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ABSTRACT The last half-decade has seen a surge in deep learning research on irregular domains
and efforts to extend convolutional neural networks (CNNs) to work on irregularly structured data. The
graph has emerged as a particularly useful geometrical object in deep learning, able to represent a variety
of irregular domains well. Graphs can represent various complex systems, from molecular structure, to
computer and social and traffic networks. Consequent on the extension of CNNs to graphs, a great amount
of research has been published that improves the inferential power and computational efficiency of graph-
based convolutional neural networks (GCNNs).
The research is incipient, however, and our understanding is relatively rudimentary. The majority of GCNNs
are designed to operate with certain properties. In this survey we review of the state of graph representation
learning from the perspective of deep learning. We consider challenges in graph deep learning that have
been neglected in the majority of work, largely because of the numerous theoretical difficulties they present.
We identify four major challenges in graph deep learning: dynamic and evolving graphs, learning with edge
signals and information, graph estimation, and the generalization of graph models. For each problem we
discuss the theoretical and practical issues, survey the relevant research, while highlighting the limitations
of the state of the art. Advances on these challenges would permit GCNNs to be applied to wider range
of domains, in situations where graph models have previously been limited owing to the obstructions to
applying a model owing to the domains’ natures.

INDEX TERMS dynamic graphs, edge attributes, graph convolution, graph deep learning, graph
estimation, graph learning methods

I. INTRODUCTION

CNNs are powerful models, but their conventional
formulation is limited to regularly structured information.
Countless domains when sampled produce data that is
irregularly structured for a number of reasons. It might
be inappropriately embedded in a regular domain, but it
would be Procrustean, and one would lose the insight that
incorporating the irregular structure would yield [1]. In
order to reap the same advantages on irregular domains
that the CNN has yielded on regular domains, the CNN’s
fundamental operations need to altered to operate on other
geometric objects.

Successful applications of CNNs are found in a wide

range of fields. The overwhelming majority of approaches
have been proposed in the field of computer vision, while
the advances in this field trickled down to more specialized
domains. Such domains include the medical field, where
CNNs have been widely adopted in medical imaging [2]–
[4], as well as non-imaging applications such as ECG
classification [5]. The wide variety of fields in which CNNs
have been effective include engineering, in fault detection
[6], communications [7] and networking with applications
ranging from web search [8] to encrypted traffic classification
[9].

Of the many irregular geometric shapes, graphs have
lately found favor in machine-learning research. The graph
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is an effective representations of entities and their irregular
relations. For example, the data sampled form the surface of
Earth, or from a network of users or computers, conforms
well to structure of a graph. Machine-learning models that
can exploit graph structures are therefore at an advantage.
Over the last half-decade the research extending CNNs to
graphs has focused largely on more effective convolutional
and pooling techniques, consequently yielding more efficient
and more expressive convolutional models.

Some of the successful applications of these models
include traffic flow prediction, and a variety of engineering
problems. Dynamic graph convolutional networks have
been adopted widely and shown to be effective for traffic
prediction applications, owing to the structural characteristics
of traffic networks [10]–[20]. Molecules can naturally be
represented as graphs, hence many approaches employing
graph convolutions target molecular engineering [21]–[24].
Applications of graph neural networks have also been found
in use for a variety of engineering problems. Graph neural
networks have been used for approximate simulators of
fluid or discrete element dynamics [25] and for mechanical
failure prediction of materials [26]. Other applications in the
field include dynamic scheduling for flexible manufacturing
systems using graph convolutional layers to embed the
network dynamics and constraints [27], and fault detection
and localization [28].

The methods developed hitherto however have been
developed and evaluated on relatively small graphs with
particular structural properties. Dwivedi et al. [29] recently
released a benchmarking framework to evaluate graph
convolutional layers against non-convolutional approaches
on larger graphs with a wide range of structural properties
on a broad set of tasks of different kinds. To the best of
our knowledge no framework exists to evaluate pooling
techniques. Nonetheless, graph models are becoming more
powerful, allowing us more ably to explore the field’s
recent and more challenging open problems, to which
comparatively little attention has been paid. A large portion
of those challenges is related to the theoretical limits of graph
models.

The popularity of the fast-growing field of deep learning
on graphs is reflected by the numerous recent comprehensive
surveys on the breadth of deeply-learned graph convolutional
approaches [30]–[32]. Other reviews focus more on different,
narrower fields of graph deep learning such as graph
representation learning [33], [34], focusing on the taxonomy
of existing techniques. Others specialize even further to
specific applications such as vertex embedding [35], [36],
knowledge graph embedding [37] or on specific model
architectures such as attention models [38]. By contrast, in
this survey we identify several fundamental theoretical and
practical challenges to learning on graphs that, to the best
of our knowledge, have not yet been the primary objects of
discussion in any survey to date. We address this lacuna by
elucidating each problem individually and collating current
work in the respective areas. By unifying the disparate works

under a common header, we hope to clarify the discussion
by highlighting the primary obstructions to methodological
improvements, and hence to stimulate more targeted research
in the respective areas. The three primary challenges we
identify are temporal graphs, edge attributes and signals on
graphs and graph estimation, which we complement with a
discussion on a group of problems that are theoretical and
practical obstacles in graph model generalization.

The first challenge is modeling temporal graphs, which
represent domains where topological and relational structures
change over time, such as a social network, where user
connections appear and disappear, and user activity can be
unpredictable. Financial or computer networks also fit well
into this category of graphs, where one application would be
the early detection of fraudulent or suspicious activity, which
manifests as unusual temporal activity pattern. A deeply-
learned graph model must learn not only to accommodate
these changes over time: it must also learn to adapt to
connectivity changes between related entities at each time-
step. Many theoretical and practical problems arise from this
challenge, not least how one would efficiently represent these
changes to an algorithm.

The second challenge is the incorporation of edge features,
both edge attributes and edge signals, into the convolution
operation. Edge attributes usually alter the diffusion of
signals in a convolution, as more commonly they are
conceived as describing qualities of the relations between
vertices. The way however in which the edge attributes alter
the diffusion of signals varies between works in the literature
and between the applications. In molecular deep learning,
edge attributes can represent discrete types of bonding—
e.g., single and double bonds—or continuous properties—
e.g., bond lengths. Rather than edge attributes, however, the
edges may also represent observed data structured on the
edges, which we term edge signals, insofar as they do not
corresponding to a fixed property but rather the behavior of
a higher-order signal over the domain. Vectors associated
to the edges of skeletal graph, for example, can represent
geometrical vertices from the center of the body, which can
be used by a model to learn the relative orientation of limbs.
Edge attributes have been present in graph convolutional
since the earliest research, but to the best of our knowledge
no work discusses the different ways in which edge attributes
are incorporated into convolutional networks. Nor is there
much research concerned with observed data structured over
the edges, or higher-order structures over the graph, as
it has been used in molecular applications. There is little
work that studies how data structured on vertices is most
optimally combined with edge-structured and higher-order
signals. This is a direction that is ripe for theoretical and
practical research. In our discussion, we delineate the ways
in which edge features are incorporated into convolutions,
and consider the opportunities posed by the development of
methods that draw together these different structures of data.

The third challenge is estimating graph structure from data.
In most cases we have a foreknown graph; but there are
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cases where an alternative, better-suited relational structure
may be available. The objective of graph estimation therefore
is to find a suitable graph to represent the interactions of
the entities in the domain. Assuming that the relational
structure of a graph expresses itself in the data, a graph-
estimating model may identify the relational structure in the
procession of signals in temporal problems, or patterns of
signals across large amounts of data. Taking the problem a
step further, we may not know the entities themselves, either,
a far broader, less-defined problem. Graph estimation is beset
with many problems, not least because the search space for
even a standard graph is so large. Already it has profited
many additional applications, particularly in generating new
molecular structures, or learning the interactions of physical
and multi-agent systems.

Concluding on the subject of challenges to learning on
graphs, we discuss the broader problems that affect the ability
of graph models to generalize to different graphs, tasks
and domains. Like machine-learning models in the regular
domain, generalization to different tasks and domains can
vary in difficulty depending on the similarity of the initial
training dataset to the target dataset. Learning more complex
features through deeper networks has proven challenging
owing to performance degradation as a result of the over-
smoothing of signals in attributed graphs. The complexity
and the variation in both structure and information observed
in graphs may manifest itself in different optimal strategies,
for instance in respect of the most appropriate receptive field
and how best to utilize of the information provided within
the graph. Finally, graphs are not represented neatly as single
entities like images: often information is missing, resulting in
a graph with incomplete connectivity or missing signals. We
consider this a sub-problem of generalization, and discuss the
matter from its different perspectives.

The survey is structured as follows. In Section II we
summarize the motivation, theory and methods of deep
learning on graphs. The terminology and notation here
(Section II-A) differ from what is conventional in deep-
learning research in order to align it more closely to longer-
established graph-theoretical terminology and notation and
avoid the wordy conventions that have arisen (such as
“fully connected graph” instead of “complete graph”). The
discussion of graph frameworks (Section II-B) serves to
frame the rest of the section by drawing together the alike
aspects under a common formulation. It will also help us
understand the issues common to both spatial (Section II-C)
and spectral convolution (Section II-D) on graphs. Lastly
we review the work on graph pooling (Section II-E). Our
paper is thereafter occupied by reviews and discussions of
the aforementioned incipient areas of research on graphs
(Section III). The paper is concluded in Section VIII.

ACRONYMS
AMG Algebraic multigrid
CNN Convolutional neural network
CommNet Communication Network
EEG Electroencephalography
FDGCN Fast directed graph convolutional network
GAT Graph Attention Network
GCN Graph Convolutional Network
GCNN Graph-based convolutional neural network
GIN Graph Isomorphism Network
GN Graph Network
GNN Graph neural network
G-VAE Graph variational autoencoder
GRU Gated recurrent unit
GWNN Graph Wavelet Neural Network
IN Interaction Network
KG Knowledge graph
LSTM Long short-term memory
MDI Missing data imputation
MEGNet Material graph network
MGC Molecular graph convolution
MLP Multi-layer perceptron
MPNN Message-Passing Neural Network
NRI Neural relational inference
RNN Recurrent neural network

II. BACKGROUND
The CNN is demonstrably effective in identifying patterns.
Its expressibility is owed to the small kernels that learn
small, local, translation-invariant functions over the surface
of the input. Composed over multiple layers, these low-
level features build into higher-level representations [39], on
which subsequent layers learn in order to accomplish a task
where pattern recognition is essential. The CNN’s modeling
capacity is also very high despite a relatively small number
of parameters. Moreover, being learned end to end, the CNN
can learn its own features on the raw input rather than rely on
features computed from the limited nature of the heuristics
and the conjectures of a human.

The CNN is however only suitable to domains where the
data is structured regularly. An image from a camera is an
example of a regular domain: visual information is stored
as a grid of pixels, corresponding to the camera sensor’s
regular sampling of a scene, inhering the spatial relations of
the colors in the scene. A consequence of this regularity is
that the local space around each pixel is identical anywhere
in the input. The CNN relies on the regularity of its input
domain because the definition of its two principal operations,
convolution and pooling, assumes a regular structure.

Many domains however exhibit an irregular structure,
rendering the conventional implementations of the CNN
inapplicable. Irregular data could be made regular by forcing
the data into a grid; but we risk undermining the model’s
ability to learn by losing the structure of the signal [40].
Therefore firstly we need a geometric object that can
represent the structure of irregular domains, on which we
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can still learn the patterns learned by CNNs. Secondly
we need an implementation of convolution that works on
irregular structures. In this survey we deal specifically with
convolution on graphs.

Graphs are not guaranteed to have a local, regular structure
as images have. Hence convolution and pooling are not as
straightforward to define for graphs. Multiple difficulties
arising from graphs’ irregularity need be considered when
formulating some strategy. Initially authors drew on domain-
specific properties to develop a convolutional method (viz.
[21]), but focus has shifted to generic techniques flexible to
sundry problems, consummating recently in the emergence
of a project to benchmark graph neural networks on a set of
standardized tasks [29].

In this section we firstly establish the notation and
terminology that will be followed throughout the paper. Then
we make some general remarks on the difficulties that one
encounters in defining convolutions and pooling on graphs,
before summarizing the most significant methods in each
case. The section on convolution is divided into a discussion
of the spectral and spatial approaches to convolution,
followed by an overview of convolution frameworks. Lastly
we discuss graph pooling techniques.

A. NOTATION AND DEFINITIONS
1) General graph definitions

A graph G is the ordered pair of finite sets (V,E), where V
is the set of vertices or nodes. If two vertices x, y ∈ V are
adjacent in the graph, they are joined by or incident to an
edge, relation or link, and there is a corresponding entry in
the set of edges {x, y} ∈ E; {x, y} may also be written xy,
exy or generally e. Two edges are likewise said to be adjacent
if they share an endvertex. The vertices and edges of a graph
G are also denoted V (G) andE(G) respectively. The number
of vertices in a graph is its order n, given by the cardinality
of the vertex set |V | or likewise of the graph |G|. The number
of edges in a graph is its size m, denoted as the cardinality of
the edge set |E|. A graph with n vertices may also be referred
to as an n-graph, denoted Gn. A graph generally has no self-
loops, i.e., edges joining a vertex to itself, and no more than
one edge between a pair of vertices. A subgraph of a graphG
is a graph H = {W,F} such that W ⊂ V, F ⊂ E. A graph
is weighted if the edges map to a set of real values.

2) Degree and neighborhoods

We denote the number of edges incident to a vertex x d(x),
which we call vertex x’s degree, incidences or adjacencies.
The minimum degree of a graph is denoted by δ(G) and
the maximum degree of a graph is denoted ∆(G). The
degree of a vertex x is equal to the first-order, one-hop
or first neighbors, denoted Γ(x), hence |Γ(x)| = d(x).
The vertex at the center of a neighborhood is called the
target or locus. The ith neighborhood of a vertex Γi(x)
is the set of vertices at most i steps from the locus. The
neighborhood Γ is fundamental to the spatial approaches we

FIGURE 1. An illustration of the different neighborhoods of a graph. The red
vertex is the target or locus vertex. The blue vertices constitute the target
vertex’s first neighborhood Γ(x). The green vertices constitute the second
neighborhood Γ2(x). Typically the first neighborhood is used in spatial graph
convolutions to define the receptive field. The target vertex is included if there
is a self-loop.

exhibit below, because they describe the receptive field of
spatial convolutions on a graph.

It should be noted that usually x /∈ Γ(x) unless
the graph contains self-loops. The foregoing definitions of
graph convolution implicitly include a self-loop in their
neighborhood definitions unless otherwise stated. Otherwise
the analogy of graph convolutions to image convolutions
would break down. See Fig. 1 for an illustration.

3) The connectivity of graphs
There are several elementary terms that describe the
connectivity of a graph. A graph with no edges between its
n vertices is an empty n-graph denoted by En. A complete
n-graph Kn has an edge between every pair of its n vertices.
For a trivial graph, |V | = 1 and K1 = E1. A graph where
the vertex degrees are all equal to k = δ(G) = ∆(G) is
called a k-regular graphRk. A graph with a minimum degree
k = δ(G) < ∆(G) is k-connected. All complete n-graphs
are (n− 1)-connected. A graph is connected if there is a
path between every pair of vertices in the graph. To the best
of our knowledge, the literature does not concern itself with
disconnected graphs.

4) Directed graphs
In general a graph’s edges are undirected, meaning xy = yx.
In directed graphs or digraphs this equality does not hold:
every edge is directed, and so the edge set is a subset of the
ordered pairs of V . Every directed edge xy joins a startvertex
x to an endvertex y. An edge yx that joins y to x is called the
inverse edge of xy.

As x can be a start- or endvertex, its neighborhood is
split into two disjoint sets of neighborhoods accordingly.
he in-neighborhood is the set of in-neighbors Γ−(x) =
{(y, x) | (y, x) ∈ E}, and the out-neighborhood is the set
of out-neighbors Γ+(x) = {(x, y) | (x, y) ∈ E}. The
neighborhood of a vertex x is thus redefined as Γ(x) =
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Γ−(x)∪Γ+(x). The in- and out-degree of a vertex is defined
likewise: d−(x) = |Γ−(x)|, d+(x) = |Γ+(x)|, d(x) =
d−(x) + d+(x).

The orientation of the edges of the graph results in
additional properties. A directed graph where there is a
path between every pair of vertices is strongly connected.
A directed graph where this is not possible—as in a
circuit, where there are source and sink vertices—is weakly
connected.

5) Linegraphs, undirected and directed
A linegraph L(G) = (G(E), EL) is constructed from
an underlying graph G = (V,E). The edges of the
underlying graph bijectively map to the vertices of the
linegraph. A pair of vertices in the linegraph are adjacent iff
their corresponding edges in G are adjacent. The directed
linegraph is defined on the directed graph. As defined by
Aigner [41], a directed edge is drawn from vertex α to β
in the directed graph iff the underlying edges have the same
orientation, i.e., α = xy and β = yz. A linegraph hence
represents the edge-adjacency or second-order structure of
graph.

6) Multigraphs
A more general type of graph is a multigraph, which is a
graph that can have multiple edges between two vertices. A
multigraph is also permitted to contain multiple self-loops.
We obtain a directed multigraph or multi-digraph when its
edges are directed.

7) Knowledge graphs
A knowledge graph is essentially a multi-digraph where
the edges have labels corresponding to a particular type of
relation between the adjacent vertices. A knowledge graph
is typically represented by a set of individual relations, a
collection of triplets, each denoted (x,R, y) or xRy. The
vertices or entities x, y ∈ V are described as the subject and
object vertices respectively.R is the type of relation joining x
and y. In practice, different types of relation can represent the
different kinds of interaction between entities, for instance in
systems of subatomic particles, where forces of attraction and
repulsion act simultaneously on a particle.

8) Matrix representations of graphs
Several matrices represent the structure of a graph from
several aspects. Note that these matrices assume the vertices
and edges are indexed, as each row or column corresponds to
a specific vertex or edge as the case may be. When one makes
this assumption, xi denotes the vertex indexed at i. Matrix
representations hence enforce an permutation of the vertices,
means models that use these matrices can be susceptible to
permutations of vertex order. Of course, this is not an issue
when there is already a natural ordering in the underlying
domain, as in such cases there is a known canonical graph.

An adjacency matrix of an n-graph is a binary n-by-n
matrix, where each non-zero entry corresponds to an edge

(a) (b) (c)

FIGURE 2. A graph G (a) can be represented as an adjacency matrix A (b).
We obtain the Laplacian matrix L of a graph by subtracting the adjacency
matrix from the degree matrix D.

from vertex xi to xj , such that ∀xi, xj ∈ VAij = 1.
A degree matrix D is a diagonal matrix where each entry
is the number of incident edges D = diag(A1). With
these matrices defined, we can compute the graph Laplacian
matrix L, among the more prominent matrices in graph deep
learning. The graph Laplacian matrix, often shortened to
graph Laplacian, is L = D −A. The normalized Laplacian
matrix is L̂ = I−D−1/2LD−1/2. The Laplacian matrix has a
nice property: it is a symmetric, positive semidefinite matrix,
therefore an eigendecomposition of the matrix yields a full
set of eigenvectors. Spatial convolutional methods on graphs
avail themselves of this fact by projecting graph-structured
information into the spectral domain, where convolution may
be defined as a simple multiplication.

If the graph is weighted, we substitute the weight matrix
W for A in the formulae for the Laplacian matrix and its
normalized form. W is defined similarly to A, except it is
real-valued, and each non-zero entry is a weight assigned
to the corresponding edge. Additionally the degree matrix is
computed on the weight matrix instead: D = diag(W1).

The entries of the adjacency matrix of a directed graph Aij

record the existence of an edge from vertices xi to xj . As
every in-edge of one vertex is also an out-edge of another,
we can capture all edges in such an adjacency matrix by only
recording the out-edges. Conveniently we can obtain the in-
or out-degrees of a vertex by the sum of its corresponding
column or row respectively. As a result this gives degree
matrices: the in-degree matrix D− = diag(A>1) and the
out-degree matrix D+ = diag(A1).

The Laplacian matrix of a directed graph is not guaranteed
to be symmetric unless every edge has an inverse edge.
The asymmetry of the Laplacian matrix hence precludes a
spectral convolutional approach as formulated in the normal
way. Nonetheless, there are presumptive means to circumvent
this limitation described in Section II-D.

9) Signals with graph structure
A signal structured by a graph is typically a mapping f from
its vertices to a c-dimensional vector f : V → Rc. Every
vertex is therefore said to be attributed to a signal. Likewise,
the signal may also be structured over the edges of the graph
(Section V), in which case f : E → Rc. Whatever the case,
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we use f(G) or simply f to describe generally the mapping
of a graph (or its components) to a set of signals; f(x) is the
signal attributed to element x, whether it be a vertex or an
edge. Unless otherwise stated, the graph signal is the input
to the first layer of every model. We use the notation hl to
refer to the output of the lth layer, where h0 = f(G). We
denote the features attributed to element x in layer l as hl(x).
We denote the number of input features to a layer c, and the
number of output features d.

B. GENERAL GRAPH FRAMEWORKS
Before we embark on our overview, it is worth considering
work that unifies graph convolutional techniques by
their common characteristics. The methodology of graph
convolution in the context of deep learning is divided
into two theoretical classes of approaches, spectral and
spatial. The works analyzed in this section unify them in
a common conceptual framework. In understanding them,
we learn something about the limitations of each realization
of the frameworks, and the connections between the
problems of approaches developed spatially and spectrally.
The frameworks do not focus on the specific theoretical
background, formalizing instead the overall procedure, in
order to elucidate the limitations of a group of graph network
architectures based on their characteristics. While research
on both directions show different strengths and weaknesses
in particular uses, both have one common goal: the definition
of an embedding with sufficient representational ability based
on a convolutional technique over a vertex neighborhood.

The earliest framework to come to the fore is the Message-
Passing Neural Network (MPNN) formulated by Gilmer et al.
[42]. The MPNN is designed to accept inputs of undirected
attributed graphs, with both edge and vertex attributes;
although it can be adapted to handle directed graphs and
multigraphs. The framework consists of two phases: a
message-passing phase and a readout phase. These two
processes bear some resemblance to the Weisfeiler-Lehman
test of isomorphism. Most modern spatial approaches and
even some spectral convolution approaches can be expressed
as instances of the MPNN framework. The terminology is
still used, including by ourselves, as shorthand to describe
convolutional models.

The Graph Network (GN) framework developed by
Battaglia et al. [43] is yet broader. Unlike the MPNN, it
is designed to operate on attributed directed multigraphs—
which accordingly lends the designer maximum flexibility
when devising a convolutional layer. Indeed the MPNN
framework can be thought of as a more constrained instance
of the GN framework.

In the GN framework’s full configuration, it propagates
and updates the attributes on edges e and vertices v and
attributes for the whole graph u, composed of many GN
blocks. A single block consists of three update functions
φe, φv, φu that update the attributes of the edges, vertices
and whole graph respectively (1 to 3), and three aggregation
functions: one local function ρe→v to aggregate edge updates

ē′i incident to a vertex v (4), and two global functions
ρe→u, ρv→u to aggregate edge (5) and vertex updates (6).

e′k = φe(ek,vrk ,vsk ,u) (1)
v′i = φv(ē′i,vi,u) (2)
u′ = φu(ē′, v̄′,u) (3)
ē′i = ρe→v(E′i) (4)
ē′ = ρe→u(E′) (5)
v̄′ = ρv→u(V ′) (6)

The update procedure starts by updating every edge’s
attributes e′k using current attributes of each edge ek, its
endvertices vrk ,vsk and the graph itself u (1). Then, for
every vertex v, the incident edges’ features ē′i are aggregated
with the current vertex’s vi and the global attribute u (4)
to update the vertices’ attributes v′i (2). For the update of
the global attributes u′, the edge attributes of all edges
ē′ are aggregated globally (5) followed by the equivalent
aggregation of the global vertex attributes v̄′ (6), using which
the graph attributes are finally updated u′ (3).

Various graph convolutional models can be constructed by
composing multiple GN blocks. Moreover parts of the GN
blocks may be excluded from the definition. Most of the
techniques we describe below have no global attributes, so
the relevant equations can be excluded. As we will see below,
we can also compose m blocks sequentially and disperse
information as many hops away on the graph, hence dilating
the receptive field of a convolution.

Convolution on graphs is hereafter categorized as spatial
or spectral. The principal difference between them is
respectively whether the receptive fields are formed spatially,
directly on the graph, or the convolution is computed in the
spectral domain of the graph, by projecting it into the spectral
domain using the eigenvectors of the graph. As we will see,
many spectral approaches are refinements or extensions of
the Fourier based GCNN [44] or other wavelet bases [45],
whereas the spatial approaches tend to be more varied.

Before we continue, we must note the increasingly
blurring distinction between spatial and spectral approaches.
Some approximations of spectral filters are indistinguishable
from spatial approaches in very constrained circumstances
[46], particularly caused by computational limitations
[47]. Ultimately these classes are useful simplifications
which group approaches according to their prevailing
characteristics.

C. SPATIAL CONVOLUTION ON GRAPHS
Convolution is defined spatially on the graph by analogy to
convolution on a regular domain. We have already remarked
on the conventional CNN’s inapplicability to graphs and
other irregular geometric objects, and it will be helpful to
explain this further. The CNN makes implicit assumptions
about the structure of the input that do not hold true for
graphs. By knowing where specifically where the analogy
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breaks down and what is lost, we can learn what we need
to redeem, and hence understand the issues which recur in
every effort by a researcher to define convolution on graphs.

Suppose we are working with images. When a square
kernel is convolved over an image, the kernel is multiplied
with a same-sized square of pixels centered on each pixel
in the image. Owing to its implicit ordering, an image has
the same local structure everywhere, so we can translate
a square kernel over the image—performing the same
operation each time but with different values in the image.
The local structure’s pixels and the kernel’s values are
arranged identically, all at certain discrete offsets from the
central pixel. Each value in the kernel scales the pixel at
the corresponding offset from the central value. Convolution
therefore inheres the structure and order of an image. Both
structure and order follow from the guaranteed regular
structure of images and Euclidean domains.

This definition of convolution does not hold for graphs
because a graph has no natural ordering and no guarantee
of a regular structure. A graph may be bestowed an ordering
if there is a natural ordering in the underlying domain; or it
may have a constant number of neighbors, making the graph
regular; or it may have both. But these are not properties that
exist universally. These are structural assumptions that are
possible only if the underlying domain guarantees it. Ideally
however one would prefer a graph convolution that does not
depend on the existence of an underlying order or regularity,
that generalizes to many kinds of graphs. In any case, for
spatial graph convolution to work, two things need to be
defined: (1) the local structure of a vertex; and (2) a way to
multiply a kernel or wavelet with the local graph signal.

Defining the local structure is ostensibly easy. A vertex’s
neighborhood is simply the adjacent vertices, the so-called
first-order neighborhood, the more frequent choice in the
literature; increasing the order of the neighborhood yields
larger neighborhoods (see Fig. 1). Choosing the order of
the neighborhood is thus superficially similar to choosing
the size of a kernel in a CNN; likewise, stacking layers of
convolutions dilates the receptive field incrementally. But
the graph is irregular: depending on the sparsity of the
graph, the first-order neighborhood can be very large. In the
worst case, when the graph is complete, a vertex’s first-order
neighborhood consists of every other vertex. In this case a
neighborhood subsampling is eminently desirable, lest the
computational expense become unwieldy. But subsampling
is complicated when we consider graphs with a high variance
of vertex degree. The question then is how to subsample
the neighborhood of high-degree and low-degree vertices
so their information is comparable across the graph. Some
approaches place a cap on the size of neighborhoods, a cap
that is informed by the nature of the underlying domain.
Some authors also delete less relevant edges in overly dense
graphs to lower the computational expense, decisions again
informed by the domain.

The greater issue is deciding how to filter the local signals
once their gathered, and what form the parameters of the

local kernel will take. The following approaches differ most
greatly in this respect. The function that combines the local
signals, whether it happens before or after a kernel is applied,
is ideally symmetric, reflecting the unordered nature of the
graph. But this depends ultimately on the way the local
signals are weighted in computing a new representation.
The kernel can be isotropic—where every local signal
contributes equally to the new signal—or anisotropic—each
signal contributes to the new representation according to
some properties. The weights can also be explicit—where
they are adjusted directly in the end-to-end-training—or
implicit—where some secondary trained process determines
their value. Techniques that use isotropic kernels sometimes
have fewer parameters and faster training and inference
times; but their modeling capacity is consequently smaller.
The selection of a kernel is further confused by the variance
of vertex degrees across the graph.

In the summaries below, we will explain the idea behind
each approach, equations accompanying the descriptions
where necessary. We will then briefly describe how each
method copes with the issues outlined above. As stated
above, we discuss only the more prominent spatial graph
convolutional approaches in the literature.

1) Molecular fingerprinting with graphs
The earliest exhibited work was proposed by Duvenaud et
al. [21] uses convolution on a graph to learn molecular
fingerprints, a vector embedding of the whole graph. Their
model consists of k convolutional layers. The features of
each atom and its adjacent atoms, together constituting the
receptive field, are summed, passed through a neural network
layer, and activated, forming the input to the next layer. This
can be formulated as

hl+1,x = σ

hl,x +
∑

y∈Γ(x)

hl,y

Θl,|Γ(x)|

 , (7)

where h0 = f(G). At each layer, the output is passed
projected to the vector-space of the molecular fingerprint and
softmax’d in order to sparsify it:

f =

k∑
l=0

softmax (Wlhl) . (8)

As the valency of an atom varies, the number of neighbors
varies between each vertex. Since the authors are learning
on organic compounds, where the maximum valency of
any atom is five, the maximum number of neighbors is
correspondingly five. The authors cope with the varying
vertex degree by learning five separate kernels, the matrices
Θl,|Γ(x)| ∈ Rc×d one for each vertex degree for each
layer. This scales poorly to domains whose graphs have a
high variance in vertex degree, the parameters growing by
O(k log(k)) where k = ∆(G). Since the local signals are
summed before the weight matrix is applied, the kernel is
isotropic, as the position is lost in the summation. Notice that
the local features are summed together, which is symmetric
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TABLE 1. The spatial and spectral approaches discussed in Sections II-C and II-D and their characteristics.

Approach Spatial/Spectral? (An)isotropic? Digraphs Multigraphs

Molecular fingerprinting [21] Spatial Isotropic – –
PATCHY-SAN [48] Spatial Anisotropic – –
MoNet [49] Spatial Anisotropic – –
GraphSAGE [50] Spatial Isotropic – –
GCN [46] Spatial/Spectral Isotropic – –
GAT [51] Spatial Anisotropic – –
GIN [52] Spatial Isotropic – –
Bruna et al. [44] Spectral Isotropic – –
ChebNet [53] Spectral Isotropic – –
CayleyNet [54] Spectral Isotropic – –
GWNN [45] Spectral Isotropic – –
Fast Haar transformation [55] Spectral Isotropic – –
Ma et al. [56] Spectral Isotropic –
Li et al. [57] Spectral Isotropic –
Mazari et al. [58] Spectral Isotropic –

on its inputs. The method is therefore not sensitive to vertex
order.

2) PATCHY-SAN
Niepert et al. [48] proposed PATCHY-SAN, another
definition of convolution on graphs. It consists of three
stages: selection, aggregation and normalization. The
selection stage of the algorithm produces a subset of
w vertices to be the loci of the receptive fields in the
convolution. The subset is determined by labeling the graph
using the Weisfeiler-Lehman test and imposing a ranking of
the vertices based on these labels, canonicalizing the graph.
A stepping procedure is used to select the w vertices from
this ranking, by iterating through the ranking in steps s long,
superficially similar to striding in an CNN.

The second stage is the aggregation of a receptive field
centered at each of the selected w vertices. The aggregation
is a breadth-first search for at least k vertices: Neighboring
vertices at increasing order from the central vertex are added
to a set N until |N | ≥ k. Each receptive field forms a
subgraph.

The final stage is normalization. The subgraphs formed
of each receptive field are normalized using some labeling
procedure. The normalization also produces a ranking
of the vertices. The algorithm learns a one-dimensional
parameter vector that is convolved over the receptive fields.
If the labeling procedure assigns two subgraphs with a
similar structure receive a similar ranking, then the ranking
corresponds to each vertex’s structural role in the subgraph.
The algorithm learns a vector of parameters on the linear
rankings of the vertices, adjusting its parameters on signals
ranked based on their structural role.

The labeling process is expensive, as it needs to be applied
to every input graph. Using the Weisfeiler-Lehman test to
canonicalize the graphs however means that it is not sensitive
to the ordering of the vertices themselves, as all inputted
graphs are expressed as their canonical graph. The sequence
of selected vertices in the first stage would be identical for
two isomorphic graphs.

PATCHY-SAN copes with varying vertex degrees by
subsampling or padding receptive fields to a fixed
size k. This fixes the computational cost. For vertices
with very low degrees, however, although the algorithm
will normalize graphs with respect to propinquity, it
necessitates an oversampling of distant and potentially
uninformative signals, hence increasing the computational
cost. Alternatively, it might include counter-informative
signals, harming learning. In graphs with a very high
variation in vertex degree, it is not clear that the vertex
rankings of the receptive fields’ subgraphs would be
comparable. An advantage of the linear ordering, however,
is that one can apply an anisotropic kernel over the local
features. A PATCHY-SAN layer moreover fits in neatly with
a simple one-dimensional convolutional network.

3) MoNet

Monti et al. [49] developed a general framework for
convolution on irregular geometries. MoNet, as it was
later designated, stands in contrast to earlier methods:
its convolutional kernel is made of a mixture of normal
distributions in a so-called pseudo-coordinate space. The
parameters of the model are hence learned indirectly
by altering the means and covariances of the normal
distributions. Altering certain aspects of the definition allows
a definition on the graph.

Initially a set of pseudo-coordinates is computed for a
vertex x ∈ G and each of its neighbors y ∈ Γ(x)
(presumably this includes a self-loop for the reasons stated
at the end of Section II-A). Monti et al. use the degrees of
each vertex pair in computing the pseudo-coordinates (9),

u(x, y) =

(
1√
d(x)

,
1√
d(y)

)>
, (9)

but there is no reason why other structural metrics other than
the vertex degree could not be used here.
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These initial pseudo-coordinates are transformed in a
dense layer,

ũ(x, y) = tanh (Wu + b) , (10)

with weights W ∈ Rr×2 and biases b ∈ Rr (10),
both also learned in the model. The pseudo-coordinates’
dimensionality r is an arbitrary choice; the authors chose
r = 2 or 3 dependent on the dataset.

The transformed pseudo-coordinates ũ(x, y) are used to
compute each weight of the kernel wi,

wi(ũ) = exp
(
−1

2
(ũ− µi)>Σ−1

i (ũ− µi)
)
, (11)

parameterized by a mean vector µi ∈ Rr and covariance
matrix Σi ∈ Rr×r, fixed to be orthogonal. The weights are
then multiplied by their respective vertex signals from the
previous layer l (12),

Di(x)hl =
∑

y∈Γ(x)

wi(ũ)hl,y, (12)

where the first layer f0 consists of the input signals.
In each MoNet layer there are k kernels, yielding 2rk

learned parameters in addition to the 3r learned parameters
for the transformation of initial pseudo-coordinates. The
kernels are applied to every vertex in the graph. The
results are weighted again by θi summed to form a new
representation of vertex x for the (l + 1)th layer (13),

hl+1(x) =

k−1∑
i=0

θiDi(x)hl. (13)

MoNet copes with varying vertex degrees in starkly
different manner to earlier methods. A kernel’s weights
are not explicitly defined, and can only be manipulated
indirectly by changing the normal distributions’ parameters
or those of the dense layer that transforms the initial pseudo-
coordinates. This affords a number of advantages. The model
is invariant to vertex degree. It is also not dependent on
any explicit ordering of the vertices’ neighborhoods, owing
to the summation of the weighted neighborhood signals.
Moreover the convolution is explicitly localized to the first-
order neighborhood. As in the previous cases, the receptive
field is dilated incrementally by increasing the number of
layers.

4) GraphSAGE
Hamilton et al. [50] presented a conceptually simpler graph
convolutional network called GraphSAGE. Each layer of
the network consists of two principal procedures: sampling
and aggregation. In the sampling stage of the ith layer, the
model uniformly sampled Si vertices from every vertex’s
first neighborhood. A separate sampling is done for each
layer. The number of samples Si is a hyperparameter. By
fixing the number of sampled neighbors, the authors can
keep convolution on large, dense graphs fixed and tractable
computationally.

The signals on each vertex and the sampled neighbors form
the receptive field. In the aggregation stage, these signals
are combined and passed through a single dense layer. The
specific way the neighbors’ signals are combined with the
target vertex’s is determined by the aggregator, of which there
are three kinds described by the authors: the mean, long-
short-term-memory (LSTM) and pooling aggregators. Once
selected, the aggregator is the same in all layers.

The aggregation procedure for a layer k consists of two
steps: aggregation of the neighbors’ signals,

hl+1,Γ(x) = aggregatel ({hl,y∀y ∈ Γ(x)}) , (14)

and concatenation of the aggregated signals with the target
vertex’s signal, which is passed through a dense layer,

hl+1,x = σ
(
Wl

(
hl,x ‖ hl+1,Γ(x)

))
, (15)

where Wl ∈ Rd×2c is a matrix of learned weights for the lth
layer, and σ is a non-linear activation function. The first layer
h0 is of course the input signals.

In the case of the LSTM aggregator, the aggregation
function in (14) an LSTM unit. As the LSTM is not a
symmetric on its inputs, the authors randomly permute the
neighborhood signals so the LSTM cannot learn on a specific
ordering. The pooling aggregator on the other hand takes the
maximum across the neighborhood signals for each channel.

For the mean aggregator, we alter the above definitions.
The target vertex’s signal and the neighboring signals are
instead joined together and averaged before being passed to
a smaller, single dense layer. If the neighborhood includes a
self-loop, then the mean aggregator is defined as

hl+1,x = σ

Wl

 1

|Γ(x)|
∑

y∈Γ(x)

hl,y

 , (16)

where Wl ∈ Rd×c is the weight matrix for the kth layer.
Like PATCHY-SAN, GraphSAGE limits the number

of vertices sampled from each vertex’s neighborhood.
Although, unlike PATCHY-SAN, in each layer the sampled
vertices are drawn solely from the first neighbors. By
increasing the number of layers, the model incorporates
signals at an increasing distance from the target vertex,
signals computed by convolution in preceding layers. It also
copes with varying vertex degrees by undersampling the
neighbors of high-degree vertices and oversampling low-
degree vertices. Over many layers, vertices missed out in
earlier samplings might be caught by samplings in later
layers.

As the weights are applied after the sampled neighbors’
signals have already been aggregated, the weights are not
learned based on position or ranking or structural role as
in PATCHY-SAN and MoNet. In the LSTM and pooling
aggregators, weightings are separately applied to a target
vertex’ signals and its neighboring vertices’ aggregated
signals. The kernel is therefore isotropic on the neighborhood
signals. The kernel, being explicitly defined, can also be
manipulated more directly than in MoNet.
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5) The Graph Convolutional Network (GCN)
Kipf et al.’s GCN [46] obscures the line between spatial and
spectral approaches. Chebyshev polynomials, examined in
Section II-D, can be used to approximate kernel functions
over graphs. By restricting this polynomial to its first order,
constraining the two terms’ coefficients to be equal and
applying a renormalization trick, which essentially adds self-
loops to the graph and re-normalizes the matrix, the formula
takes on a familiar form,

hl+1 = D−
1/2AD−

1/2 hl Θ, (17)

where Θ ∈ Rc×d is the set of parameters for the
layer, an isotropic kernel. Since D−1/2AD−1/2 remains
constant both during the optimization of the network and
at inference time, and can be implemented as a sparse
matrix, the computational expense is O (mcd). Moreover,
the summation implicit in the GCN’s formulation means the
approach is invariant to vertex order in the neighborhoods.
Each layer only works on the first neighborhoods, however,
so the receptive field is dilated by stacking multiple layers.

6) The Graph Attention Network (GAT)
Veličković et al. [51] described a graph attentional layer
for graph neural networks that constitutes a departure
in approach from earlier methods. At the core of the
approach is the attention mechanism. Firstly the graph
signals are projected through a weight matrix W ∈ Rd×c
where d is the number of channels in the projection.
Then, ignoring all structure initially, we compute attention
coefficients Cxy for every pair of signals hx,hy at vertices
x, y ∈ G. This computation yields a matrix of attention
coefficients C ∈ Rn×n from a shared attention mechanism
a : Rd × Rd → Rd×d, where

Cxy = a(Whx,Why). (18)

The attention mechanism a(−,−) is a single dense layer a ∈
R2d, where the pairs of projected signals are concatenated,
giving

Cxy = LeakyReLU(a [Whx ‖Why]), (19)

with the LeakyReLU’s negative slope parameter set at 0.2.
A masking operation reintroduces the graph structure by

limiting the attention solely to the first neighbors of each
vertex. The attention coefficients are normalized in each
neighborhood by applying softmax to each value,

αxy = softmaxΓ(x)(Cxy) =
exp(Cxy)∑

z∈Γ(x) exp(Cxz)
, (20)

where αxy is the local normalized attention coefficient.
With the attention coefficients calculated, we can

finally carry out the message-passing procedure. The new
representation calculated for each vertex is a weighted sum of
its neighbors (including a self-loop). The new representation
for a vertex x is

hl+1,x = σ

 ∑
y∈Γ(x)

αxyWlhl,y

 (21)

where σ is some non-linear activation function.
The attention mechanism allows the model to learn

anisotropic kernels over the receptive field of each vertex.
It also copes well with varying vertex degrees, requiring no
sampling of the vertices. Each signal in a neighborhood is
weighted individually according to its importance, as learned
by the attention mechanism. Since a summation combines the
weighted signals, the method does not depend on a particular
ordering of the vertices to work, rather indirectly relying
on the importance ascribed to a relation by the attentional
mechanism.

7) The Graph Isomorphism Network (GIN)
Finding that Kipf and Welling’s GCN [46] and GraphSAGE
[50] are incapable of discriminating certain graph structures,
Xu et al. [52] presented a simple yet elegant spatial
convolutional approach, Graph Isomorphism Network (GIN),
using a multi-layer perceptron (MLP). Each layer of the GIN
is defined

hk,x = MLPk

(1 + εk) · hk−1,x +
∑

y∈Γ(x)

hk−1,y

 (22)

where k is the current layer, MLP is a multi-layer perceptron,
and ε ∈ R is a constant, or otherwise learned end-to-end in
the GIN (in experiments the model attains good performance
when ε = 0). If the vertex features are one-hot vectors, the
input is simply the vertex features. Otherwise the features
are first projected individually through another MLP before
being passed to the first GIN layer.

As we mentioned, the GIN is as powerful as the Weisfeiler-
Lehman test. The MLPs in each layer embed the vertex
representations in the previous layer into a low-dimensional
space where similar structures can be embedded closely.
This embedding allows the network to discriminate different
structures that they demonstrate earlier techniques were
incapable of discriminating.

Like GraphSAGE, the model uses an isotropic kernel,
although the MLP may approximate any function owing
to its being a universal approximator. To the best of our
knowledge, there is no direct comparison between GIN and
MoNet. It would be interesting to see what difference there
would be between the two approaches. The summation-
before-projection that makes the kernel isotropic also enables
the model to cope very easily with large distributions of
vertex degrees in a graph.

D. SPECTRAL CONVOLUTION ON GRAPHS
Graph convolution on the spectral domain is primarily based
on spectral graph theory, where graph signals are transformed
from the vertex domain to the spectral domain. Applying
convolution on the graph represented in the spectral domain,
though, originates from signal processing, in the context of
which the equivalent filtering operation was defined [40].

All spectral approaches convert the graph signals to the
frequency domain, or the graph’s spectrum, most commonly
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(a) (b)

FIGURE 3. In spectral graph convolution, the graph-structured signal f(G)
(a) is projected into the Fourier domain (b) with the eigenvectors U obtained
by eigendecomposition of the Laplcian matrix L.

by applying a Fourier transform [40], [44], or alternatively
a wavelet transform [45], [47], [55], [59] to the signal using
the graph Laplacian. This conversion allows the use of local
convolutions using shared weights similarly to traditional
CNNs. This contrasts with earlier methods, defined in the
vertex or spatial domain, which have the disadvantage of
non-trivial definition of a shared convolution, as vertex
neighborhood can vary widely between graphs or even within
a single graph.

The definition of the graph convolution on the spectral
domain is based on the transformation of the graph to its
spectral domain (see Fig. 3). This can be done with the
graph Laplacian or the normalized Laplacian matrix as seen
in Section II-A8. For the purpose of this section the graph
Laplacian and the normalized Laplacian can be treated as
the same but they are not equivalent as they yield a different
set of eigenvalues. The eigenvectors and eigenvalues of the
normalized Laplacian matrix can be calculated through its
eigendecomposition,

L̂ = UΛ̂U>. (23)

where U ∈ Rn×n, the U = [u>0 , . . . ,u
>
n−1] is the Fourier

basis of the n eigenvectors, and Λ̂ = diag([λ0, . . . , λn−1]) ∈
Rn×n [53]. In turn the Fourier transformation of a signal f
can be defined with the help of the Fourier basis as

f̃ = U>f, (24)

and the inverse Fourier transformation as

f = Uf̃ . (25)

Based on more recent work on spectral convolutions [45],
[55], [59], the equations 24 and 25 can be generalized to

f̃ = Φ>f, (26)

with its inverse transform as

f = Φf̃ , (27)

where Φ is the basis of the transform. This can be either
the eigenvectors U of the Fourier transform or the wavelets
collection basis matrix φi for wavelets transform and the
same for the Haar wavelets.

1) Spectral convolution
The first to lay the theoretical foundations of graph spectral
convolutions were Shuman et al. [40], while the practical
background and the first spectral convolutional approach
were proposed by Bruna et al. [44], who defined onvolution
in the spectral domain of a graph signal. Suppose a graph
signal f and a spatial filter g; then

f ? g = U
((

U>f
)
�
(
U>g

))
(28)

where � is the Hadamard or element-wise product. Let gθ =
diag(U>g), the spectral transformation of the spatial filter.
Equation 28 consequently becomes

f ? g = UgθU
>f. (29)

The term gθ is a function of L, and equivalently a function of
its eigenvalues, gθ(L) = gθ(UΛU>) = Ugθ(Λ)U>, so a
more appropriate representation would be gθ(Λ) [53]. In fact
the statement holds for the eigenvalues of both the graph non-
normalized and normalized Laplacian as long as they are well
defined. Essentially, the convolution in the spectral domain of
a graph can be interpreted as a filtering operation.

Bruna et al. [44] defines a spectral convolutional layer as

fl+1,j = h

(
U

c−1∑
i=0

(
Θl,i,jU

>fl,i
))

(30)

where l is the layer index, i and j are the channel indices
of the input and output respectively, h is a real-valued non-
linearity and Θl,i,j is a diagonal matrix of parameters for
the lth layer from the ith input layer to the jth output layer.
This layer transforms a feature vector fl ∈ Rn×c to a feature
vector fl+1 ∈ Rn×d.

2) Polynomial filter approximation with Chebyshev
polynomials
The computational complexity of calculating the full set
of eigenvalues and eigenvectors in calculating the spectral
transform of a graph has been known from spectral graph
theory. To this end, Hammond et al. [47] proposed a
polynomial approximation for the wavelet basis using
Chebyshev polynomials, a theoretical approach adopted by
Defferard et al. [53] to define a spectral convolution that
approximates the Fourier transformation of the graph signal
(30).

The cost of the graph convolution defined in equation
29 is high with a computational complexity of O(n2) [53]
and a memory complexity of O(n) per layer [44]. The
high computational complexity is owed to the transformation
with the Fourier basis U. For this reason, in ChebNet gθ
is constrained to be a recursive polynomial function, using
Chebyshev polynomials Ti for 0 ≤ i < k, reducing
the computational cost to O(k · m), which is less than
the quadratic complexity of equation 29 when the graph is
sparse. In this case, the filter gθ is a k-order polynomial of Λ
and becomes

gθ(Λ) ≈
k−1∑
i=0

θiTi(Λ), (31)
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where Ti ∈ Rn×n is the ith term of the Chebyshev
polynomial and θi is its coefficient, and Λ = 2Λ/λmax − In
is the diagonal matrix of the eigenvalues rescaled [−1, 1].

TheO(n2) computation of the eigendecomposition means
that the graph convolution as defined in equation 31
scales poorly to large graphs. Using Hammond et al.’s
approximation [47] (32), the convolution can instead be
computed using the graph Laplacian directly, formulated as,

gθ(L) ≈
k−1∑
i=0

θiTi(L)f (32)

where L = 2L/λmax − In is the rescaled Laplacian. Finally,
in a similar fashion to equation 30 the calculation of the next
layer’s feature map is

fl+1,j = h

(
c−1∑
i=0

gθ(L)fl,i

)
, (33)

where θi,j is the Chebyshev coefficient of the ith term of the
jth output map, trained end to end in the neural network.

3) First-order approximation of the spectral convolution
In the previous approach k practically means that the
convolution is k-localized, or in other terms it includes
the kth neighborhood. Kipf and Welling [46] proposed
an approximation of the ChebNet convolution, the Graph
Convolutional Network (GCN), by constraining the order of
the polynomial to k = 1, thus constraining the convolution
to be over the first neighbors, and further constraining the
maximum eigenvalue to be λmax = 2. The convolution then
is transformed from equation 32 to

f?g ≈ θ′0f+θ′1(L−In)f = θ′0f−θ′1D−
1/2AD−

1/2f. (34)

They further reduced the number of parameters of the model
by constraining θ′0 = −θ′1 = θ, giving

f ? g ≈ θ
(
In + D−

1/2AD−
1/2
)
f = θLf. (35)

In this formulation of the convolution In + D−1/2AD−1/2

has eigenvalues in the range [0, 2], which can potentially lead
to exploding or vanishing gradients. A normalization trick
solves this problem: In + D−1/2AD−1/2 → D−1/2AD−1/2,
with A = A + In, and D = diag(A1). As such the
convolution is approximated as

f ? g ≈ θ
(
D−

1/2AD−
1/2
)
f, (36)

and consequently the calculation of the next layer’s feature
map is calculated in its vectorized form, generalizing to many
output maps, as

fl+1 = h
(
D−

1/2AD−
1/2flΘl

)
, (37)

where Θl ∈ Rc×d is the matrix of trainable parameters for
layer l. The output of layer l + 1 is thus fl+1 ∈ Rn×d. The
complexity of the convolution operation is O(m · c · d).

The receptive field of the layer is limited to the first
neighborhood; by stacking convolutional layers, however, the
receptive field is delated, enabling the model to learn higher-
level features. Unfortunately, deeper architectures such as the
GCN without further modifications exhibit oversmoothing
and a consequent degradation in performance.

4) Complex filter approximation
Levie et al. [54] proposed rational complex functions, the
Caley polynomials, as a set of filters for spectral graph
convolution. Like the Chebyshev filters used by Defferard
et al. [53], Caley filters do not need an eigendecomposition
of the Laplacian matrix, and have the same computational
complexity as sparse Laplacians of O(n), as well as the
locality of the spectral convolution; although Caley filters
exhibit larger support for the same order of coefficients. One
disadvantage Levie et al. outlined is that the spectrum of
Cayley polynomials is restricted to [−1, 1] linearly, limiting
their ability to specialize in small spectral bands. This is
mitigated by a spectral zoom parameter.

5) The Graph Wavelet Neural Network (GWNN)
Xu et al. [45] proposed a wavelet transformation for
projecting the graph signal to the spectral domain. In Graph
Wavelet Neural Network (GWNN) the signal is projected to
the spectral domain using a collection of wavelets as bases
instead of the Fourier basis. The wavelet transform exhibits
a high sparsity compared to the Fourier transform, since it
uses a set of wavelet bases instead of the eigenvectors for the
projection. The convolution is also localized on the spatial
or vertex domain, since each wavelet corresponds to a graph
signal diffused away from the central vertex. Additionally
there is a scaling parameter within the wavelet bases, which
can focus on different spectral regions. Xu et al. also claim
that the computation efficiency of the GWNN is an advantage
of the wavelet transform that stands only when the wavelet
bases are approximated using Chebyshev polynomials, and
consequently doesn’t require eigendecomposition of the
Laplacian matrix. In this case this method is more efficient,
with O (k ·m), where k is the number of wavelet basis
functions.

6) Fast Haar transformations
Another wavelet-based transformation to the spectral domain
was proposed by Li et al. [55]. Similarly to Xu et al. [45],
the Haar basis replaces the Laplacian eigenvectors U, and its
computational efficiency is based on the sparsity of the Haar
basis matrix. The sparsity of the Haar basis enables efficient
fast Haar transformations and sparse matrix multiplications.
Zheng et al. [59] also proposed a Haar-wavelet-based graph
convolution combined with Haar wavelet pooling in an end-
to-end network architecture for graph classification. The
proposed HaarNet differs in the construction of the graph
Haar basis, which is used in both the graph convolution
and coarsening. In Zeng et al.’s approach the Haar basis
is constructed based on a hierarchically coarsened graph
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representation, where the basis of the finest layer becomes
the global Haar basis. Based on this method, the system can
handle graphs with varying size and structure, while the Haar
wavelets guarantee locality in the spatial domain [59].

7) Spectral convolution on directed graphs
As we have seen in Section II-C, there has been prolific
research on graph neural networks (GNNs) defined on the
vertex or spatial domain, and a major reason is the flexibility
of the possible approaches. This flexibility is especially
apparent in directed graphs, as the definition of convolution
on spectral graphs in spectral domain is non-trivial and
related approaches rely on tricks to take advantage of the
directional signals on the graphs. As described in Section
Section II-A8, the Laplacian matrix defined on an undirected
graph yields a full set of eigenvectors, as its adjacency or
weight matrix is symmetric, which allows us to use the
spectral approaches above. Recently Ma et al. [56] proposed
a method of spectral convolution adapted to directed graphs,
while Cui et al. [60] proposed a modified spectral convolution
for directed signed graphs.

Ma et al. [56] constructed a transition probability matrix
P, where Px,y expresses the probability of a directed edge
existing from vertex x to y. The transition probability matrix
is calculated as

P = D−1
+ A. (38)

According to the Perron-Frobenius theorem, an irreducible
matrix with non-negative entries has a unique positive
real-valued eigenvalue ρ, the largest eigenvalue, whose
corresponding eigenvector, the Perron vector, is φ ∈
R1×N s.t. φi > 0 and φP = ρ(P )φ. Ma et al. construct
Φ, a diagonal matrix of the normalized eigenvector φnorm,
on which they base the computation of the graph Laplacian,

L = I−D−
1/2AD−

1/2

= I−D−
1/2PD−

1/2

= I−Φ−
1/2PΦ−

1/2.

(39)

Since neither P nor D are symmetric, for a directed graph
Ma et al. defined the normalized symmetric Laplacian of the
directed graph as:

L′ = I− 1

2

(
Φ

1/2PΦ−
1/2 + Φ−

1/2P>Φ
1/2
)

(40)

which essentially means L′ = L+L>

2 , with L as defined in
equation 39.

More recently Li et al. [57] proposed the fast directed
graph convolutional network (FDGCN). Their method builds
on Ma et al.’s formulation by using an approximation in
place of matrix Φ by fixing φ = ( 1

n , . . . ,
1
n )n, which is the

Perron vector for a directed regular graph [57]. In addition
to the improvement in computational efficiency, Li et al. also
proposed the addition of self-loop in the calculation of the
transition matrix to avoid a potential zero-degree matrix, as
well as the weighted mean of the two directions, using the in-
and out-degree matrices, as the FDGCN layer.

Cui et al. [60] focused more on adapting the method for
signed graphs rather than preserve the direction of the edges.
They calculate the directed signed network propagation
matrix, Asign = A + A> + In, which converts the original
directed adjacency matrix to a symmetric enhanced matrix.
This in turn is used to define a k-step reachable matrix
Mk, which represents the connectivity between the vertices
at different orders. Mk is passed through a gated network
and the updated reachable matrix is used for the graph
convolution.

The three different approaches for the application of
spectral convolutions to a directed graph have similarities
and differences. They each devise a method to convert
the Laplacian matrix to a symmetric form, with Ma et al.
preserving a sense of direction of flow through the sole use of
the out-degree matrix. On the contrary, it could also be argued
that in such a way information contained in the original graph
is lost, finally leaving the appropriate use to application-
specific needs.

8) Extensions to multigraphs

Similarly to adaptations of spectral graph convolutions
to directed graphs, multigraph approaches try to use the
supplied graph structure and information into a composite
Laplacian matrix that retains the required properties of a
graph Laplacian.

Mazari et al. [58] proposed an MLP-based approach
for combining multiple individual graph Laplacians into a
composite learned Laplacian representation. The resulting
Laplacian is conditionally positive definite matrix, a
necessary property for eigendecomposition to obtain a full set
of eigenvectors. The multi-Laplacian MLP network precedes
the convolutional layers and is trained by regular back-
propagation in a supervised scheme.

9) Low- and high-pass filtering

As with convolution in the regular domain, graph convolution
is a filtering operation on the graph signal. Filtering can
be divided into low- and high-pass filters in terms of the
spectral frequencies that are allowed to pass, with the rest
being filtered. Simple examples of low-pass and high-pass
filters in image processing are the Gaussian filter and the
Sobel filter respectively. Different filtering operations serve
different purposes.

Xu et al. [61] argued that in labeling tasks such as
vertex classification low-pass filtering is preferable as
same labels within a graph neighborhood corresponds to
neighborhood smoothness. However, there is a conflict in
the literature regarding what constitutes low- and high-pass
filters in popular graph convolutional blocks. While Hoang
and Maehara [62] stated that the ChebNet [53] and its
simplification GCN [46] should perform a low-pass filtering
on the graph, Xu et al. [61] disagreed with this, stating that
GCN and ChebNet apply high-pass filter to the graph signal,
and proposed convolution with heat kernels applied to the
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Laplacian eigenvalues similarly to the ones used to build the
wavelet bases [45].

Recently, Chang et al. [63] proposed a graph convolution
based on wavelet transform, using an attention-based
combination of low- and high-pass spectral filters. The notion
is that in the Laplacian eigenvalues, small indices correspond
to low frequencies and large indices correspond to high
frequencies in the spectral domain. The attention weights are
applied for the contribution of the low- and high-pass filtering
contribution instead of the more granular attention of each
neighbor as seen in the original GAT [51].

E. POOLING
In conventional CNNs, pooling layers serve the purpose of
making the subsequent feature representations translation
invariant [64]. Pooling layers summarize feature responses
over a whole neighborhood and increase the receptive field
of the next layers. Reducing the size of the feature maps
also helps avoiding overfitting [65] while improving the
computational efficiency of the model.

Lee et al. [65] classified pooling techniques into three
categories: topology-based pooling, global pooling and
hierarchical pooling. Diehl [66] divided the approaches into
fixed and learned methods. The first category represents
pooling methods that are usually based on topology, while
the latter uses trained pooling layers. A more concise and
accurate classification of pooling techniques would be a
classification into global and hierarchical pooling techniques,
as this distinction describes the functional difference more
closely, while topology-based pooling techniques can be
generally included in the hierarchical category.

The most important attribute of all pooling techniques
is invariance to the ordering of vertices, also called
isomorphism invariance. This means that isomorphic graphs
should produce the same representation after the pooling
operation regardless of the vertex ordering in their matrix
representations. An overview of the pooling methods listed
in this section can be found in Table 2.

Method Type Structure Features Unpooling

Minimum pooling global –
Maximum pooling global –
Mean pooling global –
Sum pooling global –
[67] global –
set2set [68] global –
SortPool [20] global ( )
Graph U-Nets (gPool) [69] subsampling
SAGPool [65] subsampling ( )
GSAPool [70] subsampling
Graph Attention Pool [71] subsampling ( )
DiffPool [67] clustering [72]
EdgePool [66] clustering (vertex + edge)
LaPool [73] clustering ( )
StructPool [74] clustering ( )
MinCutPool [72] clustering
HaarPool [75] clustering –

TABLE 2. A taxomomy of graph pooling methods.

1) Global pooling
Global pooling refers to the simplest form of pooling of
signals on a graph. In the literature it can also be referred to
as a readout layer. The primary purpose of a global pooling
layer is the aggregation of the vertex features to a graph
feature representation to aid graph-level tasks such as graph
classification.

The basic pooling methods include the simple
aggregators—maximum, mean and sum pooling—which
respectively calculate the maximum, mean and sum for
each vertex attribute in fx, collapsing the representation a
collection of vertex features to a graph-level feature vector.
Ying et al. [67] used a combination of the global mean
pooling and the global maximum pooling by concatenating
the result of the two aggregators, and they found that it
strengthened the representations.

Other approaches to graph classification, instead of
employing these simple aggregators, transform the vertex
representation to a permutation invariant graph-level
representation or embedding [20], [42], [76]. In particular,
Li et al. [76] trained a neural network to construct the
graph-level embedding, while Gilmer et al. [42] used the
set2set model [68]. In contrast to the aforementioned
methods, Zhang et al. [20] approached the problem with a
sorting-based pooling method, which could easily be used in
a hierarchical coarsening setting. After selecting a subset of
the sorted vertices they concatenated the vertex features into
a graph-level vector. The same concatenation readout method
was followed by Xu et al. [52]. The sorting-based pooling
of Zhang et al. [20] is a simple reverse lexicographic sort
on the vertex features. For graph classification, the vector is
passed through several one-dimensional convolutional and
fully connected layers.

2) Hierarchical pooling
Hierarchical pooling techniques could be interpreted as the
equivalent techniques to pooling methods in the regular
domain. Irrespective to the particular method followed, they
result in a smaller graph and a larger receptive field on the
subsequent layers of a chosen architecture. The observation
of the graph from different scales is particularly beneficial
in the task of graph classification [67] and as a result
many graph classification methods employ a hierarchical
representation of the graph through hierarchical pooling
combined with a final global pooling or readout layer [65],
[67], [77].

Hierarchical pooling techniques can be distinguished by
the methodology they use to produce the more abstract
representation of the graph. The two most general types
are the subsampling and the clustering methods, which are
described into more detail below.

a: Subsampling methods.
In the subsampling category fall all the methods that are
selective, i.e., the methods that select a subset of the vertices
of the original graph based on certain criteria, such as
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structure, vertex features or both. Subsampling methods
found in the literature consist of a scoring method, which
is used for selecting the top k vertices that will remain in
the pooled graph. Methods falling into this category have an
inherent problem of discarding information from the graph,
as the vertices not selected are dropped, and so their features
are not aggregated together with the remaining vertices.
This makes the definition of an effective unpooling or graph
upsampling operation problematic.

Gao and Ji [69] used a learned projection vector that
projects each feature vector into an one-dimensional scalar
value, and based on a sorting of the vertices. The top k
vertices are selected and the rest are discarded, along with
the corresponding topological information. This approach
has multiple limitations, including that it considers only the
vertex features for the pooling, as well as the resulting loss
of information, including both vertex features as well as
structural information from the edges between sampled and
discarded vertices. A method to improve the connectivity
proposed in the paper is transforming the resulting adjacency
matrix to Al+1 = A2, where A2 = Al ∗Al, which results
in a slight improvement in performance.

A similar approach was followed by Lee et al. [65].
This approach also used a top k selection of the sorted
vertices; however, vertices were sorted based on an indicator
calculated by a GCNs [46] or more generally a GNNs block.
In this case the pooling technique is using both topological
information as well as features; however, the problem of lost
information still exists.

Knyazev et al. [71] proposed an attention-based pooling
method, which works by thresholding the attention scores for
each of the graph vertices. The vertices with attention values
are kept in the pooled graph. While this procedure presents a
possibility of creating isolated vertices, Knyazev et al. found
that variance of the attention score over a neighborhood is
relatively smooth, which means that entire neighborhoods
are pooled together, in contrast to clustering-based pooling
methods, which tend to cluster and collapse neighborhoods
into pooled vertices. One important issue noted however is
the high variance of some results based on the initialization
of the attention weights, while the performance of the model
itself impacts the overall performance.

Zhang et al. [70] presented an approach that explicitly uses
both vertex features and the graph structure for calculating
vertex scores. The feature-specific network uses an MLP for
calculating the vertex scores, while a GCNN block is used
for structure-based scoring. The final scores are calculated
based on a weighted sum using a model hyperparameter
which can be tuned through cross validation. To address the
problem of dropped vertex attributes in top-k pooling, Zhang
et al. experimented with different feature-fusion strategies:
no propagation, and 1- and 2-hop neighborhood propagation
based on GAT [51] and GCN [46]. The experimental results
showed that 1- and 2-hop feature fusion yield considerable
improvements over simply dropping the vertices.

b: Clustering methods.
The category of clustering methods includes all methods
that agglomerate the vertices into clusters which are then
represented as supervertices into the following layers. In
general, graph pooling or graph coarsening methods are
comprised of two phases: graph downsampling and graph
reduction [78]. The purpose of the downsampling phase is to
output a graph with a reduced set of vertices, while reduction
aggregates or smooths the weights of the edges between the
remaining vertices as well as the vertex features in the case
of an attributed graph.

The clustering of the vertices and the new sparsified graph
follows an aggregation set which specifies the computation
of the new graph’s adjacency matrix and the aggregation
of the new vertex features. Earlier approaches of this type
required pre-processing of the original data and used external
clustering algorithms such as Graclus algorithm [77], [79].

In general, clustering-based pooling methods that output
a clustering assignment matrix can allow end-to-end
training and inference [67], or otherwise need to calculate
the clustering hierarchy before the graph inference [75].
However, methods using this method can backpropagate
the gradients seamlessly owing to the differentiable matrix
multiplication. Additionally, in contrast to subsampling
pooling methods, especially when a soft-assignment matrix is
used, information about the graph is retained; moreover the
unpooling operation is straightforward. A common method
among the clustering based methods is the calculation of a
soft- or hard-assignment matrix S, which provides both the
mechanism of assigning vertices into clusters, along with
smoothing in the case of soft-assignment, as well as the
graph coarsening, being a reduced projection matrix. An
assignment matrix also provides the capability of unpooling
operation, as given in equation 42.

Apool = S>AS (41)

Aunpool = SApoolS
> (42)

One of the first classes of methods for graph coarsening
was algebraic multigrid (AMG), inspired by a hierarchical
solution of a linear system of partial differential equations.
AMG follows a V-cycle, which starts by calculating an initial
coarsening chain, and subsequently refines it based on the
calculated residuals, like the partial differential equation’s
counterpart [80]. The projection of the graph from a finer
scale to a coarser is done with a projection matrix, equivalent
to the clustering assignment matrix. A simple version of the
AMG graph coarsening is described by Safro et al. [80].
They define an algebraic distance coupling measure based
on a lazy random walk. The iterative coarsening procedure
begins by selecting a subset C of vertices, so that all other
vertices are strongly coupled to them. This coupling strength
of each vertex in the subset C must exceed a threshold to
be included. The projection matrix coefficients are calculated
iteratively, wherein each vertex is assigned to a coarser vertex
based on the algebraic connection strength and the balance
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between the clusters. Safro et al. observed that the order of
vertices traversed for clustering can result in varying results,
which was mitigated by normalizing the graph Laplacian
matrix by the volume of the edge weights, where the volume
is a calculation of the algebraic distance of adjacent pairs
of edges. It also conveniently eliminates high density in the
coarser graph levels.

One of the first differentiable pooling techniques that can
be applied into an end-to-end fashion was proposed by Ying
et al. [67]. In their proposed method, DiffPool, the task is
to learn a clustering assignment matrix. In order to generate
the assignment matrix, a GNNs block is used similar to the
one used for generating the next layer’s representation. As
the assignment matrix is generated by a GNN block, it takes
into account both structural information and vertex attributes.
Based on the generated embedding matrix and the cluster
assignment matrix, the next layer’s features and adjacency
matrix are calculated, thus aggregating the information into
a coarsened graph rather than discarding it. DiffPool should
be permutation invariant as long as a permutation invariant
GNN block is used for the representation and clustering
learning. An additional constraint was also implemented with
the form of an auxiliary edge prediction objective, effectively
enforcing a weak rule of pooling nearby vertices. With this
constraint and entropy regularization they found the model
to perform better than one without the auxiliary objective.

A recent clustering-based pooling approach is EdgePool
[66], which instead of clustering vertices directly based
on their features or implicitly on the graph topology they
consider the local connectivity of the graph and base the
operation on edge contractions. Essentially, the method
selects edges instead of vertices, and pools the connected
vertices. Edges are chosen based on a score calculated from
the incident vertices’ features; but edge attributes can also be
used in the score calculation,

r(exy) = W · [f(x)||f(y)] + b, or (43)

r(exy) = W · [f(x)||f(y)||f(exy)] + b (44)

where f(x), f(y) are the feature vectors of vertices x and
y, and f(exy) is the feature vector of their connecting edge.
This example shows the simplest integration of edge features
in the pooling in the form of concatenation. The final score
is calculated by sxy = 0.5 + softmax(r(exy)). The incident
vertices of the contracted edge are then pooled into a new
vertex with aggregated feature values based on the score.
One limitation to this approach is that the pooling ratio is
constant at 0.5 and cannot be modified like other approaches
such as sorting-based pooling. The advantage of EdgePool
is the localized pooling operation that retains the sparsity of
the graph which is important for efficiency in larger graphs.
Also, as graphs become more dense, local connectivity is
difficult to capture, which is important for processing signals
on graphs [78].

Noutahi et al. [73] proposed two approaches to graph
clustering, based on local signal variation from the centroids:

one selecting the k vertices with the greatest signal variation,
and the other focusing on dynamic centroid selection
based on selecting vertices with the greatest variation in
the neighborhood. The latter can be effective as vertex
neighborhoods and their density are graph dependent. After
the centroid selection the clustering assignment matrix is
calculated using a soft attention mechanism calculated on the
cosine similarity of the feature vectors of the centroid and
the candidate. The graph reduction in the form of feature
embedding is then calculated by a neural network learning
on the reduced and projected feature representation.

Yuan et al. [74] proposed a formulation of the clustering
problem as a conditional random field conditioned on
the vertex features. They formulate the Gibbs energy
function to be minimized as a function of an unary energy
component calculated with GCN blocks and a pairwise
energy component based on an k-hop connectivity adjacency
matrix [81]. The result of a CRF is a clustering assignment
matrix which is used to pool the graph.

Bianchi et al. [72] proposed MinCutPool, which solves
the same objective as spectral clustering with the use
of an MLP. Specifically, they represent the problem of
finding the minimum cut as an unsupervised loss function
and train the MLP to output a cluster assignment matrix.
MinCutPool, in contrast to spectral clustering, which is
based on the eigendecomposition of the adjacency or
Laplacian matrix, uses vertex features as input to the pooling
MLP. The coarsened graph’s adjacency matrix and the
graph’s thereafter aggregated features are calculated based
on the learned cluster assignment matrix. The unpooling
operation is straightforward, defined as shown in equation
42. The unpooling operation is particularly useful for use in
autoencoder architectures, but from our literature research it
seems that it has not had been of a particular focus. To that
end, Bianchi et al. evaluated the reconstruction ability of their
proposed method along with the top-K pooling and DiffPool,
which loses vertex information at the pooling step. With
the evaluation on simple synthetic graphs with the pooling
operations set to retain 25% of the vertices, the top-k pooling
showed complete loss of information; the other two pooling
methods reconstructed the whole graphs, with MinCutPool
yielding a slight advantage in consistency.

Wang et al. [75] proposed HaarPool, which is based on the
use of a compressive Haar transform to calculate the pooled
graph. In contrast to most other methods listed in this section,
HaarPool depends on external clustering algorithm to build
a coarse hierarchical chain of increasingly sparse graphs,
which are used for building the Haar basis, similarly to Zheng
et al. [59]. The vertex features are then calculated using a
compressive representation of the Haar basis as f ′l = Φ̂>l fk,
where Φ̂l ∈ Rc×k. The compressive basis Φ̂ is derived
from the complete Haar basis, by keeping the k columns,
which represent the lowest k frequencies in the spectral
domain [75]. This makes the coarse pooled graphs retain
the low-frequency information of the original graphs, and
therefore theoretically keep the information most relevant for
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classification [61].

III. CHALLENGES IN GRAPH DEEP LEARNING
There remain problems in graph deep learning that hinder its
productive application on various problems. In the following
sections we highlight four challenges in graph deep learning
where a deepening of our understanding would allow us to
apply graph methods to a broader range of domains. We
consider temporal graphs (Section IV), edge signals and
attributes (Section V), graph estimation (Section VI) and the
obstacles to graph model generalization (Section VII). For
example, the method must be inductive if it is to be applied
to larger graphs of the same class and those that change
over time. Table 3 describes the structure of our discussions,
which we summarize below. We elucidate the problems’
properties and their relevance to the classes of problems in
the subsequent sections.

The methods discussed in Sections II-C and II-D take a
static graph as input. However, in most real-world problems,
the networks we observe change over time in one way
or another; to approach them in any meaningful way, its
temporality needs to be taken into consideration. Problems
of temporal networks or graphs include traffic or other
metrics in a static spatio-temporal graph. More interesting
problems arise however when dealing with evolving
networks, where the graph’s structure and potentially its size
changes. Social networks or other relational networks are
paradigmatic examples, where relational applications have
focused primarily on predicting the appearance of relations
between entities, or secondary, with greater difficulty, their
disappearance. Challenging problems can also arise on other
networks such as computer networks, where a fault or
suspicious activity needs to be predicted. Finally, the same
problem appears in financial networks, where the early
detection of fraud is important. Work done modeling of
the temporal dynamism in dynamic graphs is discussed in
Section IV. In the same section, the problem of evolving
graphs and the particular challenges and limitations is also
discussed in more detail.

Data may also reside on the edges of a graph. This data
can represent relational information, as can be observed
in relational or knowledge graphs, while other kinds of
graphs can also be represented in a similar fashion. In
applications to molecules, for example, the edges may have
types that correspond to types of bonds. This could be
represented as a multigraph; but there are alternative ways of
representing these attributes into the convolution, especially
when the edge attributes are not discrete variable. This
relational information is used to alter the passage of passing
of messages between vertices. On the other hand are cases
where non-relational information resides on the edges. In
Section V we consider the many ways in which edge signals
or attributes are incorporated into convolutional models.

In some cases we may not know the interactions of the
entities in our problems, or even the entities themselves.
In such cases it would be ideal if we could learn these

things. In electroencephalographic scans, for example, the
relationship of the sensors to one another changes according
to perspective [82]; but learning these structures from the
data can reveal discriminative structures that help in the
resolution of a task [83], [84]. Alternatively we could use
such techniques to infer from a set of data over time the
interactions of entities, as in physical systems [85]–[89] or
multi-agent systems [90]. Learning the entities in a problem
is considerably more difficult, and concerns a much broader
problem in machine learning. There is research specifically
in the direction of graphs, however. A minimal example
is the inference of a new entity based on the divergence
of the future dynamics of a system from the expected
prediction [89]. In Section VI we review the principal means
of estimating graph structure.

Lastly, in Section VII, we discuss on the problems that
restrict the ability of current graph models to generalize
to different graphs, and between different domains and
tasks. We focus on the inductivity of graph embeddings,
the balance between graph structure and attributes, the
significant problem over-smoothing of vertex signals with
deeper architectures, and the optimal order of the graph
neighborhood for the convolution. Finally we analyze a
major issue with real-world graphs, missing or incomplete
information. While this topic is broad, including different
graph types and the issue of data imbalance, we chose to
include only those issues particularly relevant to graphs.

IV. TEMPORAL GRAPHS
A. TERMINOLOGY
Applying GCNNs to graphs that change with time is a
relatively new topic of research and the nomenclature is
somewhat convoluted. The vague and probably overused
term of dynamic graphs tends to refer to every type of graph
that has a component that changes over time. Divergent
terminology has also been used to refer to such graphs,
particularly depending on the degree of flexibility over time.
In a graph there are three primary aspects that can vary
though time: the order of the graph or the number of vertices;
the set of edges in the graph including the graph’s size; and
the graph signal itself, the vertices’ features. The set of edges
together with the set of vertices comprise the graph structure.
The aspects of the graph that can vary in time determine the
methods that are necessary or possible.

A major aspect influencing the terminology is the
application. The term spatio-temporal graph has become
prevalent when dealing with known and static structure with
temporally varying graph signals. Examples of such networks
are often found in applications such as traffic prediction
[10] and skeleton-based action recognition [91]. This type
of graph is primarily found in prediction problems such as
traffic prediction where the number of vertices and their
relations remain constant. In the literature, to the best of our
knowledge, there is no distinction made practically between
between spatio-temporal graphs and graphs that can have
varying connectivity between vertices but a constant graph

VOLUME X, 2020 17



Georgousis and Kenning et al.: Graph Deep Learning: State of the Art and Challenges

TABLE 3. A summary of the challenges we discuss in the coming sections. The divisions of the discussions follows this structure.

Challenges

Temporal
graphs

Dynamic
graphs • Signals where the graph structure is constant, but the signals change over time.

• Applications include traffic networks.

Evolving
graphs • Signals where the graph structure changes over time, whether vertices or edges, and hence the

signals, too.
• Applications include social networks and computer networks.

Edge attributes
and signals

Indexing
functions • Edge attributes are discrete.

• They are used to index different learned functions, describing the discrete kinds of interactions.
• Applications include molecular graphs, where attributes are used to describe particular bonds,

and knowledge graphs.

Integrated
into functions • The edge attributes/signals are incorporated into the convolution.

• The learning is principally conducted on the vertices, where the edge attributes/signals
supplement the learning as auxiliary information.

• Applications include molecular graphs, where the edge signals are continuous properties, such
as chemical properties, or higher-order structural information such as torsion and bonding-
angles.

Learning on
edges • Convolution and learning is performed on the edges themselves.

• Applications include traffic-flow prediction.

Graph
estimation

Learning the
weight matrix • The entries of the weight matrix of a graph are optimized with the learning objective of the

model.
• Applications include electroencephalography (EEG), where the models learn an appropriate

discriminative connectivity of the graph of EEG sensors.

Learning
interaction
functions

• A single function learns the interaction of the entities of the graph.
• Applications include multi-agent systems or physical simulations.

Generating
edges
sequentially

• Edges and vertices are added one by one to an empty or trivial graph.
• Applications include molecular generation.

Generating
whole graphs • The whole graph, vertices and edges, is generated at the same time.

• Applications include the modeling of physical systems and molecular generation.

Learning
entities • The existence of distinct entities in an observed system is inferred from the dynamics present in

the data.
• Applications include physical simulations where we can infer the existence of molecules.

Obstacles to
generalization

Model
inductivity • Graph-based approaches are either transductive or inductive.

• In order to generalize a graph model, it is necessary but not sufficient that it is inductive.

Structure and
data • The varying contribution of data and its structure to the learning problem between tasks and

graphs inhibits generalization.

Over-
smoothing
and
performance
degradation

• Stacked convolutions smooth the signals over the graph, degrading the performance of graph
models, in particular on vertex-wise tasks.

Orders of
structure • The size of the receptive fields of a model increases the model’s expressibility but can weaken

its generalizability.

Incomplete
information • Missing features, unknown structural elements and missing labels compromise the model’s

learning and hence its generalizability to other contexts.
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order. Taking a functional route, we propose the naming of
this type of graph a dynamic graph.

Moving to less constrained examples, in the literature the
term growing graph has been used to describe a graph that
can incorporate additional vertices [92]. On top of this, there
is the fully flexible graph, which allows arbitrary changes
on the number of vertices and edges, additions or deletions.
We propose to name this type of graph an evolving graph.
With the terminology proposed, spatio-temporal graphs are a
conceptual subclass of the functional category of dynamic
graphs, which in turn is a subclass of the fully flexible
evolving graphs. Growing graphs can be considered as a
special case of the evolving graph category.

B. REPRESENTATION
A very important difference between the dynamic and
evolving graphs are aforementioned categories is how the
graph is represented. Namely, there are two important
types of temporal dynamics in graphs as distinguished by
Kazemi et al. [93], the continuous-time and the discrete-
time dynamic or evolving graphs. Discrete-time dynamic
or evolving graphs are represented as a discrete sequence
of graph snapshots sampled over regular time intervals,
with every graph snapshot consisting of aggregate data over
each time period and are denoted as {G1, G2, . . . , GT }.
Continuous-time dynamic graphs on the other hand
inherently describe an evolving graph structure where the
graph evolution is depicted by a set of operations, such as
{(AddNode, v2, t1), (AddEdge, (v1, v2), t1)} [93]. These
sets of operations incrementally modify the graph topology
and have an associated continuous timestamp.

C. DYNAMIC GRAPHS
Much of the attention on dynamic graph stems from
specific well-defined applications, such as traffic forecasting,
including speed and flow [10]–[20] and other spatio-
temporal data prediction such as wind speed [94]. Other
examples include skeleton-based action recognition [91].
One thing that is common between the previously mentioned
application domains is the fixed and rigid topology of the
graph describing the data. This is perhaps not surprising
as the application of GCNNs to spatio-temporal and
static graphs is relatively trivial adaptation to a largely
investigated problem of sequence forecasting applied to
irregular domains. Aside from the theoretical advantage
of applying such approaches to spatio-temporal problems,
results from experiments from various approaches [11], [14]
demonstrate a clear benefit in using graph-convolution-based
forecasting models over the traditional RNN or statistical
methods.

Focusing more on the methods of temporal modeling,
the approaches found in the literature can be separated into
temporal convolutional models, RNN and attention-based
methods.

1) Temporal convolution
Yu et al. [10] followed an approach based on a combination
of temporal one-dimensional convolutions with a spectral
GCN [46] for traffic prediction. The proposed spatio-
temporal graph convolutional network consisted of two
spatio-temporal convolutional blocks, each having a temporal
convolution in the beginning and the end and a graph
convolution in between. Yan et al. [91] proposed a simple
approach for the spatio-temporal modeling by defining a
spatial convolution methodology and extending it to the
temporal domain by including in the operation previous
instances of the same vertices, for a specified size of temporal
window. Wu et al. [95] proposed a method of temporal
modeling based on dilated convolutions, stacked into
multiple layers for multi-resolution modeling of temporal
dependencies. This approach is based on the fact that
consequent layers have dilated receptive fields.

2) Recurrent networks
One of the earliest examples of dynamic graph networks
is the structural RNN proposed by Jain et al. [96], which
follows the example of the early graph neural networks with
the use of the recurrent units. In particular they transform
a spatio-temporal graph to a bipartite graph of the set of
vertices and the set of edge factors which include the edges
as well as the temporal connections for the spatio-temporal
graph. It is particularly interesting that Jain et al. observed
a difficulty of the model in forecasting activities of complex
aperiodic motion, which can indicate a limitation in modeling
a variety of tasks using similar recurrent architectures.

Li et al. [11] proposed the diffusion convolutional
recurrent neural network, which models the temporal
dynamism with adapted gated recurrent unit (GRU) where
the matrix multiplications are replaced with diffusion
convolutions similar to Atwood and Towsley [97]. The
prediction network is based on an encoder-decoder
architecture of the diffusion convolutional gated recurrent
units. In this architecture during training, the ground truth
is fed into the decoder for the prediction, while, during
testing, the output of the model takes its place. This showed
instability in the results, so Li et al. integrated a scheduled
sampling approach within the training phase, assigning a
probability ε for use of ground truth, and 1−ε for the model’s
output, gradually decreasing the value of ε.

Some later approaches to dynamic graphs used
a combination of time-distributed GCNNs or graph
convolutional layers for producing the intermediate feature
representations and a recurrent architecture for modeling the
temporal dynamics of the signal and for prediction [12], [13],
[18], [98]. Such contributions focused more on improving
the representation rather than the temporal modeling for
the prediction task. In particular, Chai et al. [13], with
the compilation of multiple graphs into a multigraph, saw
5.6–9.2% improvement compared to using the individual
matrices. Cui et al. [18] used a k-hop spectral convolution
and defined the free-flow reachable matrix based on real-
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world distance and free-flow speeds and time, which they
used in the calculation of the cell state gate in the LSTM.

The same general design was followed by Manessi et al.
[99]. They proposed two different architectures for the graph
convolution layer, a waterfall-dynamic and a concatenated-
dynamic convolution block. The first is similar to Zhao et
al.’s model [12], being a time distributed graph convolution
layer with shared parameters, while the second concatenates
the original features on the output of the graph convolution
block, similar to skip-connections.

In contrast to previous approaches, Khodayar et al. [94]
implemented an architecture with the recurrent layer before
the representation-learning component to calculate temporal
features. The spatial part of the representation is handled
by the spectral GCN [46] by adapting the architecture using
rough sets [100] to ameliorate numerical instabilities.

Cheng et al. [14] focused on the directed nature of the
road network and traffic prediction and implemented a spatial
convolution separately for the upstream and downstream
of the vertex in focus. The modeling similarly to most
aforementioned approaches was done by an LSTM layer for
each of the upstream and downstream modules. The outputs
of the LSTMs are combined with an attention layer and the
final representation is the result of the concatenation of the
target vertex features and the output of the upstream and
downstream modules.

Chen et al. [15] proposed a recurrent approach, which
similarly to Li et al. [11] employed a diffusion-based
convolution for feature aggregation, which was adapted into
the recurrent GRU. In order to account for external influences
to the model, such as unseen or uncommon events, they
modeled the input features as the concatenation between
vertex features and the uncommon event embedding. To
enable longer dependency modeling they implemented
a gated residual architecture to prevent exploding and
vanishing gradient. However, perhaps the most important
contribution, although of limited scope, is the multi-
resolution dependency architecture, which accounted for
multiple recurrent networks of different temporal frequency.
This approach accounts for recurrent patterns in different
temporal resolutions and as such much longer temporal
dependencies.

Goyal et al. [101] explored the problem of representation
learning on dynamic graphs by proposing and comparing
three different architectures: dyngraph2vecAE,
dyngraph2vecRNN, and dyngraph2vecAERNN. With
dyngraph2vecAE, Goyal et al. adapted a deep fully
connected autoencoder architecture to the dynamic setting
by including neighborhood history of previous k steps.
With dyngraph2vecRNN, which follows an RNN-based
encoder-decoder architecture and dyngraph2vecAERNN,
with an RNN encoder and fully connected decoder in an
autoencoder setting, they reduced the number of model
parameters drastically. A sensitivity analysis showed a
more stable performance from the dyngraph2vecAERNN,
with all models performing better with values of k ranging

between 4 and 10. A particular difference Goyal et al.’s
approach is the focus on the embedding of the graph, rather
than prediction. As such, they generate the embeddings
without prior information such as vertex attributes.

Peng et al. [19] recently proposed a temporal modeling
similar to Chen et al. [15], where they designed a complex
LSTM-based architecture which incorporated the modeling
of multiple temporal granularities, namely weekly, daily and
recent high-detail data. Each level of temporal granularity has
its own LSTM layer, and the output of each is fed into a final
LSTM layer, which gives the final output of the model. Their
approach achieved better performance than the state of the art
in the tested application.

3) Attention networks
In developing DySAT, Sankar et al. [102] were highly
influenced by the self-attention mechanism, which is
shown to have state-of-the-art performance [51], [98]. They
implemented a self-attentional spatio-temporal approach,
where a temporal self-attention layer follows a time-
distributed structural self-attentional block. In both blocks
a multi-head attention method was followed and the results
showed a drastic improvement over previous approaches and
baselines.

A more recent approach by Do et al. [17] also employs
the attention mechanism for both the spatial and the temporal
dimension of the dynamic graph. In their statio-temporal
attention-based neural network, the temporal dynamics of the
graph are modeled with a encoder-decoder architecture using
GRUs. In the spatial domain, spatial attention matrices, I

(t)
x,y ,

for each step of the temporal window based on the vertex
features, which indicate the attention vertex x is needed from
y at time t. Similarly to Li et al. [11], the GRU is modified
to a convolutional GRU, with the matrix multiplications
replaced by convolutions. Additionally, through an attention
mechanism on the temporal window a context vector is
calculated from the encoder output combined with the output
of the decoder to make the final prediction. This addresses
the otherwise higher weighting of more recent examples,
aiding longer-term prediction where traffic flow could vary
to a greater extent. Do et al. also mentioned a scheme for
improving the data available. One suggestion includes using
data in higher temporal resolution, where the final prediction
is multiplied with the relative ratio of increased frequency.
While interesting as a concept, we believe that this needs
careful consideration as data from higher temporal frequency
could be more unstable.

By and large, the listed approaches applied to dynamic
graphs tend to follow the advances in the deep learning
theory. Including architectures for modeling the temporal
dynamism, learning techniques have also been adopted from
traditional deep learning literature, with adversarial loss
introduced in a generative adversarial network scheme for
traffic prediction [103], with state-of-the-art results. Finally,
while a relatively highly explored problem, especially in
traditional neural network research, in later approaches
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[15], [19], [95] we see the introduction of multi-resolution
temporal modeling. Of these, Chen et al.’s and Peng et al.’s
scope [15], [19] was more limited, but their approaches could
potentially be used for relevant temporal resolution discovery
when used in combination with an attention mechanism.

D. EVOLVING GRAPHS

Among the first applications concerned with the evolving
nature of graphs is edge/link prediction. This is one of
various tasks involving graphs, where the aim is predicting
the appearance or disappearance of edges, describing the
evolving nature of the graph—although the disappearance
or dissolution of edges has not been addressed adequately
owing to its complexity [104]. While there is a large part of
literature concerning just this task [104]–[106], most of the
works handles edge prediction on static graphs. The static
edge prediction problem has been approached in a variety
of ways, which can be distilled into the effort to calculate a
score for each pair of vertices of the graph. Simple methods
rely on simple metrics, either local or global, without the
use of vertex or edge features. Probabilistic and learning
approaches have been considered, with some embedding
approaches belonging to the latter using representation
learning discussed in the previous section. One particular
problem of edge prediction is the issue of imbalance between
the linked and not linked vertices, especially in sparse graphs,
such as social networks [107].

Research that tackles the broader problem of evolving
graphs is still very sparse; nonetheless it is more theoretically
diverse than the dynamic graph problem described in the
previous section. Methodologies in evolving graphs are
divided into two distinct categories based on the way
each method models time. They can be split into the
ones tackling continuous-time evolving graphs, typically
involving a stream of events [108]–[110], and those tackling
discrete-time evolving graphs, where approaches are more
diverse [92], [111], [112].

1) Discrete-time evolving graphs

On the discrete-time evolving graphs, research has been more
open as there are various ways to approach it. One of the
first problems specific to evolving graphs that saw attention
is edge prediction in temporal networks. An early approach
of this type was proposed by Gao et al. [107], who calculated
an aggregated adjacency matrix from the graph snapshots
using a weighted sum of the individual adjacency matrices
similar to a diffusion model. The model consisted of a matrix
factorization objective, which also takes using vertex features
and structure into consideration.

Sarkar et al. [113] proposed a non-parametric model for
edge prediction, using a combination of the vertex-pair
features and the out-neighborhood. The model takes into
account the previous two snapshots of the graph. To that end,
they found that the non-parametric model could predict edges
even when sharp changes appeared, while accounting for the

temporal change of the vertex features in contrast to Gao et
al. [107].

A unique problem to evolving graphs is event-time
prediction. This task, which is more accurately described as
time-period prediction is more tractable, as it is comprised
of a scoping operation. Such an approach was used by
Dasgupta et al. [111], in tackling evolving knowledge graphs
(KGs). Similarly to Trivedi et al. [108], the temporal KG
is represented as quadruplets; but instead of timestamp, the
time was represented as a period, with a beginning and an
end. This is conceptually more accurate as real relations
or events have a duration. To model the evolving graph
structure in discrete time, the time dimension was represented
as hyperplanes, where the graph snapshots included the
relations, the duration of which lies within the time slice.

A different approach by Goyal et al. [92] focuses primarily
on producing stable embeddings by incrementally learning
the embedding of the vertices and by perpetually growing
the network to adapt to the growing parameter number with
Net2WiderNet and Net2DeeperNet.

More recently Pareja et al. [112] argued that the approach
of many prior dynamic methods that first apply graph
convolution in a time-distributed manner are not flexible
enough to model the temporal dynamicity of the changes
in topology and signal. The method they proposed is
applied to discrete-time dynamic or evolving graphs, and
is theoretically capable of handling both the addition
and deletion of vertices, as well as arbitrary changes in
connectivity. This is done by adding a recurrent architecture
before the time-distributed graph convolutional layer [46].
For this recurrent architecture they investigated a GRU- and
LSTM-based approach, and in every case this was used to
learn the dynamism of the graph sequence by learning to
predict the graph convolutional block parameter matrix Θ
from equation 37. Their method was designed and tested in
a complete set of tasks, including vertex classification, edge
prediction, and edge classification. This method is potentially
applicable to a wide variety of applications and showed
promising results, although the results were not consistent
enough across datasets and proposed recurrent architectures.

The aforementioned approaches, with notable exception
of EvolveGCN [112], focus on the evolving structure of the
graph, and the embedding of the vertices, while not being
able to take into account externally provided graph signals in
the form of vertex attributes. While this may not be important
in relational graphs, it remains a potential limitation of
evolving approaches.

2) Continuous-time evolving graphs
To the best of our knowledge, Trivedi et al. [108] is the first
method to address temporal KGs. In contrast to the static KG
described in Section II-A, the temporal KG is represented as
a set of quadruplets (vs, ri, vo, t), where t is the timestep at
which the relation exists. In Know-Evolve [108], the facts
in the KG which are represented as edges are modeled
using a temporal point process with an intensity function
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which depends on a score calculated based on its endvertices,
or (in KG terminology) entities. The entity’s or vertices’
embeddings are initialized and then only implicitly updated
based on incident edges. The embeddings are updated using
recurrent units to model the temporal dynamics, which also
take into account the embeddings of the relationship and the
entities involved. The interesting proposal of this approach is
the way it models the relationships, in that it allows event-
time prediction.

There are some limitations to this approach, such as the
consideration of only the immediate neighborhood of the
newly appearing edge, which only includes the endvertices.
This is improved by Trivedi et al. [109]. In their model the
influence of the neighborhood is calculated by an attention-
based aggregation mechanism. In this aggregation, the
attention scores are computed using temporal information.
The way the aggregation is calculated is more in line
with Veličković et al. [51]. Overall the updated feature
representation of each vertex is influenced by itself, its
neighborhood, and the time drift. In contrast to the
expectation-based time prediction of Know-Evolve, DyREP
is using a conditional density modeling, which makes the
instant calculation of the time prediction intractable, but is
solved with a Monte-Carlo trick. An important feature of this
approach is the modularity of the embedding updates based
on the aggregated neighborhood, as it can be substituted and
enhanced by other convolutional approaches. This enables
the use of edge types or features and additional information
in the update.

A similar streaming approach by Ma et al. [110] uses
a more straightforward event-based spatial approach, based
on the propagation and the update of the vertex features.
Compared with the previous approaches, the propagation
step after the update also affects the neighboring vertices’
representation, a logical assumption to make.

The limitation of such networks is their inability to
remove vertices or edges. Also, even though all these
approaches are capable of taking advantage the temporal
information encoded in the time differences, they do not
explicitly update vertex features after their initialization,
instead opting to update them based on the recent events
(edges). This is a potential limitation identified also in the
discrete version of the problem. As the evolving graph
problem is overwhelmingly represented from relational or
knowledge graphs and social networks, the focus is on edge
prediction. Therefore, in contrast to the static or dynamic
graph problems, the focus is on edge attributes first, and the
vertex embeddings tend to be evolved dynamically based on
the changes in structure.

It is clear that based on the previous approaches and
information about dynamic and evolving graphs, addressing
dynamic or spatio-temporal graphs is limited by the ability
of the architecture to model the temporal dynamism. To that
end, future research would need to include considerations on
different effects of periodicity and temporal windows, as the
main limitation on this subproblem is optimization of the

temporal modelling and prediction performance. The major
challenge remaining open is how to approach challenging
problems such as evolving or large growing graphs, such as
scalable networks. Another important consideration is what
happens when a vertex or edge goes momentarily offline.
This could be a sensor in an industrial facility or even a
whole cluster of machines in a datacenter. As we have seen
the problem of disappearance of vertices and edges has not
been considered in the approaches listed above.

V. EDGE ATTRIBUTES AND SIGNALS
The earliest learning approaches on graphs concerned
themselves solely with the propagation of messages over
graphs, where the messages originated from signals on
vertices. The first spectral approaches to graph convolution
preclude any information on the edges—with the exception
of edge weights, which may be included in the definition of
a weighted graph [44]. Yet signals alone do not structured
solely over the vertices of a graph: signals may exist on and
across edges. These edge signals therefore take a number of
forms, and they are incorporated into learning in different
ways. Edge information can alter the message of a passage,
alter the message itself, or form its own message-passing
network.

A. INDEXING MESSAGE-PASSING FUNCTIONS BY
EDGE TYPE
Knowledge graphs, for instance, assign types to the edges
in the graph; these types may alter the transmission of
information across the edge in the message-passing phase
of the algorithm. These edge types specify the kind of
interaction between two vertices or entities in the graph,
by describing the properties of the relation. Discrete edge
types may correspond to certain bonds, as in a molecular
graph, where atoms can be bonded with different valencies.
Knowledge graph (KG) as multigraphs likewise use discrete
edge types to encode different types of relations, constrianing
the diffusion of messages across certain edges, for example.
Other multigraphs can also encode the various physical
forces acting on objects with different edge types. The Know-
Evolve network [108] and likewise the edge-conditioned
convolution [114] use edge types as a criterion for the
selection of functions.

B. INTEGRATING EDGE SIGNALS INTO THE MESSAGE
Where edges do not have types, rather real-valued attributes,
a significant area of application is molecular neural networks.
The features of representing atoms and chemical and
intramolecular bonding inform the properties a model can
infer from the structure of molecules. The edge attributes
likewise describe the properties of the relation. The latter two
sets of features occur on edges pairs of edges respectively.
Conventional neural networks lack the capability to include
this edge information; to accomplish this entails an alteration
to the architecture. To that end, molecular models have been
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proposed that incorporate such edge information into graph
learning.

The molecular graph convolution (MGC) [22] incorporates
both vertex and edge features into its network. These features
are stored each stored in a matrix. The matrix of vertex
features store the n-dimensional vertices representing n
features for each of the atoms in the molecule, while the
matrix of edge features stores a list of pair features for each
pair of atoms. In the MGC itself, these features are computed
together in a Weave module. Firstly a learned function is
applied to the atom and pair features. The two outputs of
this first stage are combined together, the weaving part of
the model. Pair features are passed through a pair–atom
layer to be combined with the atom features, and vice versa
with an atom–pair layer. On the basis that convolution is a
shared function applied over local data, the weave module
is a function f convolved over vertex and edge features, the
output of which is weaved together with use of atom–pair
and pair–atom layers; these are again computed together to
produce new representations for the atoms and pairs. This
combination of the features allows the model to learn from
information that would otherwise be unavailable. The authors
experiment with different neighborhood sizes, too, as the
model can select the number of neighbors according to a cut-
off.

Edge attributes can also directly inform the message-
passing phase over the vertices. In the material graph network
(MEGNet) [23], vertices are updated by an aggregation of
features on adjacent edges. These edge features are updated
in each message-passing phase by a function of the edge
features of the last time-step, the source and destination
vertices’ features and the values of a global state, the features
of a supervertex permitting a global passage of information.
Like the MGC, the MEGNet strictly considers atoms and
atomic bonding.

In contrast to the last two molecular approaches, the
directional message-passing neural network [24] does
include second-order structural information in the message-
passing. The authors note that previous approaches do not
include information on the torsion and angle of atomic bonds;
these potential energies must instead be inferred from the
higher-order interactions learned in multiple graph layers.

C. LEARNING ON EDGES

Rather than incorporate these edge features into the structure
of a conventional graph neural network, the line graph neural
network [115] uses a convolution over the graph’s edge
signals over the vertices of a linegraph, defined on the
structure of the underlying graph. The construction of the
linegraph differs from the usual construction: where there are
undirected edges in the normal linegraph, in this case there
are instead two oppositely directed edges. This is done in
order to implement a non-backtracking operator [116]. Two
separate but interacting neural networks are defined on the
graph and the linegraph.

Unfortunately the use of linegraphs incurs a computational
cost, as a linegraph requires 2m vertices, and as such it won’t
scale well to very large networks. One can foresee extensions
to this network, though; the authors remark that a hierarchy of
linegraphs can be constructed, representing the various levels
of interaction in a domain. Potentially one can thereupon
build a network directed toward problems with higher-order
observed signals. Unlike the MGC, this network is designed
to detect communities of vertices; the linegraph structure
enables the model to capture further structural information
that would must otherwise be inferred.

Graphs are also very useful in traffic prediction, where
there is information at vertices and edges. The two are
combined in the sequential graph neural network [16]. The
edge features in particular are structured a so-called linkage
attribute graph, which is essentially a directed linegraph.

Avoiding the construction of linegraphs altogether, Zhang
et al. [117] presented a model that learns from convolutions
defined on edges with the goal of classifying human
actions from skeleton graphs. Analogous to spatial vertex
convolutions, a convolution on the edge of a graph is a
weighted sum of the edge’s neighbors’ labels. The authors
also proposed combining edge and vertex learning in two
types of so-called hybrid network. The first hybrid model
implements two streams of learning—one on vertices, the
other on edges—the outputs of which are concatenated
before a fully connected layer. The second hybrid model
concatenates the outputs of the edge and vertex convolutions
together, then passes them both through a shared convolution
and pooling layer, and finally a fully connected layer. The
hybrid models naturally take longer to process information
owing to the higher complexity of the models. Nonetheless,
the approaches attain a moderate improvements over state-
of-the-art methods.

D. LACUNAE

From the foregoing literature, we can see two kinds of edge
information, each with different subsequent applications.
In the former set of approaches, we see edges assigned
categorical features, describing their type, and in respect of
the vertices of the graph, specifying their interaction. These
types can be discrete or continuous, and used to index index
functions, describe the properties of a relation, or act as
signals themselves.

The latter set of approaches incorporate these real-valued
features into the learning beyond indexing functions. The
way in which this information is incorporated takes on a
number of forms. In some cases, we saw that the information
is simply concatenated with the vertices’ features and
combined with a learned weight matrix. In a second form,
the models learn edge representations, updated at every layer.
In a more extreme form of separation between the vertex
and edge features, a whole separate neural network is built
to learn the edge features alongside the vertex features, with
information exchanged between the two at each layer.
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Each of these methods vary in the way they incorporate
edge features into learning. There is not yet a comparison
of the methods that establishes their respective merits and
limitations. Although it is clear that linegraphs are unwieldy
when constructed from graphs of high order. Nor is it
immediately clear whether these methods are equivalent.
The various means of incorporating edge features is a
consequence of the various applications; but even within
problem domains have these approaches varied. The utility of
each approach is evaluated in the context of its application.

Most notably none of the foregoing methods considers
situations where the signals exist on the edges alone, and
some task must be executed with respect to the underlying
graph. This absence means there is a subsequent absence
of methods learning vertex-focused tasks; e.g., classifying
vertices from edge signals. In light of the plenitude of work
on edge-focused tasks based on vertex signals, there is little
work focusing on the inverse task.

Edge features have already been incorporated into graph-
based models learning various molecular properties and
problems on traffic networks. It is worth considering the
nature of other domains to which such models might be
extended. In a physical system, there are general forces that
act on the objects beyond those pairwise forces such as
collision. Gravity is a universal force that is not localized
to a specific objects, acting simultaneously on all objects.
Likewise there may be interactions in other systems that
localize to other structures at a higher order than vertices, like
the bonding angles in molecules. A fusion of information at
different levels might work in confluence to inform a model
more than vertex-structured data would alone.

VI. GRAPH ESTIMATION
In Sections II-C and II-D we focused on approaches that
assumed a known graph structure; but we have not consider
situations where part or all of the graph structure is unknown.
For graphs are used to represent what we know of a
problem’s structure. The vertices of the graph correspond
to the entities of the problem, while the edges represent
the entities’ interactions or relations. If there is a hole in
our understanding of a problem’s structure, it is therefore
reflected in either missing vertices or edges. In our analysis
there are two grades to the lack of structural knowledge:
either little or no knowledge of the relations, but complete
knowledge of the entities; or little or no knowledge of
neither the relation nor the entities. There are conceivably
many degrees of ignorance between these two grades, but
we subsume these degrees into these two grades for the
simplicity’s sake.

If we assume that dynamics of the domain and way
that the data unfolds with respect to itself are expressed
in the raw data, then we could use that raw data to
recover a graph structure. This assumption is behind recent
research into models that can learn to recover this structural
information. Many terms have been given to this process,
such as neural relational inference (NRI), graph estimation,

graph generation, structure learning, etc. In this section we
summarize a sample of such recent work and examine the
challenges that researchers encounter in their efforts in this
area.

Missing structure can be recovered from raw observations
of the problem. For temporal problems in physical systems
this means discovering the fixed rules governing the
interaction of physical objects over time, and using these
rules to extrapolate to the objects’ future interactions [85]–
[89]. Applied to electroecephalographic EEG data, one
might discover the discriminative structures that reportedly
correspond to specific psychological processes [83], [84].
Discovering graph structure in EEGs would be particularly
useful in an area where several possible graph connectivities
exist to represent brain signals, each capturing a different
neurological perspective [82]. Models that infer graph
structure from data have also been applied to the inference
of molecular properties, text and object recognition [118],
traffic prediction [95], learning the interactions in multi-agent
systems [90], reasoning problems [86], [119], the generation
of new molecules [114], [120]–[123], the mapping of
airwaves in the lungs [124], human-action recognition [85]
and citation networks [125].

The models we outline below must cope with problems
specific and general, and the latter are worth considering
before we involve ourselves with the details. Firstly, the
computational cost of estimating a graph’s structure is a
serious impediment that every method must cope with.
Combinatorially the search space of an n-graph is 2n

2

, which
scales further if we are learning a multigraph. This fact makes
some of the approaches below so computationally intractable
that they are only capable of generating graphs with tens of
vertices.

Secondly, a graph is a discrete structure and therefore
undifferentiable. Two principal solutions to this problem
exist in the literature: either a continuous relaxation of the
problem, or representation of the graph as a probability
distribution factorized into variables representing each edge
(or the set of edge-types on that edge).

Thirdly, one must consider the kind of graph one
wants to generate. Nearly all the methods can generate
directed graphs; fewer generate multigraphs; surprisingly few
generate undirected graphs. If the model for a downstream
task uses a spectral convolutional model, there are scarce
few approaches that cope with directionality in the edges.
Constraints on the properties of the graph should be
incorporated into the graph generation. There may be
domain-motivated structural constraints, too, such as those
placed on the chemical stability of molecular substructures
[121], [122]. Placing constraints may however offer an
advantage, since it would reduce the size of the search-
space; but it would also potentially burden the algorithm with
further checks.

Fourthly and finally, one must also consider what the initial
graph ought to be. Indeed, an open research question remains
of how the choice of the initial graph effects the graph
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structure learning and graph generation. In any case there
are several elementary choices. Consequent to an assumption
of no known structure, one might make the graph initially
complete or empty. The former connectivity embodies the
assumption that all entities potentially affect one another; the
latter embodies the assumption of no interactions. From these
points the graphs we either delete or add edges respectively.
On the contrary, one might prefer to connect the graph
from our knowledge of the underlying domain—which might
also yield sparser graphs, easing the computational burden.
For graphs representing EEGs sensors, the vertices may be
joined to those representing the nearest sensors in elevation
and azimuth [83], an arrangement outlined in the American
Clinical Neurophysiological Society’s standard for EEGs
[126]. Alternatively one could use a statistical metric, such
as the correlation coefficient of every pair of vertex signals
[118], [127].

The rest of this section is an overview of models that learn
the graph structure present in raw data. In the first part, we
examine approaches that learn the relational structure over
a set of known entities, methods on which more attention
has been focused. In the second part, we consider a few
approaches to inferring entities from raw data.

A. LEARNING THE RELATIONS OVER A SET OF
KNOWN ENTITIES

In our reading we discerned four groups of approaches that
can be separated into two types of approaches. On one side
we have the implicit models, where the structure of the graph
is learned implicitly in the model, optimized according to
the performance of the wider model on a separate, explicit
learning objective. One group learns the real-valued entries
of a graph’s weight matrix, while the other group learns
functions to model the diffusion of signals across vertices.
On the other side are the explicit models, where the graph
structure is the objective of a model. The explicit models
again form two groups: one group where the graph structure
is generated sequentially, and another where the whole
structure is generated simultaneously.

1) Learning the entries of a weight matrix

As we mentioned, graphs are discrete structures. For
weighted graphs, however, but backpropagation on the values
of a weight matrix is possible, since the entries are real-
valued. Henaff et al. [118] use the parameters of the first
layer of an MLP trained on a learning task with vertex-wise
labeling. Each vertex is thus associated with a weight. The
distances between each pair of weights constitute the entries
of the weight matrix, which is then used in the same learning
task with a spectral convolutional network. The advantage of
using the distance matrix to compute the weight matrix is
the commutativity of its arguments, which means the weight
matrix is consequently symmetric, enabling it to be used
with most spectral methods. This does make it incapable of
learning directed graph and multigraphs, however.

By contrast, Song et al. [83] and Wu et al. [95] adjust the
weight matrix’s values by backpropagation. But while Song
et al.’s model like Henaff et al.’s can only learn undirected
graphs, owing to its chosen definition of convolution, Wu et
al.’s model can incorporate existing directed knowledge, by
factorizing the adjacency matrix into a known in- and out-
components and an unknown component on the one hand,
and on the other by using a spatial definition of convolution
that does not depend on the symmetry of the weight matrix.
Li et al.’s model [84] also backpropagates over the weight
matrix. Starting with a complete graphs, the model however
learns an adjacency matrix at each layer of the model. A
graph is then constructed of an average of the edge weights
in each layer.

2) Learning interaction functions
Rather than learn a graph representation explicitly as a weight
matrix, the following methods learn functions that model
the interaction of the entities. The Interaction Network (IN)
proposed by Battaglia et al. [128] is a set of functions, in their
case MLPs, which together learn the interaction of objects
in a physical system. The IN also learns the interactions as
multigraphs, reflecting the different physical forces acting on
objects in physical systems. A simplification of this model is
the Relational Network by Santoro et al. [86], which models
edges as a function of the vertices’ attributes, modeled again
by an MLP. These approaches are however computationally
intensive. Unless a restricted list of relations is supplied to
the two models, the functions must be applied to all n2

possible edges, which scales poorly to very large graphs. The
problem is worse for the IN in which there are two edge-wise
functions.

Sukhbaatar et al.’s Communication Network (CommNet)
[90] models the interaction of a system of multiple agents.
Since the number of agents interacting at any one time
varies, the model is designed to scale to accommodate
increases. This is accomplished by using one function to
model communication, and a separate function to map vertex
attributes from one step to the next. This means however that
all edges incident to a vertex are not distinguished.

Hoshen’s extension of the CommNet, the Vertex Attention
Interaction Network [129], circumvents this problem by
modeling the edges by assigning each vertex an attention
vector that is learned alongside the model, and computing
the communication vector on each vertex attribute, rather
than over each pair. The Euclidean distance of each
pair, modulated by a kernel function, weights these
communication vectors. The attentional mechanism has
several advantages over the IN and the CommNet. Firstly it
reduces the computational expense by evaluating the MLP
modeling the communication vector n times rather than
n2 − n times. Secondly, unlike CommNet, the interactions
are explicitly modeled, taking the burden of modeling
off a later MLP. Thirdly the attentional coefficients can
model indirectly the higher-order interactions of the agents.
Fourthly it permits local modeling of objects, a consequence

VOLUME X, 2020 25



Georgousis and Kenning et al.: Graph Deep Learning: State of the Art and Challenges

of which is that the model needs no predefined graph as input,
the weights between vertices being learned instead. Although
not stated in this paper, it is plausible that the model might be
extended to estimate multigraphs, too, adding further, parallel
attention vectors.

3) Generating edges sequentially
Sequential approaches [119]–[123], [130], [131] start with
an empty or trivial graph and sequentially add vertices and
edges to it. The decision at each stage of what to add to the
partial graph is modeled by a neural network or set of neural
networks. These neural networks are usually recursive, in the
sense that the same set of neural networks composing the
model is applied to the same partial graph at each step of
the generation. The models therefore learn the domain rules
that govern the generation of graphs.

The sequence of the generation is a recurring issue
in sequential methods, as the ordering of the generation
and the vertices might lead to different constructions.
Starting with a domain that has a sequential order anyway
mitigates the problem [119]. Alternatively one could impose
a canonical ordering on the input [120]. Without invariance
to the permutation of vertices, the learned model might not
generalize well to unobserved graphs. Another alternative
is conditioning the selection of edges only on the partial
graph, so that the model is ignorant of the partial graph’s
generational trace [122].

There is also a risk that the generated graphs are
unfeasible in the underlying domain, even in the presence
of constraints [121]; and there is a further difficultly in
that some rules are non-differentiable, meaning they cannot
be directly incorporated into the model [121]. Nonetheless,
on the one hand we can use domain rules about structure
to forbid certain substructures’ addition, by masking out
impermissible edges for example [122], or constraining
the search space to valid subgraphs [123]. Domain-specific
constraints have also been used to discard invalid generated
graphs, while the generation process itself is supervised
by the similarity of generated graphs to a set of known
graphs [120]. More generally, if the algorithm permits it,
certain graph structures can be excluded from the generation
process altogether [120]. Yet the cost in any case of imposing
constraints is the model’s flexibility [121], by potentially
disallowing intermediate, suboptimal steps to more optimal
graphs.

Another issue is how much of the generational history a
model’s predictions should be conditioned on. The model
must know at least the immediately preceding state of the
graph so the model can learn something about the rules of
changing the graph. Models conditioned of the generation
[120], [130] have a broader perspective on the graph-
generational procedure, but they are generally not easily
scaled to graphs of high order [122]. Reducing the models’
sight of previous states to the most immediate ones addresses
this problem [119], [120], [122], [131].

4) Generating whole graphs
In contrast to sequential approaches, the following infer all
edges and vertices jointly. For temporal problems the graph
is inferred at each timestep, with earlier graphs conditioning
the generation [85].

The approaches that use a graph variational autoencoder
(G-VAE) embed the graph structure in a latent space.
Simonovsky and Komodakis [114] supervised a model to
learn to reproduce molecules, and traversed the space to
generate new but sometimes invalid molecular structures.
The output is a probabilistic that models the edges with
independent variables, prohibiting joint inference of the
edges from their interactions.

By contrast, Kipf et al.’s model [85] does permit joint
inference. Additionally, unlike Simonovsky and Komodakis’
supervised model, their model is unsupervised and capable
of learning accurate models of the dynamics of physical
systems. Both models can model multigraphs, although both
models also scale poorly to large graphs.

Franceschi et al. [125] on the other hand formulate the
graph-estimation problem as a bilevel programming problem.
Like Simonovsky and Komodakis’ model, the edges of the
graph are modeled independently, as Bernoulli variables in
this case. Furthermore, although it scales better to much
larger graphs than what the G-VAE models were capable of,
it cannot generate multigraphs.

The modular approach proposed by Alet et al. [89] has a
number advantages over the foregoing methods. Like Kipf
et al.’s model, it can jointly infer vertices and edges. The
proposal function also serves to reduce the burden of the
combinatorics of the search-space. Consequently it yields
better results than Kipf et al.’s model on a prediction task
on a dynamic physical system. The authors do not however
provide results on larger datasets, so it is not clear how the
proposal function would facilitate tasks on larger graphs.

B. DISCOVERING THE ENTITIES IN RAW DATA
Dealing with unknown entities is a very broad problem; it is
one that concerns work far beyond the scope of this survey.
Nonetheless a few examples of work specific to graphs and
some consideration of the nature of the problem are worth a
brief discussion.

The nature of the problem—its ontology—is vague at
first, and how we learn those properties—the epistemology—
is unclear. In the case of text, its division into words
and sentences might seem natural, but it might also be a
suboptimal division. A parser that divides the words into its
syntactical components and form noun-groups, verb-groups,
prepositional phrases, etc., may be a good starting-point, too,
but a model which learns this itself might discover a division
that is suitable for the present task but was previously not
considered. Johnson [119], for instance, forwent linguistic
structures and simply processed the text as embeddings of
k-word partial sentences.

More generally, a model learn a coarsening and smoothing
of an initial structure. Finding an optimal smoothing of a
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graph is an NP-hard problem, but a stochastic approach
might make the problem more manageable. But again the
problem arises of the relational structure: We might assume
the intermediate graph structures are complete, or use some
other metric to generate a structure, but we do not know how
this will affect the entity discovery.

A modest effort in this direction was made by Alet et al. in
learning the effects of “hidden causes,” such as the effect of
an unobserved particle on the trajectories of a set of known
particles [89]. An empty vertex in the graph is posited to
explain the divergence of a prediction from the ground-truth
with exciting results. Separately Watters et al. [87] applied
a CNN to video to discover objects in a video and used
an IN to predict the objects’ dynamics. Finally Kipf et al.
[132] developed the CompILE model, which discovers the
boundaries between sub-tasks in sequential data. This could
potentially be applied to other sequential information, such
as the multi-agent systems described above.

VII. OBSTACLES TO THE GENERALIZATION OF GRAPH
MODELS
Generalizing graph models to different scenarios is an open
problem. There is therefore no one model that fits all. In order
to adapt a model to unseen graphs in various domains, one
must address several challenges.

Even when dealing with the same application domain,
different graphs or tasks can render a model inapplicable,
while potential data imbalances impose additional difficulties
on the model. Practical problems arise in the design of
an embedding architecture; graphs of various complexities
may require different sizes of receptive fields, and different
information may vary in importance in the context of
different tasks.

Finally, we discuss the all-important issue of the
completeness of the available data, a practical problem with
both a practical and theoretical impact. Owing to intricacies
of gathering and storage of data, the final data may be
incomplete, or the problem only partially observable from the
start.

All these problems have one thing in common: they are
derived from a need created by a lack of available data. In
this section we discuss on a collection of issues that are non-
trivial and display unique challenges for graph deep-learning
methods.

A. MODEL INDUCTIVITY
All graph models discussed have the objective of
producing an intermediate representation or embedding that
provides the necessary expressibility required by the target
application.

Embedding approaches can be separated according to
two main properties. Transductive approaches aim to
optimize the embeddings, while inductive approaches
learn the function that generates the embeddings [133].
Transductive approaches are primarily walk-based methods,
such as DeepWalk [134], and node2vec [135]. Since the

embeddings are optimized on specific graphs, they can only
operate on the known graphs.

Inductive models can produce embeddings on previously
unseen graphs and vertices, as they learn a function
rather than the embedding itself. In this category lie all
the GNN approaches that adhere to the message-passing
framework, as well as methods modeling the relational
functions [136]. A functional separation that exists between
these kinds of embedding approaches is their purpose, as
transductive models are aimed at generating embeddings
from graphs without attributes, while most inductive ones
require attributed graphs.

Still, even in inherently inductive methods, there is no
guarantee of generalizability to new graphs or tasks, owing
to the potential difference in a graph’s structure, including
the size and order and a difference in domain. In some
cases, this has been approached by transfer learning [136]
and adaptive approaches that include introducing priors and
minimizing the expectation distance of embedding vectors
between the source and target graph with a jointly supervised
and unsupervised objective [133].

B. STRUCTURE AND DATA
A graph can be plain or attributed, with the former kind
containing only structural information, while the latter
includes graph signals, residing on the graph itself, vertices
or edges. Graph embedding methods therefore need to use
part of or a combination of this data to produce the graph,
vertex or edge embeddings, which is a non-trivial matter.
The problem lies firstly in the information chosen for the
embedding, and secondly in the way the different sources are
combined.

In the simplest case, graphs are either plain, or vertex
features are not consistently available. In these cases,
embedding algorithms are based solely on structure, as are
random walks [134], [135], or when only some of the
features are available the missing data can be approximated
as we will discuss in Section VII-E1. On the other hand,
in instances where the structure is unknown or uncertain,
graph estimation methods can be employed (Section VI),
for knowledge discovery. Even when there is a known graph
topology, latent structural information can also be learned to
improve on supervised tasks [137].

However, the information available includes more
typically both structure and graph signals, in which case
there is a need to decide which sources are important
and how to combine them. A clear advantage of using a
combination of structure and signals is shown in the graph-
pooling literature [74], with feature-only approaches being
few and mostly limited to sorting-based methods [69]. An
important contribution by Zhang et al. was made in this
regard by considering an adaptive weighting between the
structure and the feature-based component of the pooling
method [70]. In the included ablation study [70] the optimal
weights for feature and structure components where found to
be close to equal on multiple graphs. However, the relative
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contribution varied between different graphs, exemplifying
the potential advantage of an adaptive combination of the
different sources of information.

C. OVER-SMOOTHING AND PERFORMANCE
DEGRADATION
A problem that has attracted attention recently is the
degradation of performance of GCNNs with the increase
in network depth. This phenomenon has been known
empirically from early on [46], [138], where networks of
depth over two convolutional layers showed signs of a
degradation in performance in the classification of vertices.
Li et al. [139] first warned of this performance degradation,
coining the term over-smoothing. As graph convolution
performs a form of Laplacian smoothing, consecutive
convolutional layers cause the original vertex features to
converge to similar values. Through this process the only
differentiating information between vertices is the graph
structure, while the vertex information is smoothed out.
Consequently, inference on vertex properties degrades owing
to the lack of differentiation.

A variety of alleviation measures have been proposed,
which fall into three categories: residual connections, weight
or feature normalization, and edge sampling. Li et al. [139]
showed experimentally that residual connections greatly
mitigate over-smoothing. Similar results were shown by
Chen et al. [140], where initial residual connections were
used between input and smoothed feature representations for
each layer, along with identity mapping. They note that even
though the sole use of residual connections does reduce the
effect of over-smoothing, it only delays its appearance. To
retain as much of the initial information, they used a weighted
mixture of the layers’ convolved feature representations and
the input features. Additionally, weighted identity mapping
imposes regularization on the weights, forcing them to be
small resulting in the theoretical alleviation of information
loss shown by Oono and Suzuki [141].

A normalization method proposed recently by Zhao and
Akoglu [142] is based on retaining the overall pairwise
distances between feature representations between layers.
They proposed a feature normalization method, based on
centering the intermediate feature representations and scaling
them to the same L2-norm. Similarly, Zhou et al. [143]
proposed a normalization layer which normalizes groups
of similar vertices independently. The approach learns a
clustering assignment matrix that correspond to different
classes, and rescales the vertices of each group to have similar
representation.

Oono and Suzuki suggested random edge sampling [141]
stemming from their theoretical analysis, as it synthetically
sparsifies the graph, but they advised against permanently
remove edges, as this would result in permanent loss of
information. Although Oono and Suzuki’s suggestion was
based on a hypothesis, Rong et al. [144] proposed a method
based on a random edge sampling and experimentally
confirmed the effectiveness of random sampling of edges of

the graph in every training epoch. This serves a two-fold role:
replacement of the dropped edge information, as well as a
form of data augmentation which prevents overfitting, while
a layer-wise sampling is aimed at mitigating over-smoothing.
DropEdge was successful in improving the classification
accuracy in every dataset tested, and reduced the rate of over-
smoothing but didn’t completely remove it, while it showed
to be compatible with all networks tested.

However, while there is progress in the alleviation
techniques, most of which are aimed as add-ons to different
architectures, theoretical work around the problem has
shed light into the reasons of the occurrence of this
challenging problem. In the recent seminal work of Oono
and Suzuki [141], the expressive power of GCNNs is
analyzed theoretically, proving the asymptotic behavior
of their performance when the depth approaches infinity.
The findings show that the rate of convergence of the
representation to similar values is related to the spectral
properties of the graph, namely the smallest positive
eigenvalue of the augmented Laplacian, as well as the
maximum singular value of the layer weights. When the latter
value becomes smaller than a threshold, the over-smoothing
problem occurs. The problem is exaggerated with increasing
order and density of the graph. The limitation of their analysis
lies in the limited scope of GCNNs with ReLU non-linearity,
and the exclusion of networks with readout layers.

Cai and Wang [145] built upon the work of Oono and
Suzuki, generalizing the theoretical analysis to networks
with different architectures, accounting for Leaky ReLU
non-linearities. Modeling the layer’s expressive power as
Dirichlet energy, they arrived to the same result as [141], and
showed that the non-linear activations of ReLU and Leaky
ReLU reduce expressive power, thus contributing to over-
smoothing.

As shown in these papers [141], [145], non-linear
activations result in the reduction of expressive power of the
network with increasing depth, which is at least partially
causing the over-smoothing of the vertex signals. Luan et
al. [146] prove theoretically that the tanh activation function
retains the linear independence of features, illustrating this
with an experiment on synthetic data. In this experiment
different activation functions were compared in three
different architectures: a deep GCN, and their proposed
architectures of Snowball and truncated Block Krylov, with
tanh performing more consistently up to 100 layers in
all instances. Retaining linear independence of the original
features shows that more information is retained in the
system. Additionally, they leverage multiscale information in
each layer in both their proposed architectures, which they
claim prevents loss of local information.

In yet another theoretical analysis of the over-smoothing
problem, Liu et al. [147] suggest that the source of the
problem lies with the coupling of the transformation and
propagation of the signals in traditional message-passing
networks. They tested their assumption by evaluating a
decoupled formulation of a simple network: The model
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first transforms the vertex inputs using a MLP k layers
deep, after which the features in each vertex’s neighborhood
are aggregated k times to the vertex. By evaluating on
testing accuracy and a dissimilarity metric, measuring the
average pairwise distance for each combination of the
vertices’ information, they found that the performance of
the network degrades much slower by test accuracy and
a measure of smoothness that they propose. Similarly to
Luan et al. [146], Liu et al. also proposed an architecture
leveraging multiscale information by concatenating previous
feature representations, which is based on their decoupled
formulation, achieving state-of-the-art performance but isn’t
tested in its over-smoothing performance.

Overall the performance degradation owing to over-
smoothing is a complex problem, which we do not
understand fully, a fact pointed out by Oono and Suzuki
[141], who hypothesized that residual connections do not
affect over-smoothing, with the opposite clearly proven
experimentally by Li et al. [139]. From the above discussion,
we conclude that this is a multi-faceted problem. We have
seen that the rate of degradation is affected by the density
of the graph and the choice of non-linearity. Additionally, as
shown by Liu et al. [147], when the signal transformation
and propagation are decoupled, over-smoothing is greatly
reduced. It would however be interesting to compare
the decoupled formulation with the effects of different
point-wise activations like Cai and Wong [145]. We also
have the experimental and empirical results that multiscale
information [146], [147] and residual connections [139],
[140] improve a model’s performance and permit deeper
architectures. The same effect is also seen with normalization
[142], [143] and the introduction of artificial sparsity in the
graph [144], where these alleviatory methods could be used
in conjunction with one another and other methods. What
is needed then is more research towards understanding the
over-smoothing problem, an example of which would be the
theoretical limitations of receptive field size in relation to the
order of the graph, sparsity or shortest path within a graph.

D. ORDERS OF STRUCTURE
Graphs can come in different orders and sizes, which affects
the vertex degrees and hence the connectivity, including
paths between different vertices. Most GCNN embedding
methods only consider the first-order neighborhood, thus
limiting the receptive field of the model, and making learning
of higher-order interactions difficult. In such cases only
simple representations can be learned, unless we increase the
depth of the architecture, which increases the computational
complexity. Stacking multiple convolutional layers solves
this problem, but it tends to lead to performance degradation
owing to over-smoothing. We discussed this specific problem
in more detail in Section VII-C, and saw several alleviatory
methods, such as residual connections and identity mapping,
feature and weight normalization, and edge sampling as a
form of regularization. Zhu et al. [148] argued that deeper
architectures also encourage the propagation of redundant

features in addition to over-smoothing. Deeper architectures
also increase the danger of overfitting, which was addressed
by Rong et al. [144] by introducing an edge-sampling
method in the training phase that regularizes the model by
augmenting the data, and showed that it remedies over-
smoothing and overfitting, and improves the performance in
both shallow and deep architectures.

While the intuition is clear, results from experiments
reinforce the importance of larger receptive fields, with
Wu et al. having found that increasing the neighborhood
to its second and third orders increased the performance,
although with diminishing returns [138]. Xu et al. [149]
recognized the limitations imposed by the fixed aggregation
and the limitations owing to the size of the receptive field.
Their proposed architecture includes both skip connections
and a separate adaptive aggregation step, which chooses
each vertex neighborhood scale based on attention scores.
Effectively, the receptive field is adaptively selected based
on individual vertex neighborhood structure. The network
displayed improved performance over GAT [51], which
also adaptively selects neighborhood contribution, but not
in regard to scale. However, the increased expressibility is
more applicable to large graphs, as owing to the increased
parameter pool it results in overfitting in small graphs.

The large computational cost can be solved by the
introduction of higher-order convolutional architectures,
such as a mixture of multiple neighborhood distances
represented as powers of the adjacency matrix. Abu-El-
Haija et al. [150] showed that the mixture of different
distances yielded better results due to their expressibility.
In their approach, feature selection is performed via Lasso
regularization, which in their experiment yielded different
optimal sets of parameters, and therefore models, for
different graphs. A similar multi-hop approach was proposed
by Zhu et al. [148]. It includes a feature-extraction phase
which is followed by a weighted fusion of the multi-hop
convolution. In both instances they demonstrated better
performance than their baselines.

Beyond embedding, synthetically increasing the
connectivity of the graph has been shown to be advantageous
to graph pooling, particularly with subsampling-based
methods [69], [70]. In such cases, the increased complexity
of the augmented adjacency matrix enables the pooling to
preserve information otherwise lost in subsampling-based
pooling methods [70].

Furthermore, as pointed out by Liu et al. [147], a larger
receptive field isn’t necessary for propagating the information
to every vertex in the graph, as in most real-world networks
it only takes sufficiently small number of steps. Larger
receptive fields however allow more complex features, as
well as embedding more information in the network. This
is especially useful when learning from only a few training
examples, as in a semi-supervised scenario.

The order of structure used in the representation-learning
phase is important to the expressibility of the network;
however, it can be safely said that this is a balance
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between expressibility and generalizability of the network,
as it can lead to overfitting [144], or to less generalizable
models owing to increased optimization [148], [150]. Given
that this is a topic tightly coupled with designing deep
architectures, in having a common goal, theoretical research
is needed to better understand the problem. When a multi-hop
neighborhood is necessary, learning the limitations of large
receptive fields would be useful. To discover the relationship
of shortest path in a graph to the receptive field of a GNN
and its performance, or the effect of similar subgraphs on
the required receptive field, would be a step forward in
understanding the limitations of GNNs.

E. INCOMPLETE INFORMATION
For graphs data is not kept as a complete entity. Information
missing from the graph data is hence a frequent occurrence.
Incomplete information comes in different forms: missing or
unknown entities in a network or missing features. While the
problem of missing features not unique to graphs, we argue
that a more serious consideration in graph deep-learning
research is necessary because of its relevance to real-world
graph applications.

1) Missing features
All approaches discussed in this paper assume the
completeness of the feature information in the graphs
handled, with the exception of our discussion on graph
estimation (Section VI). However, this lies in contrast to the
reality of the real-world graph data. As graphs are usually
not atomic objects; graph, vertex and edge features tend to be
incomplete owing to the unique difficulties in data gathering.
Missing information can have many causes, mostly related to
data acquisition. Such examples appear in social networks,
in such cases as sensitive data or the varying provision
of information by users, or in equipment failure in sensor
networks, or in other data-entry errors [151].

The challenge of missing or incorrect data is not a new
problem: it is a widely known problem in machine-learning
and in data-mining communities. In the network-analysis
literature the problem is considered in conjunction with the
related task of graph completion [152], usually referred to as
missing data imputation (MDI). Methods in the literature are
separated into data imputation methods applied to static and
temporal graphs, with the difference lying in the fact that in
the latter case data from previous timestamps influences the
imputation of missing data.

Data imputation methods vary widely, from simple
statistical replacement, e.g., mean replacement, k nearest
neighbors [153], to matrix completion [154], [155] and
generative adversarial networks [156], [157]. General
imputation methods can be applied to graph models,
however, since the increased attention the problem has also
been targeted at graph deep learning. Recently there have
been methods considering the MDI problem through the
scope of graph deep learning, with Spinelli et al. [158]
proposing a graph denoising autoencoder with an adversarial

loss, while Taguchi et al. [151] approached the issue by
modeling the missing input vertex features with a Gaussian
mixture model in the first convolutional layer, and calculating
the expected activation values. Taguchi et al. considered two
main scenarios in which data would be incomplete. The first
case is randomly missing features at every vertex of the
graph, and in the second a randomly sampled set of vertices
would have no features. In their experiment all compared
approaches displayed a declining performance with the
ratio of missing information, while in the second case the
artificially missing data was more challenging. Interestingly,
even though Taguchi et al. didn’t specifically consider
graph structure in their MDI method, the model greatly
outperformed the baselines in both cases, and especially in
the second scenario and with large percentages of missing
data. Despite the clear improvement, as the percentage of
features missing increases, the performance of all approaches
suffers greatly, and thus much research on the topic is still
needed.

MDI methods have also been investigated for the case
of temporal graphs, especially targeted at traffic forecasting.
From the general imputation methods, matrix completion has
also been adapted as a means to infer missing data in the
context of traffic prediction, considering both temporal and
spatial data [155]. Additionally, many of them use temporal
prediction as a means to infer the missing information.
Examples of this methodology include both general methods
for multivariate series prediction [159], [160], as well
as methods targeting dynamic graphs [161]. The unique
characteristic of graph-specific MDI methods is the use of
more expressive models, which can take advantage of the
graph’s topology. Cui et al. [161] modeled the temporal
transition in the dynamic graph via a graph Markov process
which enabled the inference of missing features considering
both spatial and temporal information. Based on the previous,
many of the dynamic methods discussed in Section IV would
be applicable, and it therefore gives added importance to
further research on the temporal graph models.

2) Unknown information
Missing or unknown entities in a graph are common in
social networks, where real connections marked as edges are
unknown, and in knowledge graphs or relational networks
in general. This problem is exclusive to graphs, where the
task to addressing it is termed graph completion. Graph
completion, while conceptually similar to edge prediction
mentioned in Section IV, is an interpolation task, where with
static graphs it involves inferring the missing information,
while in temporal graphs it involves the completion of
information missing in previous graph snapshots. (This is
a task distinct from temporal edge prediction, which is an
extrapolation task rather than interpolation task.)

Initially the problem focused particularly on social
networks [152], [162], [163] tightly coupled to MDI, which
in the network-analysis domain acts as an umbrella term. In
this case the missing data is considered from a structural
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perspective. In such networks as social networks and by
extension relational networks, including knowledge graphs,
missing edges or vertices can represent drastic changes in
the properties of the network [162]. The effects also vary
depending on the extent of absence of the data, while the
effectiveness of the treatment can depend on randomness of
the underlying procedure affecting the missing data [152].

A related branch of research is graph completion, which
is also mostly focused on knowledge graphs. In graph deep
learning there has been increasing interest in relation-aware
graph convolutional approaches for graph completion that
coupled with appropriate decoders infer the existence of
relations [164]. Graph completion seems to be more effective
in graphs with a large number of symmetric relations [164].
Arora et al. [164] found that there is no approach yet that
takes advantage of all information in the relational graphs. An
additional potential challenge in deep-learning-based graph
completion is data imbalance, which inherently exists in
relation to edges, particularly in sparse graphs.

3) Missing labels

The issue of missing labels stems from expensive manual
labeling, which is a general problem, not specific to the
graph domain. A usual approach found in graph methods
is using semi-supervised training procedures [46], which is
addressed extensively in graph deep-learning literature. Self-
supervision has also been investigated for improving the
performance of models in the presence of partially labeled
data [165], [166]. You et al. in a recent seminal study [165]
compared different self-supervision procedures, and found
that self-supervision generally improved the performance
over the baselines and increased the generalizability models,
as it acted as a form of data-driven regularization. They also
found that multi-task learning can increase the robustness
of models against adversarial attacks. Both these findings,
including the large availability of partially labeled data,
indicates that semi- and self-supervision can be particularly
empowering in graph learning, both theoretically and
practically.

VIII. CONCLUSION
Most recent work has focused on graphs with a narrow
set of properties, and several problems that preclude the
application of deeply learned graph models on the one hand
to domains exhibiting certain properties and on the other
the generalization of graph models to different graphs. We
described each problem and considered the work done to
date.

We considered three specific problems. Firstly we
discussed temporal graphs and the work to date on learning
on data whose structure changes over time. With dynamic
graphs, where only the attributes of the graph change, the
inhibiting factor is the modeling of the temporal pattern;
otherwise it is mostly a matter of optimizing the architecture.
The research on evolving graphs by contrast is still limited,

and as of yet there are no approaches that address the
disappearance of vertices.

Secondly we considered features that lie on the edges of
graphs, and how they are incorporated into the convolution
on the graph. The application usually determines the way
in which the features are incorporated. To the best of our
knowledge, however, no theoretical analysis of the various
means of incorporation has been undertaken. Moreover little
work has considered domains where, although naturally
represented by graphs, signals are structured over its edges.
There remains much exploration to be done.

Thirdly we elucidated the theoretical challenges of
estimating a graph structure from data. The underlying
assumption is that this structure expresses itself in the data
somehow; therefore a graph model would be able to infer the
structural content from it. Assuming the entities are known,
among other problems, the search space of graph structures
is exponentially large with the order of the graph. When the
entities are not known, the problem is less defined. While
there is work in these fields, it is ripe for exploration, with
some exciting early results.

Closing the topic of open problems in graph deep learning,
we analyzed more concisely concise the challenges that
affect the ability of GCNNs to generalize, including inductive
settings of unknown graphs, tasks and domains. Adaptation
to these scenarios is dependent on the similarity between
the source and target dataset. Designing deeper GNNs has
been largely inhibited by over-smoothing. Large theoretical
steps have been made to the understanding of the underlying
reasons, and several effective countermeasures have been
proposed. Yet there is still a large gap in our understanding
of the phenomenon as it relates to architecture depth and the
related receptive field. The receptive field of GCNs has been
considered from different perspectives: network depth, and
neighborhood distance. However, the issue is still non-trivial.
Each approach has different advantages and disadvantages,
depending partially on the graph’s connectivity and order.
Optimal utilization as seen in current research is not
considered explicitly with few exceptions. Finally, missing
information as a major practical obstacle to the application
of theoretical approaches to real-world problems has seen
greater attention, but there is still much research to be done,
especially when a large part of the problem is unobservable.

Future researchers can direct their work more fruitfully
with the help of our discussions. For each problem we
have outlined the issues inhibiting effective modeling; these
descriptions will permit researchers a more structured way
of thinking of each problem. The structured thinking will
consequently lead to more accessible problems, allowing
more researchers to understand the problems.
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