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ABSTRACT

We present a fully automatic segmentation method to extract media-adventitia border in IVUS im-
ages. We use a double-interface automatic graph cut technique to prevent the extraction of media-
adventitia border from being distracted by those image features. Novel cost functions are derived
from using a combination of symmetric and asymmetric local phase features with complementary
texture features. Comparative studies on manual labeled data show promising performance of the
proposed method.
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1 INTRODUCTION

Intra-vascular Ultrasound (IVUS) is a catheter-based technology where an ultrasound probe is
moving inside the artery, transmitting signals and receiving the backscattered one from the inside
and outside the artery that help to diagnosis of atherosclerosis diseases. Media-adventitia border
is the outer side of the artery wall which can be used to measure the circumference, radius and
3D reconstruction of the artery. The appearance and visibility of the media-adventitia border are
affected by artery diseases, and acoustic shadow artifacts.

Many techniques have been used in IVUS segmentation such as active contour and level set [1,2]
and Graph search [3,4], which one based on minimizing a cost function that is derived from image
features and possibly combined with shape prior to refine the segmentation. This approach is
also adapted in [5] to deal with 3D volumetric segmentation using s-t cut algorithm to find the
minimum closed graph.

Local phase features have shown to be an effective alternative to intensity derived features to
deal with inhomogeneity, low image quality, and acoustic shadow that are common in ultrasound
images. For example, in [6] it is used to find acoustic boundaries in echocardiography images.
Two features can be extracted from local phase analysis: feature symmetry and feature asymmetry.
Feature symmetry highlights the location of high congruency between objects in images. Since
the media layer has generally uniform characteristics it can be detected by its symmetric feature,
whileas feature asymmetry responds to edge-like feature and it can detect potential borders.

This paper presents a fully automated segmentation of media-adventitia border in 2D IVUS im-
ages. Double interface segmentation is introduced to obtain the media-adventitia border by com-
bining image driven features with geometric constrains in well defined graph construction to over-
come the impediments such as stents, calcification or plaque. The first interface removes any



distraction existed above the media-adventitia border and the second interface finds the border
based on the characteristics of media layer.

2 PROPOSED METHOD

Briefly, the IVUS images are first transformed from Cartesian coordinates to polar coordinates,
height field like, then removing catheter-ring down artifact. Two node-weighed directed graph are
then constructed so that the border extraction is considered as computing a minimum closed set
graph by using s-t cut algorithm. The extracted media adventitia border from the second graph is
smoothed using radial basis function (RBF).

2.1 Graph construction

In [7], the authors proposed a novel graph construction method, which transforms the surface
segmentation in 3D into computing a minimum closed set in a directed graph. We adapt this
method to a 2D segmentation, which can carry out double-interface segmentation simultaneously
in low order polynomial time complexity and does not require user initialization. For each desired
interface, construct a graph G = (V, E) , where each node V (z,y) corresponds to a pixel in
2D image I(x,y). Along each column in graph, each node is connected to the precedence node
in the same column, and then connected to other node in different column to construct the closed
graph. After constructing the graph for each of the two interfaces, taking into account interrelations
between them is necessary and this is achieved by setting up another set of arcs to connect them.
Geometrical constraints can be imposed by setting minimum d,,,;,, and maximum ,,,,, separation
distances. The two interfaces thus will not intersect or overlap.

2.2 Feature extraction

Local phase features — Two types of features can be extracted from phase congruency: feature
asymmetry F'A(x,y) and feature symmetry F'S(z,y). Feature asymmetry highlights step-like
image patterns, and is defined as [6]:
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where m denotes filter orientation,o,,(x,y) and e, (x,y) are odd and even symmetric Log Ga-
bor filter, € is a small constant, T}, is an orientation-dependent noise threshold, A,,(x,y) =
Vez, (x,y) + o2 (z,y) and |.| denotes zeroing negative values. Feature symmetry favors bar-
like image patterns, which is useful in extracting the thin media layer. We modify the feature
symmetry equation in [6] to focus only on the dark polarity (minimum intensity) symmetry by:
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First order derivative of Gaussian — This set of filters is designed to highlight the intensity differ-
ence between media and adventitia. Four different orientations are used.

Band-pass log-Gabor — Log Gabor is used as a bandpass filter in three scales to enhance the border
and to reduce speckles and other image artifacts. This process is carried out in coarser scales, i.e.
in the 3rd, 4th and 5th scales. Hence, these features particularly show dominant edges.



2.3  Cost function

For the media-adventitia border, all the three types of features described in Sect. 2.3 are used. It
takes the following form:

Cl(xvy) :Cd(x,y)+a1G(:U,y)+oz2(1—FS(x,y)) (3)

where Cy denotes the term for derivative of Gaussian features,C's is for log-Gabor, and 1 and ao
are constants. C'g can be obtained by cascading the filtering responses across scales. However,
more weight can be assigned to coarser scale features so that it presence the connectivity of media-
adventitia border at the existence of acoustic shadow, e.g. Cg = G® + GW +1.5G0) as used
here and G(*) denotes ith scale. Feature symmetry F'S is useful in enhancing the thin layer of
media. It is normalized beforehand, and since the middle of the layer has larger values 1-F'S' is
used in the cost function so that the interface between media and adventitia is highlighted. Note
that each of the term in the cost function is normalized. For the auxiliary interface that is above
media-adventitia, we use a combination of log- Gabor feature and feature asymmetry:

Co(z,y) = Co(z,y) + az(1 — FA(z,y)) )

where a3 is a constant. The combination of those two types of features leads the cost function to fa-
vor linking globally dominant image features, which very often is distractive for media-adventitia
border segmentation.

2.4 Compute the minimum closed set

Each graph node is weighted by a value represents its rank to be selected in the minimum closed
set graph where the arc costs between graph nodes are infinitive. The weight assignment is carried
out according to w(z,y) = C(x,y) — C(x,y — 1) where C denotes the cost function and w is the
weight for each node in the directed graph, which serves as the base for dividing the nodes into
non-negative and negative sets. The s — ¢ cut method can then be used to find the minimum closed
set. The source s is connected to each negative node and every non-negative node is connected to
the sink ¢, both through a directed arc that carries the absolute value of the cost node itself.

2.5 Post-processing

The segmented media-adventitia may still contain local oscillations. Smoothing based post-processing
can be adopted to eliminate such oscillations. Here, RBF interpolation using thin plate base func-
tion is used to effectively obtain the final interface.

3 EXPERMENTAIL RESULTS

A total of 95 IVUS images from 4 acquisitions of 2 patients are used to evaluate the proposed
method. These images contain various forms of soft and fibrous plaque, calcification, stent, and
acoustic shadow. In most of the images, For all the tested images, ground-truth via manual labeling
is available for quantitative analysis. All the parameters are fixed: distance between two surfaces
are set as dpin = 5, Omaz = 140, and cost function weightings are set as a; = 0.7, as = 0.5,
and ag = 0.5.

The proposed method was compared against the single-interface segmentation with the cost func-
tion in (3). The cost function for the media-adventitia was kept the same. Fig. 1 The single-
interface segmentation gave partial media-adventitia border, as shown in first row (b). However,



Table 1: comparison between single-interface and double-interface segmentation results. AD: area
difference in percentage; AMD: absolute mean difference in pixel compared to ground-truth.

Single interface | Double-interface AD AMD
AD | AMD | AD | AMD
Mean 9.99 12.55 5.84 6.99
Std. 11.06 | 11.45 | 4.53 4.13
Min 1.60 1.76 1.47 1.75
Max 57.08 | 54.70 | 25.04 24.42

(b)

Figure 1: (a) Comparison between groun-truth (green) and the proposed method (red), (b) first
row shows single-interface result, and second row shows the proposed method.

its performance degraded when there were interfering image structures. Table 1 provides the quan-
titative comparison between single-interface approach and the proposed method. The proposed
method achieved better accuracy and consistency.

4 CONCLUSION

We presented an automatic double-interface segmentation method, whose cost functions combine
local and global image features and its geometric constrain is integrated in graph construction.
Qualitative and quantitative comparison showed superior performance of the proposed method.
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