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ABSTRACT Visual analytics for time series data has received a considerable amount of attention. Different
approaches have been developed to understand the characteristics of the data and obtain meaningful statistics
in order to explore the underlying processes, identify and estimate trends, make decisions and predict the
future. The machine learning and visualization areas share a focus on extracting information from data. In
this paper, we consider not only automatic methods but also interactive exploration. The ability to embed
efficient machine learning techniques (clustering and classification) in interactive visualization systems
is highly desirable in order to gain the most from both humans and computers. We present a literature
review of some of the most important publications in the field and classify over 60 published papers
from six different perspectives. This review intends to clarify the major concepts with which clustering
or classification algorithms are used in visual analytics for time series data and provide a valuable guide
for both new researchers and experts in the emerging field of integrating machine learning techniques into
visual analytics.

INDEX TERMS Time series data, clustering, classification, visualization, visual analytics.

I. INTRODUCTION AND MOTIVATION

RECENT years have seen an increasing use of time-
oriented data in many fields such as networks and sys-

tems, meteorology, social media, behavior analysis, trajec-
tory data, biological science, finance, and the like, where data
is measured at a regular interval of (real) time. In this research
work, we focus on time series data; it is therefore important
to agree on a formal definition. Time series data is defined
as an ordered collection of observations or sequence of data
points made through time at often uniform time intervals [1].
Also, because of its diversity of sources, its complexity, and
its various underlying structures, we categorize time series
data, used in our surveyed papers, into four categories based
on their structure: univariate, multivariate, tensor fields and
multifield.

Machine learning gives computers the ability to learn
without explicit programming [2]. Alpaydin [3] gives a con-
cise description of machine learning, which is “optimizing
a performance criterion using example data and past experi-
ence". Data plays a major role in machine learning where the
learning algorithm is utilized to discover and learn knowl-
edge or properties from the data (learn from experience)

without depending on a predetermined equation as a model
[4]. In supervised learning, the dataset (the training set) is
composed of pairs of input and desired output and learning
aims to generate a function that maps inputs to outputs. Each
example is associated with a label or target. In unsupervised
learning, the dataset (the training set) is composed of un-
labeled inputs without any assigned desired output and the
aim is to find hidden patterns or substantial structures in data
[5]. There are different types of supervised and unsupervised
machine learning techniques and under each approach has
different algorithms taking various approaches to learning.
Our focus in this work will be on classification as a super-
vised learning technique and clustering as an unsupervised
learning technique with time series data.

Sacha et al. [6] highlight two main functions for machine
learning. The first is to transform unstructured data into
a form which facilitates human exploration, analysis and
understanding. The second is to utilize unsupervised or semi-
supervised algorithms to direct the analysis itself by rec-
ommending the best visualizations, verification, successions
of steps in the exploration, etc., where the algorithm can
automatically discover complex patterns from the raw data
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directly. This user-centric approach of interactive visualiza-
tion utilizes human vision scalability for analyzing, exploring
and understanding such data. It also assists data analysts in
solving complex problems interactively by integrating auto-
mated data analysis and mining, such as machine learning-
based methods, with interactive visualizations [7].

Machine learning algorithms provide a collection of au-
tomated analyses which can be much more efficient, ac-
curate and objective in solving time series tasks. Machine
learning also focuses on prediction [8] which has useful and
widespread real-world applications.

The machine learning and visualization communities have
been addressing time series issues from different perspec-
tives. Machine learning has a strong algorithmic focus while
interactive visualization has a strong human/visualization
focus [9]. Therefore, the essential difference between the
fields, is the role of the user in data exploration and modeling.
In machine learning, the goal is to dispose of the user, so
everything is automated. In this case, the user can play a
limited role such as selecting the type of algorithm, where
their influence should be restricted to a minimum. In an
interactive visualization, a completely opposite point of view
is offered, where visual representations are leveraged by the
user to extract knowledge from the data, discover patterns,
adjust models of the data under user steering. This main
difference in philosophy may explain why both communities
have remained relatively disconnected [10].

Based on the above, there is a strong incentive for both
communities to be synergized in order to make progress and
benefit from one another [7]. Combining automated analysis
methods and interactive visualization has been shown to be
an efficient approach for visual analytics. The visual analytics
process aims to tightly couple automatic analysis methods
and interactive visualization in order to gain knowledge
from raw data and present a chance for analysts, through
interaction tasks, to analyze, explore, reason, discover, and
understand the data.

A. SURVEY SCOPE AND INTENDED AUDIENCE:
Our focus will be on two important machine learning tasks,
namely clustering and classification, and how they are inte-
grated into visual analytics systems for time series data. From
a broader point of view, existing works come from two dif-
ferent fields which can be classified into two categories: data
mining approaches [11], [12], [13], [14], [1] and visualization
approaches [15], [16], [17].

From a data mining perspective: Several surveys are
available on clustering and classification for time series data.
Liao [11] and Aghabozorgi et al. [12] provide an overview on
clustering time series data. Xing et al. [13] present a review
for time series data classification. Moreover, Yahyaoui et
al. [14] also discuss some classification algorithms that are
used with sequence data. Fu [1] provides an overall picture
of the current time series data mining techniques including
clustering and classification tasks. These previous works
discuss in detail a wide range of clustering and classification

algorithms that have been proposed and employed on time
series data with a strong algorithmic focus. However, user
influence is not considered in most of these works.

From the visualization perspective: Aigner et al. [15]
provide a complete classification scheme for time-oriented
data. A large part of their work involves a structured survey
of existing techniques for visualizing time-oriented data,
illustrated with numerous examples. Bach et al. [16] review a
range of temporal data visualization techniques and classify
them from a new perspective by depicting each technique as
series of operations performed on a conceptual space-time
cube. However, their work does not provide much guidance
for interaction design. Additionally, Ko et al. [17] present
a survey that categorizes financial systems from the visual
analysis perspective. Their focus is on financial data, which is
one of several different kinds of time series data. In contrast,
our work looks at time series data in general, primarily em-
phasizing clustering and classification tasks with a variety of
visual analytics systems, which focus on combining machine
learning algorithms and visualization techniques.

Towards Integration and Convergence: The idea of inte-
gration between machine learning algorithms and interactive
visualization has been encouraged and promoted from both
the visualization and machine learning communities. For
example, several recent initiatives have been put into place to
bring the two domains closer, such as the annual CD-MAKE
conference and the MAKE-Journal [18], [19]. The recently
organized Dagstuhl Seminars titled “Information Visualiza-
tion, Visual Data Mining and Machine Learning" (12081)
[10] and “Bridging Information Visualization with Machine
Learning" (15101) [7] are other examples of efforts to bring
researchers from both domains together to discuss important
challenges and corresponding solutions for integrating the
two fields.

To understand this interplay between both domains, the
working group in the Dagstuhl Seminar “Bridging Infor-
mation Visualization with Machine Learning" (15101) [7]
developed a framework which conceptualizes how the incor-
poration of interactive visualizations and machine learning
algorithms can be performed. This framework was inspired
by Keim et al.’s [20] visual analytics framework. The group
attempts to identify aspects of machine learning by the user
such as adjusting the parameters of models or switching
between different model kinds. Montes et al. [21] present
a work which is considered as one of the groundbreaking
works in this trend. They combine visualization with machine
learning techniques (clustering and classification) over time
series data to understand the behavior of complex distributed
systems. Recently, Sacha et al. [22] developed an ontology
which maps out all major processes in machine learning and
aims to provide visual analytics practitioners with a means
to “navigate" the intricate landscape of machine learning,
in order to uncover aspects which might be improved by
introducing more machine or human capabilities.

To the best of our knowledge, there are no previous sur-
vey papers that offer a systematic review of the literature
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FIGURE 1. This survey focuses on the intersection between time series data,
machine learning techniques (clustering and classification), and interactive
visualizations.

for time series clustering and classification that combine
visualization techniques and machine learning algorithms
for visual analytics. In this work, we specifically look at
the convergence between automatic methods and interactive
exploration, and how such automatic methods have been used
in visual analytics systems (as shown in Fig. 1).

We provide a comprehensive and detailed survey on clus-
tering and classification in visual analytics systems that have
been applied to time series data. Although a large enough
body of literature has covered the clustering and classification
of time series data, their focus is either on algorithms or
interactive visualization. However, the idea of integration
and convergence between both domains is beneficial; for
instance, clustering is one of the most popular algorithms to
have been incorporated into visual analytics systems. Since
visual representations are quite significant for interpreting
and understanding the characteristics of clusters output by
algorithms, direct adjustment of clustering algorithms is of-
ten facilitated through interactive interfaces that present new
results “on-demand" [23].

Clustering and Classification of Temporal and Non-
Temporal Data: For time series data the presence of noise,
its high dimensionality and high feature correlation pose
challenges for designing effective and efficient clustering
and classification algorithms compared to data without a
temporal component [24], [15].

Analyzing time series data is nontrivial and can even vary
over time due to complex interrelations between time series
variables. Xing et al. [13] mention three major challenges for
time series analysis especially in classification. First, many
methods can only take input data as a vector of features.
Unfortunately, there are no explicit features in sequence data.
Second, feature selection is not easy because the dimension-
ality of the feature space can be high and computation can
be costly. Third, since there are no explicit features, building
an interpretable sequence classifier is burdensome in some
applications.

Computing the similarity between two data objects is
considered one of the main differences between clustering
and classification of temporal and non-temporal data [11],
[25]. The unique characteristics of time series data such as
noise, including outliers and shifts and the varying length of
time series has made similarity measures one of the main
challenges for clustering and classification of time series
data [12]. When dealing with time series data, the biggest
challenge lies in replacing the distance/similarity measure
for static data with a suitable one for time series data be-
cause it may be scaled and translated differently both on
the temporal and behavioral dimensions [26], [24]. In the
context of visualization, classification and clustering tasks
share a common goal which is data abstraction. This is for
subsequent visualization, to decrease the workload when
computing visual representations and to minimize the per-
ceptual effort required to interpret them.

Keim et al. [27] present the visual analytics mantra: “Anal-
yse First - Show the Important - Zoom, Filter and Analyse
Further - Details on Demand”. Accordingly, it is not enough
to only recover and display the data using visualization
techniques; rather, it is essential to analyze the data according
to its value of interest, displaying the most relevant aspects
of the data, and at the same time providing interaction
techniques, which assist the user to gain details of the data
on demand. Automatic analysis techniques are critical to
the visual analytics process and are essential to incorporate
in parallel with the interactive visual representation. Also,
analysis techniques such as feature selection, dimensionality
reduction and clustering, support gaining insight into data
and support human cognition to process large volumes of
data, enabling visualization to scale. Visual analytics also
allows users to interact with these algorithms, in some cases,
through interactive interfaces such as directing the modifica-
tion of algorithms, accepting user input or switching between
algorithms and display new results “on-demand” [20].

Classification: We classify the surveyed papers from six
different perspectives, these being Time series Data Struc-
tures, Similarity Measures and Feature Extraction for Time
series Data, Time series Analysis Techniques (Clustering
and Classification), Visualization Analysis, and Evaluation
Approaches.

Survey Scope: A variety of concepts and methods are
involved in achieving the goal of extracting useful structures
from large volumes of data including statistics, machine
learning, neural networks, data visualization, pattern recog-
nition, and high-performance computing [15]. Time series
analysis is dominated by traditional statistical methods such
as autoregressive moving average (ARMA) and autoregres-
sive integrated moving average (ARIMA) as well as machine
learning techniques such as k-means and support vector
machine (SVM). Machine learning methods have also shown
ability for time series analysis. They also enable analysis
tasks such as clustering, classification and prediction [28],
[29]. Recently, Neural networks have been increasingly used
with sequential data such as text data analysis where the
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FIGURE 2. The time series data pipeline used to structure our surveyed papers. From the surveyed papers the items in the cloud are usually integrated into one
visual analytics system which is evaluated using the various evaluation approaches surveyed in Section VI.

recurrent neural network (RNN) has received popularity.

Aigner et al. [15] gave a brief overview of analytical meth-
ods for time-oriented data including clustering, classification,
search and retrieval, pattern discovery and prediction where
visualization of temporal data can highly benefit from the
analytical support. In this survey, we focus on clustering
and classification. Other analytical tasks such as search and
retrieval and pattern discovery are indirectly addressed by our
inclusion of similarity measures, clustering and classification
since these operations are the bases of pattern discovery
or search. Other analysis tasks that are not in the focus
in this survey, but are widely used in the context of time
series analysis, include prediction which targets to deduce
from data collected in the past and display how the data
will develop in the future. Linear regression, recurrent neural
network (RNN), and Long short-term memory (LSTM) are
the most recently used techniques for this task besides the
common statistical techniques such as the autoregressive
moving average model (ARIMA) and box-Jenkins method.

To fulfill the scope of our survey, we have selected papers
which focus on machine learning algorithms for time series
clustering and classification tasks in visual analytics systems.
The sixty-five publications which have been selected span
a period of thirteen years. For all papers, we pay attention
to time series similarity measures and feature extraction,
clustering and classification algorithms, and visual analytics.
We categorize the nature of time series data and evaluation
techniques. Our findings on these are summarized in Table 1.
Papers that focus on time series text visualization are out of
our survey’s scope.

B. INTENDED AUDIENCE

The intended audience of this survey are those who already
have a background in visualization and possibly want to
know more about machine learning tasks, in particular clus-
tering and classification. These tasks could help them ana-
lyze, understand and visualize time series data. As a result,
we do not go into detail about visualization (visualization
techniques or visualization tasks and interaction methods)
but focus more on machine learning tasks (clustering and
classification) and how these algorithms have been adapted
into visual analytics systems.

C. SEARCHED VENUES

For paper collection, we mainly used IEEE Xplore (e.g.
TVCG, VAST and PacificVis), Springer (e.g. Visual Com-
puter), ACM, Wiley (which includes Eurovis papers), Sci-
enceDirect and SAGE. Using IEEE Xplore, forty-three pa-
pers were obtained mostly from IEEE Transactions on Visu-
alization and Computer Graphics, IEEE on Visual Analytics
Science and Technology (VAST), and IEEE Pacific Visual-
ization Symposium (PacificVis). We include six papers from
Springer, and six papers from ACM. The other eleven exam-
ined papers have been obtained from other digital libraries.

D. SURVEY STRUCTURE

Figure 2 shows the structure of this survey, which is derived
from the main steps of the selected papers. We start with time
series data structures where we provide a general classifica-
tion for time series data. All data structures, as described in
Section II, refer to the main definition of time series data, and
this section answers questions such as how time series data
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TABLE 1. The selected visual analytics papers of time series data. The table provides an overview of the surveyed papers regarding similarity measures and
feature extraction, time series analysis techniques (clustering or classification), visualization techniques, visualization tasks and interaction methods, evaluation
approaches, and distribution of papers by year of publication.

structures are different, along with providing some examples
of this kind of data.

In Section III, we discuss similarity measures and fea-
ture extraction which are important for time series data as,
usually, the quality of analysis techniques (clustering and
classification) are significantly influenced by its selection.
Moreover, in this section we show how these techniques,
along with clustering and classification techniques, have been
adapted to gain and visualize relevant knowledge from the
data.

Section IV reviews the time series analysis tasks. We
provide a comprehensive explanation for popular clustering
and classification algorithms that have been used in the
surveyed visual analytics papers, how they are used with time
series data, and how they have been adapted to interactive
visualization.

Section V summarizes visualization techniques, visualiza-
tion tasks and interaction methods that are used in surveyed
visual analytics systems. Some of these techniques and tasks
are beneficial for time series data, while others are shared
when working with other kinds of data. We focus more on
illustrating how these techniques and tasks are performed and
adapted to assist in analyzing time series data. The evaluation

approaches for the surveyed visual analytics systems are
discussed in Section VI.

Our survey presents a structured review of the concept of
integrating interactive visualizations and analysis techniques
(clustering and classification) into the visual analytics sys-
tems for time series data. Through this, we have determined
different research trends as well as some of the limitations
and challenges involved in the integration and convergence
of machine learning algorithms and interactive visualization.
These are summarized in Section VII.

II. TIME SERIES DATA STRUCTURES
We classify time series data that has been used in our
surveyed papers into four categories. This classification can
be subsumed under the concepts of univariate, multivariate,
tensor fields, and multifields. Hotz et al. [30] discuss the com-
plex structure of scientific data and provide a clear definition
of a multifield. Our four types or categories are generalized to
include many related subtypes of time series data structures
in order to achieve a comprehensive classification for time
series data structures that can be embodied in visual analytics
systems. The prevalent representatives in our surveyed papers
are multivariate time series and tensor fields.
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A. UNIVARIATE.
The univariate time series is a sequence that contains only
one data value per temporal primitive [15], [31]. It is a
field of a single variable captured or observed through time.
Temperature in a city spanning a period of time is a clear
example of this type of data structure.

B. MULTIVARIATE.
Multivariate time series is a set of time series which have
the same timestamps [15], [31]. This kind of time series data
structure is an array of variables or numbers at each point in
time and can be a collection of multiple univariate captured
through time, such as temperature and pressure readings, or
associative multivariate, such as 3-D acceleration measured
from a tri-axial accelerometer, where each component of the
multivariate has the same units and sensor source. As time
series data structures are an ordered collection of observa-
tions or sequence of data points made through time, most
of the surveyed papers adopt this type of structure. This
special type of multivariate time series data is relevant in
many application fields including biology, medicine, finance
and animation. Multivariate time series data have been also
used in manufacturing systems and predictive maintenance
[32], [33]. In the surveyed visual analytics papers, time series
data, e.g., obtained from gene expression measurement [34],
[35], [36], [37] can be used by biologists to understand the
correlation between different types of genes, analyze gene
interactions, and compare regulatory behaviors for interest-
ing genes. Moreover, medical experts utilize time series data
e.g., blood pressure measurements [38], to understand and
deal with different cases such as monitoring illness progres-
sion, and understanding ecological and behavioral processes
related to a disease which may lead to improved disease
diagnoses. Furthermore, time series data, e.g., obtained from
sampled transactions over a period of time [39], [40], [41],
stock markets [42], [43], and international financial markets
[44], [45] can be used in the financial field and is usually
analyzed to understand and forecast the market situation.
It is useful to find correlations between the data and test
hypotheses about the market, which helps to make the best
decisions at the appropriate time under different business
and economic circumstances. A multivariate can also present
time series data obtained from various data sets including
metadata e.g. patient records [46], [47], employment records
[48], [49], and others [50], [51].

C. TENSOR FIELDS.
These are an array of data arranged on a regular grid with
a variable number of axes [4]. They can be described as a
quantity which is associated to each point in space-time as
it has been extended to functions or distributions linked to
points in space-time [30]. Dealing with spatio-temporal data,
this type of time series data structure is generalized to include
many related subtypes: time series of graphs and networks,
time series of spatial positions of moving objects, and time
series of spatial configurations/distributions.

Time Series of Graph and Network: Time series data
in the form of networks consist of associated attributes such
as nodes and edges that reflect different kinds of behavior
over time. Node or edge attributes of dynamic graphs can
be introduced as time series. This kind of time series data
helps understand different temporal patterns and evaluate
the network dynamics in general [52], [53], [54], [55], [56].
The network view helps to visualize the connectivity of the
sensors, which can enhance analysis, detection and explo-
ration. As each machine (e.g. engines or computers) typically
consists of a large number of sensors that produce massive
data, time series data can be obtained from the nodes of
such machines over a period of time, such as CPU load,
memory usage, network load, and data center chiller sensor,
helping to improve the understanding of how machines are
used in practice and analyze the performance and behaviors
of such systems [57], [58], [59], [60], [61], [62], [63]. Indeed,
analyzing this data helps users and experts understand and
evaluate the network dynamics.

Time Series of Spatial Positions of Moving Objects:
Spatial positions of moving objects data with an associated
time component classifies as trajectory data. It presents dif-
ferent places over time, providing a clear idea of spatio-
temporal changes. A combination of interactive visualiza-
tions and automated analysis has together been shown to be
an efficient approach in analyzing, tracking, and representing
this type of data in order to understand and recognize the
mobility of a diversity of moving objects, such as vehicles
[64], [65], [66], [67], [68], [69], [70], [71], and aircraft [66],
[67], which can lead to path discovery, movement analysis,
and location prediction.

Time Series of Spatial Configurations and Distribu-
tions: Being able to extract useful insight from time series
of spatial distributions and configurations is becoming more
important due of the massive growth in data science and
the rapid advancement of many technologies. In our sur-
veyed papers, we consider discovering behavioral patterns
and finding interesting events that might take place in certain
municipalities [72] and public or business sectors as spatial
configurations and distributions. This identification of regular
configurations and distributions over time is represented by a
total number of events and behaviors extracted from a chosen
spatial scale. Personal mobility behaviors and movement
patterns [73], [74], [75], [76], [77], [78], [79], [80], [81],
behaviors of animals [82], [83], pattern changes in climate
(weather) and the ozone layer [84], [85], [86], [87], [88],
[89], [90], [81], and behavior capture data made through
time at often uniform time intervals [91], [92], [93], [94],
[95], [96] can be regarded as instances for this type of data
structure that take a place in specific spatial identification.

D. MULTIFIELD.
This kind of data, defined as a set of fields, provides enough
flexibility to capture most types of compound datasets that
occur in practice [30]. Combining multiple modality sensors
such as gyroscopes, magnetometers and accelerometers with
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other environmental sensors is a good example of such data
structure type.

III. SIMILARITY MEASURES AND FEATURE
EXTRACTION FOR TIME SERIES DATA
Large time series data requires adequate preprocessing to
gain an appropriate approximation of the underlying data
representation. The aim of feature extraction is to generate a
higher-level abstraction which represents the data while pre-
serving the shape characteristics of the original data during
dimensionality reduction. There are several dimensionality
reduction techniques specifically designed for time series
which exploit the frequential content of the signal and its
usual sparseness in the frequency space [97]. In general
terms, choosing the distance measure is important and assists
in dealing with outliers, amplitude differences and time axis
distortion. Furthermore, choosing important features in the
data requires sufficient communication of knowledge from
domain experts. Thus, the quality of mining approaches is
significantly affected by the choice of similarity measures
and feature extraction techniques to obtain relevant knowl-
edge from the data. Similarity measures and feature extrac-
tion techniques used in the surveyed visual analytics papers
are summarized in Table 1.

A. RAW DATA SIMILARITY
Most mining approaches often utilize the concept of sim-
ilarity between a pair of time series. While dealing with
time series data, efficiency and effectiveness are the main
targets of representation methods and similarity measures
[98]. Tornai et al. [99] argue that the distance between two
sequences as a measurement plays an important role in
the quality of clustering and classification algorithms. The
accuracy of such algorithms can be significantly impacted
by the choice of similarity measures. Wang et al. [14] and
Yahyaoui et al. [98] present a comprehensive review for time
series measures, classifying them into four major categories:
lock-step measures (e.g. Euclidean distance and Manhat-
tan distance), elastic measures (e.g. longest common subse-
quence [LCSS] and dynamic time warping [DTW]), pattern-
based measures (e.g. spatial assembling distance [SpADe])
and threshold-based measures (e.g. threshold query based
similarity search [TQuEST]). Pattern-based measures and
threshold-based measures are out of this work’s scope as they
are not used in the surveyed visual analytics papers.

Euclidean distance (ED) is a commonly used metric for
time series. It is defined between two-time series X and Y
having length L; therefore, the Euclidean distance, between
each pair of corresponding points X and Y, is the square
root of the sum of the squared differences [100]. Thus,
the two time series that are being compared must have the
same length, and the computational cost is linear in terms of
temporal sequence length [101]. Along the horizontal axis,
the distance between two-time series is calculated by match-
ing the corresponding points [102]. The Euclidean distance
metric is very sensitive to distortion and noise [13], and it

is not able to handle one of the elements being compressed
or stretched [83]; therefore, this approach is not reliable,
especially when computing similarity between time series
with different time durations [103].

Dynamic Time Warping (DTW) is another distance mea-
sure that is proposed to overcome some Euclidean distance
limitations such as non-linear distortions. In DTW, the two-
time series do not have to be the same length, and the idea is
to align (warp) the series before computing the distance [13].
However, two temporal points with completely different local
structures might be mistakenly matched by DTW. This issue
can be addressed by improving the alignment algorithm, e.g.
shape dynamic time warping. It considers point-wise local
structural information [104].

Due to its quadratic time complexity, DTW does not scale
very well when dealing with large datasets. In spite of this, it
is widely used in different applications, such as in bioinfor-
matics, finance and medicine [105]. DTW has several local
constraints, namely boundary, monotonicity and continuity
constraints [103]. Moreover, some common misunderstand-
ings about DTW are that it is too slow to be useful and
the warping window size does not matter much; Wang et
al. [98] and Mueen et al. [106] have attempted to correct
these notions. Kotas et al. [107] have reformulated the matrix
of the alignment costs, which led to a major increase in
the noise reduction capability. Other surveys review distance
measures such as Euclidean Distance (ED) [108], Dynamic
Time Warping (DTW) [109], [110], and distance based on
Longest Common Subsequence (LCSS) [111], [98].

Correlation is a mathematical operation which is widely
used to describe how two or more variables fluctuate together.
Different types of correlation can be found by considering the
level of measurement for every variable. Distance correlation
can be used as a distance measure between two variables that
are not necessarily of equal dimension. In time series data, it
is used to detect a known waveform in random noise. Unlike
DTW and LCS, correlation also offers a linear complexity
frequency space implementation in signal processing [112],
[83].

Cross-correlation is the correlation between two signals
which shape a new signal, and its peaks can indicate the
similarity between the original signals; it is used as a distance
metric [12]. However, cross-correlation can be carried out
more efficiently in frequency domain [112]. Autocorrelation
occurs when the signal is correlated with itself, which is
useful for finding repeating patterns [83]. Walker et al. [83]
demonstrate that cross-correlation is a slow operation in time
series space, but it corresponds to point-wise multiplication
in frequency space. It is also considered as the best distance
measure to detect a known waveform in random noise. When
processing the signal, the correlation has a linear complexity
frequency space implementation which cannot be achieved
by DTW.

From a data mining perspective, Aghabozorgi et al. [12]
state that Euclidean Distance and DTW are the most popular
distance measures in time series data; however, Euclidian
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Distance is the most widely used distance measure in the
surveyed visual analytics papers e.g. [66], [67], [69], [34],
[91], [57], [52], [85], [50], [113], [88], [59], [75], [93],
[44], [60], [89], [53], [95], [90], [43], [96], [114], [70], [81],
[56], [115] as it is the most straightforward distance measure
compared to others. DTW has only been used in [53], [48],
[79], [56] to calculate the similarity of time series data, and
papers [72], [35], [34], [85], [86], [61], [83] use correlation
and cross-correlation in their works.

B. FEATURE EXTRACTION
Feature extraction is a form of dimension reduction which
helps to lower the computational cost of dealing with high-
dimensional data and achieve higher accuracy of clustering
and classification [116]. Matching features from time series
data should be extracted before applying learning algorithms
to the vector of extracted features. Several feature-based
techniques have been proposed to represent features with
low dimensionality for time series data. Wang et al. [98]
list several methods for reducing time series dimensionality
as feature extraction, including Discrete Fourier Transforma-
tion (DFT), Discrete Wavelet Transformation (DWT), Dis-
crete Cosine Transformation (DCT), Single Value Decom-
position (SVD), Adaptive Piecewise Constant Approxima-
tion (APCA), Piecewise Aggregate Approximation (PAA),
Chebyshev polynomials (CHEB), and Symbolic Aggregate
approXimation (SAX). The types of methods we discuss
below are intended to provide examples of popular feature-
based techniques, not to define a rigid taxonomy of methods.

Principal Component Analysis (PCA), as an eigenvalue
method, is a technique which transforms the original time
series data into low-dimensional features. As a feature ex-
traction method, PCA is effectively applied to time series
data [117], [118], [119], [120]. PCA [4] transforms data to
a new set of variables whose elements are mutually uncor-
related, thus learning a representation of data that has lower
dimensionality than the original input. PCA has been used as
an effective dimensionality reduction method that eliminates
the least significant information in the data and preserves the
most significant. In the surveyed visual analytics papers, [54],
[50], [87], [84], [91], [96], [70], [41] use PCA to reduce high-
dimensional data and analyze the similarity of the time series
data. PCA is a linear dimensionality reduction technique.

Multidimensional Scaling (MDS) is a very popular non-
linear dimensionality reduction technique that is useful for
effectively representing high-dimensional data in lower di-
mensional space. This technique has been used in the sur-
veyed papers [54], [48], [78], [36], [57], [84], [81], [56],
[63]. MDS is a useful technique which effectively represents
high-dimensional data in lower dimensional space; however,
it struggles to separate k-Means clusters [84]. Jeong et al.
[36] use MDS to gain a better understanding of gene inter-
actions and regulatory behaviors. Thus, two different MDS
representations are considered with respect to the time se-
ries data. One representation shows local differences among
genes in the same cluster group while the other shows global

differences among all genes in all the clusters. It is also used
to reveal the distributions of the time series data, helping to
visualize the relations among time series [48].

Transforming time series data into a set of features cannot
capture the sequential nature of series. k-gram is an example
of a feature-based technique that aims to maintain the order
of elements in series using short sequence segments of k
consecutive symbols [14]. k-grams [121] represent a feature
vector of symbolic sequences of k-grams in time series data.
Given a set of k-grams, this feature vector can represent the
frequency of the k-grams (i.e. how often a k-gram appears in
a sequence). It has only been mentioned in [92], [47].

Discrete Fourier Transform (DFT) and Discrete
Wavelet Transform (DWT) are rarely used in the surveyed
visual analytics papers [72], [82], [38]. However, these tech-
niques are used in the data mining field and achieve good re-
sults, encouraging visual analytics researchers to adopt these
techniques in future research. Discrete Fourier Transform
(DFT) is one of the most common transformation methods
[1]. It has been used to transform original time series data into
low dimensional time-frequency characteristics and index
them to obtain an effective similarity search [122]. DFT is
used to perform dimensionality reduction and extract features
into an index used for similarity searching. This technique
has been continually improved and some of its limitations
have been overcome [108], [123], [124].

Discrete Wavelet Transform (DWT) has also been used
as a technique to transform original time series and obtain
low-dimensional features that efficiently represent the origi-
nal time series data [99], [125]. Chan et al. [126] use Haar
Wavelet Transform for time series indexing, which shows the
technique’s effectiveness with regards to the decomposition
and reconstruction of time series. With a large set of time
series data, analysis tasks would face certain challenges in
defining matching features; therefore, taking advantage of
wavelet decomposition to reduce the dimensionality of data
is beneficial [127]. The classification task can be accurately
performed utilizing the discrete wavelet transforms technique
[128].

Discretization is usually needed when applying feature-
extraction techniques in time series data; however, its use can
cause information loss [13]. To address this issue, Ye et al.
[129] introduce time series shapelets which can be directly
applied to time series. This technique is based on comparing
the subsection of shapes (shapelets) instead of comparing
the whole time series sequences to measure the similarity.
A binary decision maker decides whether each new sequence
belongs to a class or not. The shapelet classifier has some
limitations with a multi-class problem, and to overcome this
issue, Ye et al. [129] use the shapelet classifier as a decision
tree. Xing et al. [130] have shown that early classification
can be efficiently achieved by extracting the local shapelets
features.

IV. TIME SERIES ANALYSIS TECHNIQUES
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A. CLUSTERING
Clustering is widely used as an unsupervised learning
method. The aim of time series clustering is to define a
grouped structure of similar objects in unlabeled data based
on their similar features. Consequently, data in one cluster is
homogeneous, while the data in other clusters are dissimilar.
Features do not provide any information about an appropriate
group for its objects, they only describe each object in the
dataset, assisting clustering algorithms to learn and extract
useful information for their structure. Due to the unique
structure of time series data (e.g. high dimensionality, noise,
and high feature correlation), clustering time series differs
from traditional clustering, consequently, several algorithms
have been improved to deal with time series.

Most works involving the clustering of time series can
be classified into three categories [12]. The first category is
whole time series clustering, where a set of individual time
series is given, and the aim is to group similar time series
into clusters with respect to their similarity. The second is
subsequence clustering, which involves dividing the time se-
ries data at certain intervals using a sliding window technique
to perform the clustering on the extracted subsequences of a
time series [131]. The third category is a clustering of time
points based on a consolidation of their temporal proximity
and the similarity of the corresponding values. Some points
might not assign to any clusters and are deemed as noise.

Clustering algorithms embedded in visual analytics sys-
tems have received much attention from both the visual
analytics and data mining communities for time series data.
Unlike the classification task, this task does not require
labeled data; therefore, the data is partitioned into groups of
similar objects. Most of the existing works that perform time
series clustering usually fall in one of the previously men-
tioned categories. Projection-based methods have received
a lot of attention because a scatterplot is intuitive and easy
to read. Scatterplots can also provide a unified embedding
space for visualizing data and their similarities and show the
embedded semantic content [132]. Elzen et al. [54] propose a
projection-based method to explore and analyze the change
of dynamic networks by transforming each time-step net-
work into a high-dimensional vector which is then projected
onto a two-dimensional space using dimensionality reduction
techniques. Dimensionality reduction is performed for each
data window separately, which can then be sequentially visu-
alized, obtaining the similarity across multiple time points
evolving over time. Therefore, using the projection-based
method can assist with clustering similar time series data so
that conventional clustering algorithms can be applied to the
projected data [84], [75], [54].

We provide a review of the existing time series cluster-
ing methods in the surveyed visual analytics papers, along
with the research that has been conducted in the data min-
ing community. These algorithms can be divided into five
methods: partitioning methods, hierarchical methods, model-
based methods, density-based methods, and grid-based meth-
ods. Table 1 summarizes the clustering algorithms used in the

surveyed papers. Some papers adapted their clustering algo-
rithms, therefore, an additional section has been introduced
in Table 1 to include these clustering algorithms.

1) Partitioning Methods
Partitioning methods are described as a process of parti-
tioning unlabeled data into k groups. The k-Means (KM),
k-Medoids (PAM), Fuzzy c-Means (FCM), and Fuzzy c-
Medoids are the most popular algorithms for partitioning
clustering. Kaufman et al. [133] categorize these algorithms
into two categories: crisp (hard) clustering methods (includ-
ing: k-Means and k-Medoids) and fuzzy (soft) clustering
methods (including: Fuzzy c-Means and Fuzzy c-Medoids).
While in hard clustering methods, each object is assigned to
only one cluster, in fuzzy clustering methods, each object is
assigned to more than one cluster with a probability. In such
methods, the number of clusters must be pre-assigned and
most partitioning algorithms cannot tackle the problem of
finding the number of clusters [133]. Another issue is that
they are not straightforward when dealing with time series of
unequal length because of the ambiguity of measuring cluster
centers [11].

1. Crisp (Hard) Clustering Methods.
k-Means [134] is a simple and widely used algorithm

which divides a set of data into K groups represented by their
mean values. After K cluster centers (centroids) are randomly
initialized, each example is assigned to the nearest cluster.
It iterates until it converges to a locally optimal partition of
the data. For each iteration, each example is assigned to the
closest cluster center, which will be recalculated based on the
mean value of all examples of that particular cluster [135].

k-Means has been used to cluster time series data, achiev-
ing efficient clustering results due to its speed, simplicity,
ease of implementation, and the possibility to assign the
desired amount of clusters [136], [43]. Most of the surveyed
papers use commonly applied partitioning methods of clus-
tering, especially the k-Means algorithm [43], [34], [38],
[95], [36], [89], [86], [90], [87], [84], [78], [77], [74], [75],
[52], [58]. k-Means clustering can be performed on multi-
variate time series, where each time point is considered as a
vector and the cluster labels are used as symbols to encode
the time series [43]. Zhao et al. [77], for instance, utilize the
k-Means clustering algorithm to cluster visitors based on the
time they spend at attractions, thus, it assists to group people
in the same cluster if they have similar attraction preferences.
k-Means could also be used with visualization techniques,
as shown by Wu et al. [90], where it is used to determine
the most appropriate and reasonable number of clusters for
visualization. k-Means has also been adopted in a global
radial map to divide all the stations into a number of groups,
each having similar change rates [87]. Li et al. [86] adopt the
k-Means to generate clusters of slopes and map each cluster
onto a ring in the global distribution view. In projection-based
methods, k-Means is applied to the projected data [84], [75].

k-Medoids or PAM (partition around medoids) [133]
is another partitioning algorithm. In this algorithm, a set
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of k representative samples are initially selected, then each
example in the dataset is assigned to the nearest represen-
tative sample constructing partitioned clusters. Although this
algorithm is like the k-Means algorithm, it is more robust and
only differs in its representation. Instead of implying a mean,
k-Medoids clusters are represented by the representative data
sample in each cluster. This algorithm is often used along-
side the DTW distance measure to cluster time series data
[137]. Andrienko et al. [69] use k-Medoids as a clustering
algorithm, which could be better suited than k-Means as it
uses medoids instead of means. However, it still has the same
issues as the k-Means, where the number of subclusters must
be known in advance.

Partitioning has been adopted in some of the surveyed
papers such as [72], [53], [92], [69], [59], [54], [96], [114],
[70], [81], [41], [56], [115]. Even though fuzzy clustering
methods such as Fuzzy c-Means (FCM) or Fuzzy c-Medoids
have rarely been used in visual analytics, these methods have
promising potential for the future of partitioning methods that
can be used in visual analytics systems other than k-Means.
Therefore, we briefly highlight these algorithms, along with
works that have been accomplished with time series data.

2. Fuzzy (Soft) Clustering Methods.
These algorithms aim to minimize an objective function

that usually has numerous undesired local minima [138], al-
lowing fuzzy partitioning instead of hard partitioning. Thus,
each sample in the dataset could be assigned to more than
one cluster with a membership that measures degrees of asso-
ciation to clusters. Even though fuzzy clustering algorithms
are usually more time consuming, they provide more detailed
information concerning the data structure [133].

Fuzzy c-Means [139], [140] is the most common fuzzy
clustering algorithm and an extended version of k-Means. It
provides both effective and significantly meaningful (fuzzy)
data partition [141]. This algorithm was later improved by
many works [142], [141], [143], [144]. A dataset is divided
into fuzzy groups that differentiate in representatives by min-
imizing the objective function (within groups) of weighted
coefficients (e.g. distances between objects and cluster cen-
ter), influencing the fuzziness of membership values.

Fuzzy k-Medoids [145] is another fuzzy partition algo-
rithm which is an extended version of k- Medoids. The
candidate medoids are picked (as objective functions located
in the cluster centre) from the dataset to minimize all fuzzy
dissimilar objects in the cluster.

For time series clustering, unsupervised partitioning has
been shown as being efficient in providing good clustering
accuracy. Several partitioning clustering approaches (e.g. k-
Means [146], [147], [136], [148], [146], [137], k-Medoids
[149], Fuzzy c-Means [142], [150], and Fuzzy c-Medoids
[151]) have been used to achieve efficient clustering results
for sequences of time series data.

2) Hierarchical Methods
Hierarchical clustering defines a tree structure for unlabeled
data by aggregating data samples into a tree of clusters. It

can be used for time series of equal and unequal length [12],
[11]. This method does not assume a value of k, unlike k-
Means clustering. There are two main kinds of hierarchical
clustering methods - agglomerative (bottom-up) and divisive
(top-down) [152], [12].

An agglomerative algorithm (bottom-up) considers each
object as a cluster, and then progressively integrates clusters.
It is the more commonly used algorithm [11], [12] and is
involved in many visual analytics works for time series data
[92], [85]. The merging process is repeated until eventually,
all items are in one cluster or termination conditions are
satisfied, such as the number of clusters being sufficient. The
divisive algorithm (top-down) starts by grouping all objects
into one cluster then divides the cluster until each object is in
a separate cluster [152], [12]. In their visual analytics system,
Bernard et al. [91] mentioned two advantages of divisive
clustering for time series data. Firstly, the hierarchical struc-
ture allows for multiple levels of detail with the same data
elements in respective sub-trees. Secondly, the level of detail
concept can be achieved with a single calculation. However,
both algorithms predominantly suffer from an inability to
perform adjustments once a combining or dividing decision
has been implemented. Also, they do not have the ability
to undo what has been previously done [153], [154], [133],
[135].

The basic hierarchical clustering algorithm starts with
assigning each vector to its own cluster. Then, it computes
the distances between all clusters and saves these distances
into a distance matrix. Next, it finds, through the distance
matrix, the two closest clusters or objects which will pro-
duce a cluster. It updates the distance matrix and returns
to the previous step until only one cluster remains [153].
Hierarchical algorithms usually use a similarity or distance
matrix to merge or split one cluster, and this can be visualized
as a dendrogram [135]. Lin et al. [155] present Symbolic
Aggregate Approximation (SAX) representation and use hi-
erarchical clustering to evaluate their work. Hierarchical
clustering methods can also be divided based on the way that
the similarity measure is calculated; examples include single-
link clustering, average-link clustering, and complete-link
clustering [135]. CURE [156], BIRCH [157], and Chameleon
[158] are some examples for improving the performance
of hierarchical clustering algorithms. Hierarchical methods
can produce multi-nested partitions that let different users
select diverse partitions based on the similarity level that is
required. However, it suffers from computational complexity
in time and space, and using it to cluster many objects incurs
a massive I/O cost.

For visual analytics, hierarchical clustering is often used
for classifying time series into separate groups, based on sim-
ilarities in time series levels [37]. It supports an interactive
exploration on multiple levels of detail [52]. Line plots, heat-
maps, and dendrograms are the most widely adopted visual-
ization techniques with hierarchical clustering e.g. [85], [39],
[34], [46], [52], [91], [60], [89], [92], [37], [50].

The hierarchical method is applied to determine the order
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of time series data before visualizing and launching interac-
tive exploration [39], [50]. Wijk et al. [159] conducted one
of the first pioneer work in visual analytics systems. They
use a bottom-up hierarchical clustering approach to identify
common and uncommon subsequences that occur in large
time series. Then, users can easily interact with the visualiza-
tion which allows them to select days, find similarities, etc.
Battke et al. [34] overcame the issue of hierarchical clustering
speed for large time series datasets by implementing the
rapid neighbor-joining algorithm [160], and then attaching
the produced trees to heat-map plots, allowing interactive
specialized data exploration.

The hierarchical method creates aggregations which have
been visualized as dendrograms, providing multiple levels
of detail and an initial overview of similar groups. Visual
analytics enhances interactivity, enabling users to change the
level of detail by dragging the aggregation level slider [91] or
by applying multiple-height branch-cuts to manually select
clusters [37].

3) Model Based Methods
A self-organizing map (SOM), a model-based method de-
veloped by Kohonen [161], is a specific type of neural net-
work (NN) that is used for model-based clustering. As an un-
supervised learning method, self-organizing neural networks
rely on neurons which are coordinated in a low-dimensional
(often two-dimensional) structure. Those neurons are itera-
tively trained by the self-organizing procedure. SOM is one
of the most common neural network models and is often
used for data analysis. It is also described by Kohonen as
an analysis and visualization tool for high-dimensional data
[162]. However, SOM can also be used for other applica-
tions, such as clustering, sampling, dimensionality reduction,
vector quantization, and data mining [163], [164]. The most
important feature of SOM is produced in the output layer by
the neighborhood relationship [165].

Various extensions have been developed to enhance the
SOM’s scope and performance, such as adaptive sub-
space SOM (ASSOM) [166], [167], the parameterized SOM
(PSOM) [168], visualization induced SOM (ViSOM) [169],
[170], and the Self-Organizing Mixture Network (SOMN)
[171]. The SOM uses a collection of neurons usually ar-
ranged in a 2-D hexagonal or rectangular grid to shape a
discrete topological mapping of input space. At the beginning
of the training process, weights are initialized by assigning
small random numbers. In this algorithm, each training it-
eration has three stages. First, an input is presented every
time, and then the best matching cell, or winning neuron,
is selected. After that, the weight of the winner and its
neighbors are updated. The process is repeated until the map
converges and the weights have stabilized. In the feature
space, the neighboring locations are always represented in the
neighboring neurons in the network because they are updated
at every step. During the mapping, the topology of the data is
maintained as it was in the input space [11], [172], [173].

The self-organizing map (SOM) has been used to analyze

temporal data, and is utilized for pattern discovery in tem-
poral data with visual analytics e.g. [45], [44], [34], [91],
[79], [70], [114]. Recurrent SOM [174] and Recursive SOM
[175] have enhanced SOM for mapping time series data
[172]. Fuet et al. [176] use self-organizing maps to gather
similar temporal patterns into clusters. A continuous sliding
window is used to segment data sequences from numerical
time series before applying the SOM algorithm. SOM also
is used in [173] to cluster time series features. In many
clustering works, SOM is chosen due to its advantages with
regards to certain properties such as parameters selection,
data analysis, and better visualization. However, one of its
main disadvantages is that it does not work perfectly with
time series of unequal length, as it is difficult to define the
dimension of weight vectors [11].

Due to SOM being a robust algorithm, Schreck et al.
[45] use it to render trajectory prototypes and represent data
samples on the SOM grid using trajectory bundle visualiza-
tion. Thus, the trajectory bundles can be visualized at the
location of their underlying prototype pattern on the SOM
grid. It also organizes the space of movement patterns by
arranging prototype trajectories on the SOM grid; this means
that neighboring patterns can be compared to each other,
and the different patterns smoothly transit over the map.
Bernard et al. [91] also use the SOM method as a projection
technique to make a similarity-preserving color legend for
human poses. The grid of the color legend is the result of a
SOM that is trained using all feature vectors in the manner of
a vector quantization scheme. Thus, the grid structure helps
to arrange the most prominent human poses. Moreover, the
SOM algorithm can support visualization by representing
data on the SOM grid or using the grid of color as a result
of the SOM model. The algorithm has also been used in [44]
to visually analyze sets of trajectory data which are trained
in unsupervised mode. Start and end points of trajectories are
indicated over the SOM grid by different colors. The goal of
their visualization is to produce maps of user-preferred tra-
jectory clustering. The surveyed papers have shown that link-
nodes and glyphs are the most widely adopted visualization
techniques with model-based clustering, e.g. [45], [44], [91].

4) Grid-based Methods
One type of clustering method is the grid-based cluster [35].
This method identifies a set of cells in a grid structure,
providing grouped structures in unlabeled data. It is described
as a process of quantizing the space into a set of cells made-
up a grid. These cells are then used to perform clustering. The
fast processing time distinguishes this approach from others.
Instead of depending on the number of data objects, they
depend on the number of cells in each grid [177]. The two
grid-based approaches in [178], [177] are typical examples
of efficient clustering algorithms, particularly for very large
datasets.

In EpiViz [35], a visual analytics tool for epigenetic fea-
tures, the grid algorithm is implemented to find similar genes
based on the values of their measurements and splits the
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scatter plot into 5 * 5 cells. Based on their measurements,
one cluster of genes per measurement is created for each
cell. The scatter plot shows a cluster of genes with their
sizes proportional to the number of genes. Thus, it can be
said that the grid algorithm, as a machine learning algorithm,
assists and interacts with the scatter plot as a visualization
technique which provides a classic visual analytics system.
Therefore, the EpiViz paper could provide an idealistic model
with advantageous features resulting from integrating both
machine learning algorithms and visualization techniques to
obtain a very effective visual analytics system.

5) Density-Based Methods
In density-based clustering, the cluster continues to expand
if the density of a set of points with its neighbors is closely
packed together, and that cluster is separated by subspaces
where the objects have low density. This kind of algorithm
is more complex than other clustering algorithms such as
partitioning clustering [12]. As it is based on data density,
density-based clustering can distinguish noise data and does
not require a prior number of clustering, which can be
more helpful for non-linear clustering. Andrienko et al. [78]
highlight some of the advantages of using a density-based
clustering technique in their visual analytics methodology for
time series data. They state that a density-based clustering is a
fast algorithm which does not require pre-setting the number
of clusters, is able to detect arbitrary shaped clusters as well
as outliers, and uses easily comprehensible parameters such
as spatial closeness. DBSCAN [179], OPTICS [180] and
LOF [181] are some of the common algorithms that work
with the density-based concept.

Aghabozorgi et al. [12] state that density-based clustering
has not been used broadly for time series data in the data
mining community as it has some complexity. However, we
found that many of our surveyed visual analytics papers have
adopted density-based methods [69], [64], [34], [42], [66],
[67], [73], [74], [77], [57], [89], [78], [48], [71]. Looking
at combinations of visualization with clustering algorithms,
the surveyed papers indicate that the trend is dominated by
trajectory data that often adopts density-based techniques
for clustering compared to other clustering algorithms. For
visualization techniques, maps and the space-time cube are
used by Andrienko et al. [64], [69], [66], [67], [73], providing
mining and visualization techniques which can be applied to
trajectory data.

DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) [179] is one of the most highly cited
density-based methods. It depends on a density-based con-
cept of clusters which is designed to detect clusters and
noise in a set of data. For each point of a cluster, the eps-
neighborhood must have a minimum number (minPts) of
points. Therefore, the two parameters, eps and minPts, must
be known for each cluster or, at the very least, for one point
from the particular cluster. In every cluster resides two points,
the core and border points, which are on the cluster’s border.
DBSCAN has good efficiency on large datasets and aims to

discover clusters of arbitrary shapes. For example, Chae et al.
[74] and Zhao et al. [77], in both visual analytics systems, use
DBSCAN to group visitors into corresponding clusters. Zhao
et al. [77] utilize the longest common subsequence (LCS)
to measure the similarity of two visitors’ sequences before
applying DBSCAN.

However, DBSCAN cannot transact with clusters of var-
ious densities, which is one of the main problems for this
algorithm. In contrast, OPTICS (Ordering Points To Identify
the Clustering Structure) [180] can deal with the issue of an
unknown number of clusters with different densities [182].
Local Outlier Factor (LOF) [181] also shares certain notions
with DBSCAN and OPTICS with regards to local density
estimation, and depends on distances in its local neighbor-
hood. Most clustering algorithms are developed to find and
optimize clustering, and they usually ignore noise when the
clustering result is produced, but the LOF tries to assign for
each object a degree of being an outlier.

B. CLASSIFICATION
Classification is described as mapping data into predefined
classes. The classification task is referred to as a supervised
learning method because the classifier is constructed using
training data, and classes are known in advance. In this task,
the algorithm is trained on dataset examples, and tries to
assign each set of data into its appropriate class; in other
words, assigning time series patterns to a specific category
[13].

In classification, the aim is often to learn what the unique
features that distinguish classes from each other are. Thus,
when an unlabeled dataset is entered into the system, the
classification task can automatically determine to which class
each series belongs [183]. The k-nearest neighbors, decision
tree, support vector machines and neural network are the
most widely used algorithms for the time series classification
task. Even though these algorithms have received much atten-
tion in the data mining and machine learning communities,
embedding their use in visual analytics systems for time
series data is still a relatively young and emerging field. The
next sections intend to provide a review of the few existing
time series classification in the surveyed visual analytics
papers along with the works that have been adopted in the
data mining community.

1) k-Nearest Neighbors (k-NN)
The k-nearest neighbors algorithm performs a straightfor-
ward function on data. There is no learning process; in order
to produce an output for a new test input x, the k-nearest
neighbors to the new sample at test time can be found in
the training data, which then returns the major class label,
producing an output at test stage [4]. Despite there being
numerous classification algorithms that have been used to
classify time series, evidence shows that the simple nearest
neighbor classification is extremely difficult to beat [184],
[185]. Xi et al. [186] and Rakthanmanonet et al. [187] have
shown that the simple combination of one-nearest-neighbor
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with dynamic time warping (DTW) distance produces good
results, but it suffers from computational complexity with the
DTW algorithm [186].

2) Decision Tree (DT) and Random Forests

The decision tree (DT) is one of the most popular classifiers.
It is generated by algorithms that identify various ways of
dividing a dataset into branches [188]. The tree has three
kinds of nodes. In the root node, the outgoing branches
can be divided into one or more branches. In the internal
node, one incoming branch can be divided into two or more
outgoing branches. In the end node, leaf nodes represent
classes and branches represent decisions. Starting at the root,
the classifier makes decisions to reach the class label [189].
The decision tree can also be utilized under uncertainty as
a sample for sequential decision problems. It assists with
describing the decisions that will be made, the cases that
might happen, and the results that are related to each of the
events and decisions.

C4.5 [190], ID3 [191], Classification And Regression Tree
(CART) [192], [193], and CHi-squared Automatic Interac-
tion Detector (CHAID) [194] are examples of decision tree
algorithms. The complexity of a tree impacts its performance
and accuracy. The criteria and pruning method that are used
can control this complexity, and certain metrics can be used
to measure it. These metrics include the depth of the tree,
the overall number of nodes, the number of used attributes
and the overall number of leaves. The rule induction always
links to the decision tree induction, and every path from
its root to its end can be converted to a set of rules [195].
The decision tree’s performance is better when it deals with
discrete features.

Random Forests are an ensemble of bagged decision tree
learners with randomized feature selection. Breiman [196]
defines it as a collection of randomized decision trees, thus,
it takes the decision tree concept a step further by producing
many decision trees. In a random forest, each decision tree
is learned from a random subset of features and a random
subset of training examples [197], [198]. It can be used for
classification as well as regression.

For random forests, the training algorithm applies general
techniques of bootstrap aggregating or bagging. In bagging, it
trains an often large number of classifiers on random subsets
of the training set, classifying by using the majority vote of
all classifiers. In boosting, it operates as per bagging, but
introduces weights for each classifier based on performance
over the training set.

Decision trees (DT), have been adopted in visual analytics
with high levels of accuracy. Xie et al. [40] use a decision tree
in the VAET system which highlights interesting events in
e-transaction data. The system uses a probabilistic decision
tree learner to estimate the salience of each transaction in
a large time series. Then, the saliency values are visualized
in a time-of-saliency map. This visualization allows analysts
to explore, select and conduct a detailed examination of

interesting transactions, displaying them in a new visual
metaphor called KnotLines.

3) Support Vector Machines (SVM)

Support Vector Machines (SVM) is an effective classifica-
tion method. It is widely used and has shown substantial
achievement in solving sequential time series classification
tasks [199], [200], [201], [202], [203].

The SVM discriminates between positive and negative
examples, and through the use of said examples, it learns
to classify and produce positive and negative classes [4].
For linear cases, SVM [204], [205], [206] aims to find a
class identity by mapping series into a high-dimensional
feature space. Once the similarities between series have been
measured, SVM separates two classes and enforces a larger
margin hyperplane, which is the gap between classes. Thus,
SVM acts as a large margin classifier for accurate classifica-
tion and efficient generalization.

For non-linear cases, SVM often uses kernel functions,
which represent a non-linear decision boundary that sepa-
rates the positive and negative samples. The kernel function
is appropriate with high-dimensional feature spaces and has
been applied to measure the similarities between two given
time series [201]. Many kernel-based methods corresponding
to different measures of similarities and which efficiently
overcome time series classification problems have been pro-
posed [207], [208], [201], [209]. Multiple kernel learning
is an optimization problem [201] whose solution has been
proposed by [210]. They present an efficient algorithm that
solves the multiple kernel learning problem and works with
many samples or multiple kernels which need to be com-
bined.

Support Vector Machine (SVM), as a time series clas-
sification model, has been integrated with visual analytics
systems [82], [113], [94]. This procedure allows scientists
and domain experts in such fields (e.g., biology) with a
little background in machine learning to build classification
models with high levels of accuracy [82]. Lu et al. [113]
supported the creation of the SVM model along with two
other different types of models, Linear Regression and Mul-
tilayer Perceptron, combining feature selection and model
cross-validation through numerous interactive visualizations,
which help analysts in their building of such a model. Kim
et al. [94] developed a visual analytics tool that incorporates
machine learning algorithms (supported vector machine) to
predict coded undesired behaviors.

4) Neural Networks (NN)

Neural networks are learning algorithms that mainly rely on
statistics. This kind of algorithm learns from data using its
own learned features [4]. Neural network algorithms have
been efficiently used to solve several tasks. The task of clas-
sification, especially time series classification, has received
particular attention with regards to using different kinds of
neural networks, such as multi-layer perceptron (MLP) [211],
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convolutional neural networks (CNN) [31], [212], [213], and
recurrent neural networks (RNN) [214].

Multi-layer perceptrons (MLPs) represent a type of neural
networks that have been used as classifier. Its architecture
comprises fully connected layers, and each layer contains
neurons with weighted interconnections between them [211]
called parameters. Neurons act as switching units associated
with weights that are interconnected among them. The aim of
this model is to ideally approximate a function (e.g. classifier
function) by mapping the input values into a category (a
class) learning the parameters (weights) [4]. For time series
classification, class labels should be given so that a learning
function maps the series into an appropriate class. Thus, the
weights are learned by finding the best relationship between
time series and their appropriate classes [211]. From the
visual analytics perspective, multi-layer perceptrons (MLPs)
have been used by Lu et al. [113] in their visual analytics
system. They use backpropagation and allow users to select
which algorithm to use, set the number of folds for the
stability test, train models to predict and compare between
available models.

Convolutional neural networks (CNNs) are a recently in-
troduced kind of neural networks that have been developed
for processing data that has grid-structured topology, such
as time series (1-D grid) data and image data (2-D grid of
pixels). CNN architecture comprises convolutional layers for
spatially related feature extraction and fully connected layers
used for classification. Convolutional layers are utilized, as
feature extractors, to learn features through mapping the raw
data into a feature space, and the trainable fully connected
layers perform classification based on the learned features
from the convolutional part. The convolutional part generally
consists of multiple layers; each layer has three stages: the
convolution stage (filter), the detector stage (activation) and
the pooling stage [4]. The input and output of each stage are
called feature maps [31]. In the training stage, the forward
and backward propagation algorithms are used to train the
CNN and estimate parameters. A gradient-based optimiza-
tion method is utilized to minimize the loss function and
update each parameter [213].

Unlike 2-D grid (e.g. image data) input, convolutional
neural networks for time series uses a 1-D grid, so instead
of holding raw 2-D pixel values, the input of time series
classification is multiple 1-D subsequences. In this case,
multivariate time series [31] are separated into univariate
ones so that feature learning can be performed for each
univariate series. At the end of feature learning, trainable
fully connected layers are adopted to perform classification.

The univariate time series are considered as input that is
fed into the convolutional layers, learning features through
convolution, activation and pooling layers. The 1-D con-
volutional layer extracts features by applying dot products
between transformed waves and a 1-D learnable kernel (fil-
ter) [215], computing the output of neurons that are con-
nected to local temporal regions in the input. This stage is
followed by the activation layer, which is used to perform

non-linearity within the networks, allowing learning of more
complex models [216]. In the pooling layer, a down-sampling
operation is performed to reduce the resolution of input time
series [31], which in turn reduces complexity and generalizes
features in the spatial domain. After extracting feature maps
from multiple channels, they are fed into other convolutional
layers and then pass them as inputs of the fully connected
layer. In the fully connected layer, the class score will be
computed, where each of the result numbers corresponds to
a specific class.

Time series classification faces some obstacles and dif-
ficulties, such as feature representations at different time
scales, and can be distorted by high-frequency perturbations
and random noise in time series data [215]. Several multi-
channel CNN architectures have been used for the task of
time series classification [31], [212], [213], [216], [215]. The
results of all adapted CNN classifiers are competitive for
both classification accuracy and performance with regards to
overcoming the challenges.

The classification algorithms applied in our surveyed pa-
pers are usually embedded in visual analytics systems [40],
[82], [113], [94], [83]. The k-nearest neighbors, decision
tree, support vector machines, and neural network are used
in some recent works, but are not as common as clustering
techniques.

V. VISUAL ANALYSIS
A. VISUALIZATION TECHNIQUES
Visualization transforms symbolic data into geometric data
[217]. The result of this process can help people to under-
stand the data by presenting it in a graphical format, helping
users or analysts to observe, analyze, make decisions, and
identify patterns and correlations based on visualization. The
visualization can also help to detect and see information
and relations between data which might not be recognized
when looking at numerical data [218]. In this way, it can
aid scientific discovery and enhance the likelihood of gaining
deep and unexpected insights, which sometimes leads to new
hypotheses.

At a basic level, time series data (e.g., from sensors) is
presented in 1-D charts, with multiple sensors displayed
on the same chart or linked charts. Different visualization
techniques (ripple, stacked, river, stream) and interaction
techniques (zoom, pan, select) allow the user to select the
time duration and obtain visual feedback. Interaction with
the linked view will highlight regions in the time series and
any pattern recognition techniques will highlight data in the
time series, helping to understand and analyze data over time
[38], [59], [48], [90], [86], [93]. With stacked, river, and
stream graphs, each item is displayed as a colored current
whose height changes continuously as it flows through time.
The overall shape comprises all the items considered, and it
can provide an overview of the topics that are important at
points in time. Various possibilities for interaction are used,
which allow users to browse and zoom into details of the time
duration, as well as to select from the shape.
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For time series data, achieving a good visualization helps
users not only to create interesting images or diagrams, but
also to amplify cognitive performance. Thus, visualization
should communicate with the mind to simplify the data com-
plexity. Aigner et al. [15] present three main criteria, these
being expression, relevance, and effectiveness, that need to be
satisfied in order to achieve a good visualization, exploiting
both human visual perception and huge computer processing.

In this survey, visualization techniques are divided into
nine categories. These classifications draw from the com-
prehensive vocabulary of the visualization taxonomy pre-
sented by Borkin et al. [219]. This taxonomy is used and
modified to include all visualization techniques that are
used in our surveyed papers, which are summarized in Ta-
ble 1. They include the following: Bar (Bar Graph, Rip-
ple Graph, Histogram), Area (Stacked Graph, River Graph,
Stream Graph), Circle (Pie Chart, Radial Chart), Line (Line
Plot, Parallel-Coordinate, Time-of-Saliency, KnotLines), Ge-
ographic Maps, Grid and Matrix (Heat Map, Ranking
View, Calendar Map, Space-Time Cube, Tessellation), Point
(Pixel, Bubble Chart, Scatterplots), Trees and Networks
(Dendrogram, Node-Link), and Glyphs.

From the surveyed papers, it can be noticed that while
some techniques dominate others, they share the same goal,
which is to present as much information as possible in the
display to the user. Thus, there is a wide pool from which to
select visualization techniques that can smoothly deal with
big data in order to reduce data size and produce a visualiza-
tion structure which allows the user to explore, analyse, and
understand the data.

In the same context, Table 1, shows an increasing trend
of using a variety of visualization techniques with time
series data. Also, line plots, geographic maps, heat maps,
histograms, and bar graphs are the most commonly used
techniques in the surveyed papers. Most of them are used
to give an overview of the dataset by displaying the time-
dependent relations of actions. In contrast, some visualiza-
tion techniques are rarely used, such as tessellation and
streamgraphs, while some are presented as new visualization
techniques such as time-of-saliency and knotlines.

B. INTERACTION TASKS
Visual analytics merges machine and human capabilities to
facilitate exploration, analysis, understanding and provide
insights of exploratory analysis for data and methods. Visual
analytics present the chance for analysts, through interaction
tasks, to analyze, explore, reason, discover, and understand
important structures in complex data and architecture of
methods [20]. Thus, users can be involved in the process
through interaction tasks providing directed feedback to the
system.

Early steps in visual analytics were investigated by Tukey
[220] on exploratory data analysis, encouraging to support
direct interaction with data. Following this work, numerous
interaction methods have been developed to support various
types of analysis data and methods, assisting users and ana-

lysts to better understand, explore, analyze, and gain insights.
Researchers in the field of visualization have made efforts to
benefit from user interactions in order to achieve analytical
reasoning and integrate users into a comprehensive visual
analytics system [7]. Several works for different visualization
tasks and interaction methods have been presented. Those
existing works can be classified into three categories, namely
low-level tasks, or interactions (e.g. [221], [218], [222]),
high-level tasks (e.g. [223], [224], [225]), and multi-level
tasks (e.g. [226], [227]).

In this work, we utilize a typology of abstract visualization
tasks by Brehmer and Munzner [226]. Their typology pro-
vides potential for rigorous analysis as it does not only focus
on low-level tasks and high-level tasks, but also addresses the
gap between them; these tasks are termed as multi-level tasks.
This typology allows us to better interpret our survey from an
interactive visual analytics perspective, given that it provides
multi-level visualization tasks and a straightforward way of
describing complex tasks as linked sequences of simpler
tasks.

They identified six main multi-level tasks which are related
to visualization tasks in the surveyed papers. We briefly
summarize each task with all its subtasks and comment on
how they are used in the surveyed papers. In the high-level
task (analysis), users or analysts can analyze data using visu-
alization tools so that they can consume information in many
domain contexts or produce new information using available
resources such as existing data elements. In the mid-level task
(search), users or analysts can search elements of interest
using visualization tools. The search task is classified into
four types: lookup, browse, locate, and explore. In the low-
level task (query), the users or analysts already found targets,
thus, they can identify, compare, or summarize the pre-
found targets. The visualization tasks in our surveyed papers
are summarized in Table 1 under the headings: Analysis,
Search, Query, Encode, Manipulate, and Introduce.

From the surveyed papers, it can be noticed that low-level
tasks are more commonly used than high-level abstract tasks.
As shown in Table 1, using visualization tools as high-level
tasks to analyze data is rarely done in the surveyed papers. In
contrast, low-level tasks are often used; for example, query
tasks are often used to find targets. Selection and navigation
interaction methods are also widely used to provide a range
of different options which can be applied to any element
in visualization systems. Moreover, the filtering method is
frequently used when individual view of sequence data needs
to be filtered.

C. VISUALIZATION AND ANALYSIS TECHNIQUES
We have conducted the review from the perspective of the
data mining and visualisation communities and how the
two integrate to produce visual analytics systems. The data
mining community utilises visualisation to a lesser extent
and with the specific goal of demonstrating the efficacy of
methods under research. Images are intended to be static
figures, there are many examples of using t-SNE (clustering)
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FIGURE 3. UMAP clustering of time-series animal behavioural data leads to
consistent neighbourhoods in the 2D interface (compared to t-SNE which does
not). Also shown, a k-nn cluster and how pattern matching in multivariate data
is achieved through the interface [131].

overlaid with colour to represent classification to convey how
well a new technique performs or how well a data set can be
processed. Another example is that of utilising heat maps to
indicate which features from training sets contribute to the
model classifier.

Visual analytics provides different perspectives and goals
to satisfy the user demands. Interaction becomes a key goal
where the system should impart more knowledge through the
capability to interact with data or model parameters. This
can lead to a different emphasis on the methods chosen to
process the data. An effective clustering algorithm such as
t-SNE led to ineffective user interaction because of spatial
inconsistency after reduction to 2D used in the creation of
the interactive user interface [131]. Alternative clustering
techniques PCA and UMAP projected similar data to similar
spatial locations in 2D (Fig. 3). Feedback in user studies
and from domain experts indicated that the latter dimension
reduction approaches are more suited for deriving user inter-
faces [131].

Parallel coordinates is a familiar interaction tool in the
visualisation community to enable the exploration of high
dimensional parameter spaces, but we saw no use of parallel
coordinate visualisations as static images in the data mining
literature. Primarily this is due to it being a useful tool to
interrogate data when interaction is employed. Each axis can
represent a parameter in the model or clustering approach,
etc. allowing the user to experiment a gain feedback through
alternate views [228](Fig. 4). Indeed, the utility of these ap-
proaches is through multiply coordinated views where direct
interaction in any of the views highlights the same selection
in each view space (Fig. 3).

FIGURE 4. Parallel coordinates plot with annular and linear axes, colour
coded splines representing the data, and density plots on the annular axes.
The view is coordinated with the (PCA dimension reduced) point data (top
right). A density rendering based on the data is given (top left). User
interaction is principally through the parallel coordinate plot to isolate the
overlapping manifolds in the data [228].

For temporal data with a spatial component, a common
processing approach is for locations to be quantized, and
paths through the quantized locations creating a motif which
can be matched using similarity measures. 1-D curve sim-
ilarity measures are employed directly on the data. Multiple
sensors, weighted similarity, or higher-dimensional data is re-
duced in dimensionality (PCA, MDS, non-linear DR) before
clustering. Similarity measures include Euclidean [66], [67],
[69], [34], [91], [57], [52], [85], [50], [113], [88], [59], [75],
[93], [44], [60], [89], [53], [95], [90], [43], DTW [53], [48],
MDS [48], [36], [54], Pearson, Fisher Discriminant [88],
cross-correlation [83], etc. Through the SOM algorithm, as
model-based clustering, the SOM grid provides trajectory
bundle visualization of locations underlying prototype pat-
terns, allowing experts to visually analyze sets of trajectory
data [45] or a search interface, meaning that analysts can
control clustering [91].

If each curve/path has similarity computed against all
other paths, the result is a symmetric square matrix where
each entry represents the degree of similarity/dissimilarity.
We can employ clustering techniques such as agglomerative
clustering and DBSCAN to create a hierarchy which can
be displayed as a tree structure (dendrogram [91]). Cuts
can be taken through the tree to simplify the data. The tree
provides a useful interaction interface to update and query
results in the other linked windows. Dendrograms as a static
image infrequently appear in machine learning literature,
but again they create a useful interactive tool since a cut
through the dendrogram can produce a specific instance of
a visualisation representing different levels of clustering (or
data aggregation).

Time-based (e.g., one hour, one day), or pattern-based
(e.g., recognising a pattern using a variety of similarity mea-
sures or change detection) can result in data segmentation.
The segmentation results are visualised or used as input for
further processing steps [53]. Users can influence segmenta-
tions indirectly through choices concerning the segmentation
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algorithm, changes in its parameters, or by direct selection
and labelling of the data.

Visualising segmented data offers significant visual cues
for determining outliers or clusters of data. For 1-D data,
multiple segmented data can be plotted on charts (and multi-
dimensional on linked charts). Trends, clusters and outliers
can be detected visually [59]. Interaction can allow brushing
in the chart to remove, select, label or highlight groups of
associated data. Queries can be generated using slope tools
or ranges, and curves will either match or not match such
queries. These queries can be stored for future use to act as
triggers or stored procedures on the data.

Apart from 1-D charts, another main approach is to use
radial depiction of data. The data can be visualised as line or
bar charts in a circle with the x-axis around the circle, and
y-axis away from the circle. Typically, the x-axis represents
time, with multiple axes radiating from the centre indicating
durations (e.g., hours in a day, days in a month, or months
in a year). Transformed data may place spatial coordinates
on the x-axis (with a map central to the visualisation), and
the y-dimension could be time, with distance from the y-
dimension then indicating further attributes such as intensity
(of the sensor – e.g., pollution levels [86], [89], and shells of
data appear around the circle (stacked/river charts). Multiple
small versions would create glyphs, or a single view linked
to other views, which offers more detail.

Calendar views [53], [78] also offer successful interaction,
allowing visualizations to aggregate according to the days
selected. Selections can involve months, a certain day of
the week and workdays versus weekends. A secondary view
based on the above chart or network views can offer focus-
and-context associating the detailed view within the overall
context of the annual view. The calendar view utilizes colored
patterns to indicate different clusters; therefore, the selected
elements become active and bigger, which cause unselected
elements to become smaller. Differing from radial plots, the
calendar view allocates the same amount of screen space
to individual patterns, giving them equal visual importance
[53], allowing to visualize during which time stamps the
temporal clusters occur.

The similarity matrix also serves a useful visualization and
interaction tool, and is displayed using color mapping e.g.,
resulting in a heatmap [52], [94]. Rows and columns can be
sorted to reveal patterns. Individual selections in the heatmap
highlight data pairs in the source data. Larger selections
highlight groups of data with the degree of similarity chosen.
Selections are linked to other views of the data. Sorting can
also be applied to any of the other linked views, e.g., multiple
bar charts can be sorted by decreasing similarity from a user-
selected pattern [85], [83]. It can also be used for network
graph. Different colors and pixels are used to represent the
data, emphasizing the relationships between elements. The
similarity matrices explain to which degree the clustering
would change for the next parameter setting. In this kind of
visualization, the user can select a similarity threshold and
algorithm which helps to perceive the dynamic network from

different perspectives.
With regards to graph/network data, networks are directly

visualized as node-link diagrams resulting in clutter [52],
[78], [54]. Standard techniques are used to simplify the
graphs, such as using edge bundling, weighting edges accord-
ing to the linkage, or higher order curves to emphasize path
connectedness. Node-links can be converted to matrix view
with each matrix element storing the edge weight between
the two nodes. The matrix can be visualized directly (with
edge weight mapped to color). The network view provides
an overview of the clustered nodes which have a similar
behavior over time and edges reflect connections between
these clusters.

Visual analytics systems offer direct views of the data (e.g.,
visualisation of the raw accelerometry data (Fig. 3 top) or
abstract views (Fig. 3 bottom) where data has undergone
processing such as dimension reduction to create the inter-
active interface. Throughout our study the essence of visual
analytics is to provide multiply coordinated concrete and
abstract views of data. This allows interaction with parameter
spaces to enable human cognition to play a vital role in
information and knowledge discovery.

Analysts usually change their exploring strategies and
switch between analytical techniques and visualizations to
collect different findings. However, these analytical tech-
niques (black-box methods) might confuse the end-users
or provide results that do not lead to a solution to the
problem, and some of them require user action such as k-
means requiring the assignment of the number of clusters.
To be beneficial in visual analytics, the analysis techniques
should be fast enough in terms of response for efficient
interaction, parameters of the analytical technique have to be
representable and understandable utilizing the visualizations
and parameters have to be adjustable by visual controls [20].

There are numerous challenges associated with visual ana-
lytics system usability and process understanding. To obtain
more confidence, the user should be aware of the source
of data and the transformations that have been applied on
its way through the processing stages (e.g., preprocessing,
analysis tasks and visualization techniques). Rapid feedback
is significant in visual analytics interfaces, and that repre-
sents challenges to various of the domains related to visual
analytics. Due to the complexity of human interaction, evalu-
ating visual analytics systems is especially complicated, and
integrating machine learning algorithms in to these systems
adds additional complexities and opens questions such as
how the model succeeds or determines what a good solution
is, why a model predicts a value, or why a model provides
a classification label which are sometimes beyond of the
scope of interactive visualization issues. Some works such
as [229], [230], [231] shed light on the black boxes of classi-
fication and clustering algorithms and explain the determined
decisions which assist to understand these algorithms and
enable the comparison of different prediction methods. These
questions are very important in order to understand the model
outputs and provide appropriate visual representations and
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interaction techniques.

VI. EVALUATION APPROACHES
A systematic evaluation, controlled by a set of standards,
identifies and validates the degree of achievement or value
of proposed systems, techniques, methods and algorithms.
Since the space of visualization systems design is massive,
Munzner [232], [227] subdivided this complex problem into
four sequential layers that separately solve various concerns,
presenting a nested model for visualization design and val-
idation. At the top level, details of a specific application
domain are considered. Next is the design of data and tasks
abstraction. The following level concerns the design of visual
encoding and interaction, while the last level involves the
design of algorithms.

This research utilizes Munzner’s work [232], [227], which
presents different appropriate evaluation approaches at each
design level, including field / case studies, controlled lab /
user studies, usability studies, heuristic, and algorithms
performance. These approaches were applied to our sur-
veyed papers (summarized in Table 1). At the top level, field
studies or case studies form the most common evaluation
approach, where investigators gather qualitative data through
semi-structured interviews and observing people’s actions in
real-world settings. At the abstraction level, studies or case
studies are also used as qualitative validation to evaluate a
member of the target users by observing and documenting
their use of the deployed system. At the visual encoding
and interaction idiom level, a controlled lab study or user
study is used as an evaluation approach. Through this,
quantitative measurements (e.g. time, errors, quality, and
preferences) are collected as well as qualitative measure-
ments (e.g. questionnaires and qualitative discussion). Also at
this level are usability studies, another qualitative evaluation
approach which aims to prove that the deployed system
is usable. Heuristic evaluation is another, quantitative and
qualitative measurements, validation approach that involves
experts in the field to ensure that the visualization design
does not violate any guidelines used to justify the usability
of a visualization system. At the algorithms design level,
the quantitative evaluation approach is used to validate the
performance of algorithms such as their speed and computa-
tional complexity.

The evaluation approaches which have been applied to our
surveyed papers are classified into five categories adopted
from Munzner’s work [232], [227]: case studies, usability
studies, controlled user studies, algorithm performance and
others. Table 1 summarizes each evaluation approach used
on a surveyed paper, classifying based on years. It should
be noted that the case study approach is most commonly
used in the surveyed papers compared to other evaluation
approaches. We have also noticed from our survey that other
evaluation approaches are also used, such as ground truth
[52].

FIGURE 5. Cross-correlation in frequency space is used to find matching
time-series patterns with low computational complexity. (a) The user can
interact with the cross correlation threshold, (b) and in a linked view see where
the matches occur in the overall time-series. (c) Overplotting allows the user to
inspect matching patterns. The cluster centre is plotted. The user can interact
with the view in (c) to select and “delete” undesirable matches [83].

VII. INTEGRATION OF VISUALIZATION AND ANALYSIS
TECHNIQUES
A. MODEL BUILDING VISUALIZATION

The above processes, visualizations and interactions can
result in a large corpus of labelled data suitable for visual
and statistical interrogation. Additionally, labelled data is
useful for model building, using data mining approaches
as discussed earlier. Such models can be used to aid the
user with further segmentation and labelling of the data
[83], [40], [57], building predictive models for the future
[113], and identifying patterns and behaviour of systems or
individuals in the data [94]. By exposing algorithm choice
through the interface, along with parameters, the user can
play an interactive role in deciding the best approach for
their data [44], as effective algorithms for time series analysis
always require precise choices of approaches and parameters
in order to be able to solve clustering and classification tasks.
We notice from our survey that several interaction methods
are not specific to data only, interestingly, a variety of inter-
active tools are combined to support analysts in algorithm
selection (e.g., [113], [89]), training (e.g., [113], [44]) and
testing (e.g. [113]). Moreover, several systems interactively
provide analysts with a variety of controlling options for time
series analysis tasks such as control algorithms parameters
(e.g., [94], [52], [78], [38], [44]) or control threshold (e.g.,
[52], [83], [40], [44], [37], [95], [35], [88]). For example,
overplotting matched time-series data leads to new interfaces
where direct data selection can accept or reject data from the
view without the need for further model training. Exposing
model parameters to the user allows the understanding of
their inter-relationships and how they impact the algorithm
(e.g., feature detection) performance (Fig. 5).

Visual feedback of the model using the visualizations
and interaction results in the effective capture of domain
knowledge, fulfilling the definition of visual analytics and
including humans in the loop. The models range from pure
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clustering, such as clustering patients on medical records,
which can lead to predictions about how an individual pa-
tient’s condition will evolve [46], to utilizing classification
techniques such as SVM [82], [94]. Such models can be
used to aid the user with further interactive clustering while
representing data samples as discussed earlier.

Choosing the analysis algorithms such as k-means, hi-
erarchical clustering, or the self-organizing map or giving
feedback during the analysis process such as k-means which
requires the user to specify the number of clusters as input
are some examples of the interaction between the end-user
and visual analytics system. Therefore, the implication of
visual analytics and the goals of the end-users on the choice
of analysis algorithms are fundamental and require further
investigation in terms of what kind of visual controls are
required to manage the algorithm and assess the quality of
the proposed solutions side by side with the interactive visual
representations.

B. EMERGING TRENDS
The merger of visual analytics and machine learning offers
many potential opportunities for time series data analysis.
However, a large effort is still needed at the algorithmic
and software levels to help embed fast machine learning
techniques in visual analytics systems. From a performance
perspective, dealing with massive datasets in terms of quan-
tity and speed of data to be visualized and interacted with
in real-time is crucial in visual analytics systems. Therefore,
response times are very important and such factors can play
a major role in an interactive visualization. Thus, developing
fast machine learning for interactive visualization is one of
the open research topics associated with integrating the two
domains.

Also, one of the major technical barriers is that the existent
software tools are highly divided between these two domains;
for example, visualization tools are often written using pro-
gramming languages like C++ or using libraries such as d3js
(a JavaScript library), which are powerful with regards to
maintaining close control over the visualization technique
and user interaction. On the other hand, most of the advanced
machine learning algorithms are usually written using differ-
ent libraries in statistical or programming languages such as
Matlab, R, or Python (Machine learning libraries like scikit-
learn, TensorFlow, etc.), where they aim to learn complex
models from (often large amounts of) data but provide limited
interactive information visualization. Therefore, there is an
urgency to find a standard software environment which can
be used to assist visual analytics developers with integrating
machine learning techniques effectively and efficiently in
interactive visualization systems [10].

Recent visualization research has seen and increased use
of sophisticated algorithms, especially in projection-based
methods which have a stochastic nature [54], [131]. Thus,
the outputs of these algorithms may rely on different set-
tings, e.g. random initialization, which sometimes have major
effects on results and evaluations. These algorithms should

be measured in terms of their robustness, generalizability,
stability analysis, sensitivity analysis, etc. The robustness
of an algorithm concerns its ability to handle any kind of
input. An algorithm’s generalizability sigifies that it can be
generalized into a greater dataset (unknown data) than the
dataset (small known data) used in the training process.
Stability analysis refers to the analysis of errors in numer-
ical computation (if the errors are increased, the algorithm
is numerically unstable, and if the errors are abated, the
algorithm is stable). The sensitivity analysis of algorithms
involves analyzing the alteration of outputs with respect to
the inputs. Therefore, visual analytics developers must take
into account these factors alongside others which may have
major effects on visualization results [7].

Moreover, some machine learning algorithms embedded
within visual analytics systems for time series data are still
part of a relatively young and emerging field, even though
they have received wide attention in the data mining and
machine learning community. To mention but a few, Discrete
Fourier Transform (DFT) and Discrete Wavelet Transform
(DWT) have rarely been used as dimensionality reduction
techniques by visual analytics researchers, while these tech-
niques achieved good results for time series data in the data
mining field. Moreover, some clustering algorithms, such as
the fuzzy clustering methods, and classification algorithms
are currently under-represented in visual analytics works
but are successful in the data mining community, and are
therefore something that visual analytics researchers should
include in their future works.

There are several challenges which we perceive as inter-
esting research directions for combining machine learning
and visualization techniques. Firstly, there is no existing
unified or systematic solution to support the user, which
explains the scarcity of classification algorithms used in the
surveyed papers. Secondly, there is a visualization challenge
in terms of clarifying the reasons behind why such algorithms
demonstrate impressive classification performance.

One interesting potential research direction of combining
the two fields of machine learning and visualization tech-
niques is building user-driven algorithms specifically geared
for a visual analytics approach to overcome difficult chal-
lenges for time series data. Involving users in the process,
through interactive methods, allows them to provide directed
feedback to the system. Formulating a user-centric approach
through combining automated analysis methods and interac-
tive visualization is an efficient approach to visual analytics.
This puts emphasis on the visualization community to apply
visual interfaces to existing algorithms provided by the data
mining community.

Deep learning algorithms (e.g. CNN, RNN and LSTM) are
often perceived as black-box models due to their ambigu-
ity and unclear working mechanisms [233]. Although these
algorithms have been used for time series data by the data
mining community, there is little work on CNN, RNN or
LSTM with visual analytics. This leads to the other interest-
ing potential research direction of combining the two fields,
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as there is no clear understanding of why deep classification
algorithms achieve highly performant results when solving
such a task. Thus, visualization techniques are needed to
explore such complex models as well as illustrate and explain
their internal operation and work mechanisms. This would
allow to gain general insights and obtain an overview of how
to control and improve such models. Efforts have been made
in the field of computer vision to clarify the learned features
of deep learning algorithms on image data. The existing
methods of previous works can be categorized into two
different groups: code inversion (e.g. [234], [235], [236]) and
activation maximization (e.g. [237], [238], [239]). In the field
of visualization, a set of visualizations have been developed
to help machine learning experts clearly understand such
deep complex models (e.g. [240], [241]). Liu et al. [240] have
recently presented an interactive visual analytics approach
which allows for the better understanding, diagnosis, and
improvement of deep CNNs.

VIII. CONCLUSION

This research is considered a comprehensive survey for time
series data, focusing equally on both machine learning and
visualization from the visual analytics perspective. Time
series data can be obtained from different sources which
have been categorized into four types based on the surveyed
papers. During research, we focused on two mining tasks;
clustering and classification. At the beginning, we review
both tasks from the data mining perspective. They achieve
great performance and accuracy when dealing with time
series data. This success led us to review a promising field
where both automated analysis techniques and interactive
visualizations can be combined to easily understand, explore
and analyze large and complex datasets. We cover over 60
papers in detail, which were selected with the criteria that
every paper must involve time series data and visual analyt-
ics, using either clustering or classification tasks. It can be
noticed from the surveyed papers that many visual analytics
works use clustering more than classification. Because of
a lack of label data, keeping humans in the analysis loop
is paramount in order to help users adjust and explore the
influence of different clustering choices during the analysis
process. Visualization and interaction techniques are also
surveyed in the reviewed papers and classified based on
previous literature. Such classifications have been modified
and changed to be compatible with the surveyed papers. The
evaluation approaches of every paper were also studied and
categorized. As a result, researchers can use this review as a
guide for new investigations. In the end, we believe that this
paper is a starting point towards clarifying the major concepts
that have been presented, and provides a valuable guide to
the emerging field of integrating data mining techniques with
visual analytics.
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