This is especially
true for 3D meshes where the number of faces and vertices
can vary, and the problem can be even more compounded in
anatomical objects where landmark points are often sparsely
separated due to their smooth surfaces.

A number of approaches to find correspondences on 3D
shapes have been proposed, many of which work directly on
the meshes themselves. Kim et al.[3] used blended intrinsic
maps to find non-isometric correspondences in a range of
shapes. Although this is an important piece of work, the
method requires water-tight meshes which is not always
possible in medical data. Meanwhile, Zhang et al.[4] used
mesh deformation to find a set of sparse correspondences,
however sparse correspondences are not always sufficient to
build an accurate SSM of anatomical objects.

Alternatively, approaches have been proposed to find cor-
respondences specifically on anatomical shapes. Subsol et
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al.[5], were among the first to propose using B-splines for
non-rigid mesh registration, however it is thought that the line
and point features used here may not be suitable for cardiac
objects as they tend to have smooth surfaces [6]. Frangi et
al.[6] proposed to find corresponding mesh landmarks by
working with the corresponding image data. A non-rigid
free-form-deformation (FFD) based on B-splines between
each 3D mesh and an atlas was estimated using an intensity-
based similarity metric. Although this method is an attractive
alternative, using an image-based similarity metric is not
always suitable for images that lack strong features or have
varying contrast and appearance.

We propose a method to obtain point correspondence
between all vertices in a target mesh with vertices in a
source mesh, starting with an initial set of sparsely labeled
corresponding landmarks. A denser set of corresponding
landmarks is first determined from the initial sparse set
using an interpolation method based on Dijkstra’s shortest
path algorithm. From these landmarks a non-rigid free-form-
deformation of source to target is estimated and applied,
before complete vertex correspondence is computed between
the two meshes. The FFD estimation is similar to that
of Frangi et al.[6], however our estimation is based on
a similarity metric between the meshes themselves, rather
than their corresponding image data. We show that this
avoids inaccurate transformation estimation when meshes
are generated from labelled CT data where the appearance
of the root can vary significantly due to changing contrast,
calcifications, or the blood flow around the root itself.

II. METHOD

This section describes how to find a dense set of corre-
spondences across a set of training meshes. A target mesh
Mt = (Vt, Et, Ft) with |Vt| = n vertices is selected from
the mesh set, and the remaining meshes are regarded as the
source meshes. Assume a source mesh Ms = (Vs, Es, Fs)
where |Vs| = p, and n 6= p, and m easily identifiable
corresponding landmark points labelled on both meshes such
that Pt ⊂ Vt and Ps ⊂ Vs, where m << n. The challenge
is to find a complete set of n vertex correspondences on the
source mesh Ms. Our method obtains a set of source vertices
Qs ⊂ Vs that are correspondent with Vt.

Finding correspondences between shapes that vary in ap-
pearance can be challenging, however the problem becomes
much easier when the shapes are similar to one another. By
deforming Ms to match Mt, vertex correspondences can be
obtained using a nearest-neighbor metric. First, Ms and Mt

are transformed to a manually defined natural coordinate



Fig. 1. The source mesh undergoes a transformation Ms → M ′′s . For
every vertex Vt in Mt, a corresponding vertex is found in V ′′s to get a
re-ordered set of vertices Q′s. Finally, (Tl1 + Tl2 )

−1, is applied to get the
correspondences on the original source mesh Qs in natural coordinates.

system, so that they are globally aligned. This is followed
by a non-rigid transformation estimation between Ms and
Mt using Ps and Pt, which is applied to Ms. A nearest
neighbor calculation is performed between the vertices of
the deformed source mesh and Vt to obtain a new set of
correspondences Q′s. Finally the inverse transform is applied
leaving the desired Qs. This is repeated for all source meshes
remaining in the set. An overview is shown in Figure 1.

A. Transformation Estimation

Let T (x, y, z) be the transformation that deforms mesh Ms

so that T :Ms 7→Mt. Applying a global transformation Tg
alone accommodates affine differences between the source
and target, but does not consider the local differences in
shape. To allow a more flexible matching between the pair,
a local transformation Tl is also estimated based on B-
spline FFD. Our approach estimates Tl in two separate
stages; a coarser transformation Tl1 , followed by a finer
transformation Tl2 . For both cases, the FFDs themselves
are also estimated using a multi-resolutional procedure TH

l ,
where H is the number of mesh resolutions [6], [7]. As a
result the full transformation consists of a global, followed
by two local transformations.

T (x, y, z) = Tg(x, y, z)+[TH1

l1
(x, y, z)+TH2

l2
(x, y, z)]. (1)

B. Global Transformation

To initialize the full transformation, Mt and Ms must be
globally aligned. This is done by individually transforming
each mesh to an external coordinate system, using the
initial landmark points Ps and Pt. Alignment to this coor-
dinate system is estimated through an affine transformation:
Tg(x, y, z) = Ax+b, where A is a matrix containing rotation
and scale parameters, and b is a translation vector.

The translation vector is determined by shifting each mesh
so that a selected anchor point is at coordinate [0, 0, 0]. The
x, y, z axes of the natural coordinate system are manually
defined, and Euler angles can be determined by finding the
angles between the new and original axes. Finally, scaling
parameters are estimated by using the sizes of the mesh
bounding box. A practical example is given later.

C. Local Transformations

The local transformation terms, Tl1 and Tl2, are estimated
in a multi-resolution procedure [6], [7]. Both are expressed
as a summation of FFDs at multiple resolutions H:

TH
l (x, y, z) =

H∑
h=1

Th
l (x, y, z) (2)

At each mesh resolution h, the voxel lattice is warped by
moving a set of voxel lattice control points φhi,j,k of size
[nx × ny × nz], and an FFD is estimated [8]. These control
points act as parameters of the B-spline FFD. If δ0 is the
original control point spacing, then at each resolution h, the
spacing is defined as δh = δ0/2

h. Decreasing δ0 decreases
the flexibility of the spline, whereas increasing δ0 allows a
more local deformation. This FFD deformation is defined as:

Th
l (x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φ
h
i+l,j+m,k+n

(3)
where Bl represents the lth basis function of the B-spline [8],
and i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u =
x/nx−bx/nxc, v = y/ny−by/nyc, and w = z/nz−bz/nzc
[6], [7].

The B-spline parameters φhi,j,k, are optimized using gra-
dient descent, formulated as E(φ) = Es(target, source) +
λEr(Tl), where Er is a smoothness cost and λ is a regular-
ization term. Es, is a similarity metric based on a distance
measure between sets of mesh vertices.

The transformations are applied sequentially. First Tl1 is
estimated and applied to Ms to get M ′s. Tl2 is then estimated
and applied to M ′s, to get M ′′s . Two factors contribute to
making Tl1 a coarser transformation than Tl2 . The first is
the similarity metric calculation. For Tl1 this is estimated
from the sum-of-squared-distance (SSD) between the sparse
landmarks Ps and Pt. The similarity metric for Tl2 however
is based on the SSD between all vertices V ′s and Vt. The other
factor is the control point spacing δ0, during FFD estimation.
Tl1 has spacing of δ01 , and Tl2 has spacing of δ02 , where
δ01 > δ02 .

D. Finding Complete Correspondence

Finding landmark correspondences between two similar
shapes is now a much simpler task, and once the source
has been deformed to M ′′s , a nearest neighbor algorithm
can be used to find complete vertex correspondence. For
every vertex in Vt, the nearest neighbor based on Euclidean
distance is found in V ′′s . The nearest neighbor in V ′′s is
considered the corresponding vertex, and this leads to a new
set of re-ordered deformed source vertices Q′s. Finally, the
inverse local transformation (Tl1+Tl2)

−1 is applied to Q′s to
get the complete source correspondences Qs in the natural
coordinate system.

III. APPLICATION TO AORTIC ROOT MESHES

Here, we demonstrate the proposed method by applying it
to computing complete mesh correspondence in aorta geome-
tries obtained from CT transcatheter aortic valve implantation
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Fig. 2. Initial landmark labelling. (a) Initial sparse landmark points
showing the hinges (red), commissures (green), and sinotubular junction
points (blue); (b) Interpolation paths between pairs of initial landmarks; (c)
New initial landmarks after path interpolation.

(TAVI) images. When labelling the aortic root, only a few
landmarks can be easily identified. This can often lead to
an SSM that inadequately describes the shape. For example
when it comes to image segmentation on CT TAVI images
where the aortic root boundary is often diffused or close to
the blood flow, there is a very high chance that a number of
vertices can end up on the wrong boundary. If these vertices
are far away from the landmarks used to build the SSM, it is
possible that applying the SSM has little or no effect on their
positions, potentially leaving a shape that does not resemble
the root at all. A denser set of corresponding landmarks is
therefore desirable in order to adequately describe the aortic
root.

SSMs of the aortic root have previously been implemented
using sparsely separated, easily identified landmarks [9],
[10]. We propose that obtaining a denser set of correspon-
dences not only describes the shape better, but also makes
it possible to exclude or include landmarks in order to build
an SSM of varying degrees of freedom. To the best of our
knowledge, we are the first to propose finding a complete
set of correspondences between a set of aortic root meshes.

A. Finding Initial Landmarks

Each aortic root mesh was labelled with 10 corresponding
landmark points. Three of these were aortic valve hinge
points; the first of which was the nearest to the aortic arch,
with the remaining two labelled in a clockwise fashion. Three
commissure points were labelled between the hinges, with
the first commissure point between hinges 1 and 2, and
the remaining labelled in a clockwise fashion. Three points
were labelled on the sinotubular junction, directly below the
three hinge points. The first of which was below the first
hinge point, with the remaining two once again labelled in
a clockwise fashion. Finally, a centre point was labelled on
the surface at the centre of the root.

Using the 10 landmarks, a denser set of corresponding
landmarks were found using an interpolation approach to
reduce manual work. Pairs of landmark points were defined
and the surface paths between them were determined us-
ing Dijkstra’s shortest path algorithm. Fifteen paths were
determined in all; six between the hinge points and their
nearest commissure points, three between the hinge points
and the centre point, three between the hinge points and their
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Fig. 3. Deformation comparison. (a) column of source meshes (Ms); (b)
column of target meshes (Mt); (c) source deformation (M ′′s ) using proposed
method; (d) source deformation (M ′′s ) based on image data [6], [7].

corresponding sinotubular junction points, and three between
the sinotubular junction points. 5 evenly spaced points were
then interpolated along each path, leaving a total of 65
landmark points. Figure 2 shows the initial root landmarks,
the interpolation paths and the new landmark points.

B. Complete Vertex Correspondence

One mesh was selected as the target and the remaining
meshes were used as the source meshes. The natural co-
ordinate system was defined as follows. The anchor point
was defined as the labelled centre point, and the translation
parameters were determined. The z-axis was perpendicular
to the plane on which the three sinotubular junction points
lay, and the x-axis was parallel to the line between the first
sinotubular junction point and the second. Scaling parameters
for the source were estimated using the ratio between the
local bounding boxes of Ms and Mt.

For our estimation of Tl1 we decided to use H1 = 3
mesh resolutions, and an initial control point spacing of
δ0 = 15mm. A relatively large δ0 was selected here as to
suppress the amount of local deformation as the FFD was
estimated using the sparse set of corresponding landmarks.
This avoided any sharp peaks or troughs in the surface of the
mesh, while also reducing the chance of edge overlapping.
H2 = 3 was also used for the estimation of Tl2 , however
here we decided to use δ0 = 5mm in order to capture a
more local deformation by allowing the FFD more degrees
of freedom.

C. Results

An experiment was conducted using 37 aortic root meshes,
where each mesh was used as the target in a leave-one-
out fashion. The aortic root, including the ascending aorta
and aortic arch were labelled in CT TAVI images, of size
512 × 512 × (500 − 800), and voxel size was 0.48mm ×
0.48mm × 0.62mm. In order to ensure that the hinges
were clearly seen, multi-planar-rotation software was used
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Fig. 4. Vertex correspondence comparison. (a ) target mesh; (b) corre-
sponding vertices using proposed method; (c) corresponding vertices using
image-based transformation estimation [6], [7].
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Fig. 5. Further examples of vertex correspondence using proposed method.
(a) Target mesh with randomly sampled vertices; (b) Randomly selected
source mesh with corresponding vertices; (c) Another randomly selected
source mesh with corresponding vertices.

during labelling. This was followed by the marching-cubes
algorithm for mesh generation, and the 10 landmarks were
manually labelled. The ascending aorta and aortic arch were
then discarded from the meshes below the plane on which
the 3 sinotubular junction points lay. The average local mesh
size was 35mm× 34mm× 24mm.

Registration of source to target was evaluated using the
mean symmetrical Hausdorff distance Hdist, and mean point-
to-mesh distance Epmdist between Mt and M ′′s . The results
were Hdist = 3.65 ± 1.19mm and Epmdist = 0.41 ±
0.25mm. This represents a mean distance error of less than
one voxel, and a deformed mesh with no distant outlying ver-
tices from the surface. Figure 3 compares the deformation of
source to target using an image-based metric [6], [7], and our
method using the mesh-based approach. This shows that our
method deforms the source meshes so that they have a greater

visual resemblance to the target than the deformed meshes
using image-based transformation estimation. In addition, the
resulting meshes using our method have no compressed or
stretched mesh faces, and no tangled mesh edges, leaving a
smooth, regularized mesh. This is in contrast to the deformed
meshes using an image-based similarity metric, where the
meshes appear stretched and compressed in numerous areas.

This close similarity in appearance between Mt and M ′′s
allowed more accurate corresponding vertices to be found
using the nearest-neighbor calculation. Figure 4 compares
the vertex correspondences using our method, and using the
image-based transformation estimation.

Additional results of vertex correspondences between tar-
get and source meshes using our method are shown qualita-
tively in Figure 5. Twenty randomly sampled vertices have
been plotted on the target, and the corresponding vertices on
two source meshes are shown using a colour coded scheme.

IV. CONCLUSION

We have presented a mesh based registration method
for finding complete vertex correspondence from a set of
sparsely spaced corresponding landmarks. In particular, we
have demonstrated this method using complex aortic root
meshes, which have corresponding images with varying
appearance, and showed the advantages of the proposed
method compared against image based approaches, such as
[6].
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