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Abstract— We present a novel method to segment the lymph
vessel wall in confocal microscopy images using Optimal Sur-
face Segmentation (OSS) and hidden Markov Models (HMM).
OSS is used to preform a pre-segmentation on the images, to
act as the initial state for the HMM. We utilize a steerable
filter to determine edge based filters for both of these segmen-
tations, and use these features to build Gaussian probability
distributions for both the vessel walls and the background.
From this we infer the emission probability for the HMM, and
the transmission probability is learned using a Baum-Welch
algorithm. We transform the segmentation problem into one of
cost minimization, with each node in the graph corresponding
to one state, and the weight for each node being defined using
its emission probability. We define the inter-relations between
neighboring nodes using the transmission probability. Having
constructed the problem, it is solved using the Viterbi algorithm,
allowing the vessel to be reconstructed. The optimal solution
can be found in polynomial time. We present qualitative and
quantitative analysis to show the performance of the proposed
method.

I. INTRODUCTION

The lymphatic system is vital for maintaining healthy
functionality in the body; fulfilling this task by the transport
of fluids and immunological cells from and to the blood and
interstitial spaces. The lymphatic system at its most basic is a
system of pipes and valves to ensure unidirectional flow. The
vessels are thin walled and not under pressure, so without
the valves it would be impossible to maintain unidirectional
flow.

Confocal microscopy is a method that allows for the
visualization and imaging of 3D volume objects that are
thicker than the focal plane of a conventional microscope
using a point detector, situated in front of the photo-detector.
This serves to attenuate any signals originating outside the
focal region, allowing for “optical slices” to be obtained
through a thick object and stored in a computer [1]. This
optical sectioning is much stronger than the depth of focus
of the microscope; allowing for the objects in the layer of
interest to be in focus, and making the capturing of the
relevant image to the computer trivial. Unlike conventional
microscopy only one point of the sample is illuminated at a
time in confocal microscopy. During operation, a laser beam
scans the object pixel by pixel, line by line and any light
outside of the focal plane is blocked by the point detector.
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This data is then reconstructed by the computer into the
3D image I(x, y, z). As only one point in the sample is
illuminated at a time, building up an image requires scanning
the object over a regular raster (i.e. a rectangular pattern of
parallel scanning lines). The thickness of the focal plane
is defined by the inverse of the square of the numerical
aperture of the objective lens, but can also affected by the
optical properties of the specimen and the ambient index
of refraction. Figure 1 shows an example image of a lymph
vessel obtained using a confocal microscope. There are many
examples of 2D segmentation carried out on confocal images,
such as [27] but in our method we propose using object
tracking to provide a method to segment the 3D volume.
Object tracking is becoming a useful tool in the medical
field [7], [8], [9], as well as its traditional use in a variety
of different applications[5], [6], [2], [3], [4]. The object can
be represented in various ways (points, geometric shape, and
contours for example). Some, such as geometric shapes, are
more suitable for representing rigid objects; whereas tracking
the object contour can be used to segment a complex and
nonrigid object.

In medical imaging, identifying 3D surfaces is of utmost
importance. It is often the case that this is done by using
a 2D method, as a great deal of work has been carried out
in this area [12], [11], [13], [14], [15], [16] but when these
methods are extended to segment a 3D volume, usually by
looking at a series of slices, contextual information between
the layers that make up the volume is often lost. There have
been attempts to extend these methods into 3D [17] but
these have often proved to be computationally expensive.
Another problem with utilizing 2D methods is that they
can produce local minima. One method for 3D segmenta-
tion that allows for a global minimum is Optimal Surface
Segmentation(OSS) [10]. OSS provides a polynomial time
method for simultaneously providing a global segmentation
of a 3D volume with minimal or no user intervention, and
in our method forms the basis of determining the initial
segmentation, used to initialize the HMM.

The Hidden Markov Model (HMM) is a stochastic model,
in which over a finite set of hidden states, the Markov
property can be assumed to be satisfied. HMMs have been
utilize in a great variety of fields, such as speech recognition
([20], [19]) , classification ([18], [5]) and tracking ([21],
[22]). HMM has been used in the medical field both for
segmentation ([5], [23])and image processing ([24]). In this
paper, we propose multi-border segmentation and tracking
method based on the HMM, in order to delineate the inner
and outer vessel borders in lymphatic images with the



Fig. 1. Image on far left shows original image, the center after VED
has been applied, and the image on the right shows the image after
transformation

presence of noise and occlusions.

II. PROPOSED METHOD

In our proposed method, we first apply preprocessing
steps to the image. These involve applying Vessel Enhancing
Diffusion (VED) to the image to reduce the noise and help
lessen the detrimental effect of the occluded areas. VED
has been shown to improve segmentation results of vessel
structures ([25]). The images were then transformed to cross
sections, aligned and scaled to uniform dimensions to aid the
training. The stages of pre-processing are shown in Figure 1.
Once the images were prepared, OSS was carried out, to be
used as the initial segmentation for the HMM segmentation
stage.

A. Graph Construction

The volumetric image we wish to segment, now comprises
of a series of slices through the lymph vessel. In order to
find the optimal surface, we transform these from Cartesian
to Polar coordinates. Each slice representing the (x, z) plane,
and position of that slice in the stack gives the y axis, as if
looking at a topographical landscape feature. Our image can
therefore be represented as a 3D matrix I(x, y, z). The size
in any given dimension can be represented as X,Y and Z.
The surface can thusly be defined:

I : (x, y)→ I(x, y), where :

x ∈ x = {0, ..., X − 1},
y ∈ y = {0, ..., Y − 1}, and
I(x, y) ∈ z = {0, ..., Z − 1}

(1)

In this way, any given surface I intersects with exactly
one voxel of each column parallel to the z-axis. We can
therefore construct a node-weighted graph G = (V, E) can be
constructed for I. In the graph G each voxel v is connected to
column-wise with its bottom neighbor, with its neighboring
voxels in the subsequent layer (with ∆ deflection), and with
neighboring columns (with δ deflection) with ∞ cost; the
final voxel in each column has a bidirectional arc to its
neighbor.

B. Cost Term

For every node V(x, y, z) ∈ V in the graph represents one
voxel in I(x, y, z) ∈ I with a given weight w(x, y, z). This
weight, w, can be derived from a steerable edge based filter
applied to the polar transformed image. The steerable filter is

a linear combination of differentially orientated instances of
a base filter. A set of n order derivatives of Gaussian filters
Gn(x, y) in different orientations are used to highlight edge
features along a border. These can be defined as follows:

Gθn(x, y) =
M∑
j=1

kj(θ)Gθn(x, y) (2)

where Gθn(x, y) is the rotated version of Gn(x, y) at θ orien-
tation, and kj , 1 ≤ j ≤ M are interpolation functions. Due
to the derivatives in the direction being invariant, regardless
of rotation, steerable filters are effective at highlighting
orientated structures, in this case the edges, than other filter
types, especially in situations such as in the lymph images
where there is a lot of noise [26]. The cost of any voxel v
can be given as wv = g(v) where g is the edge based cost
derived from the steerable filter. The total energy cost E for
every voxel in the s− t cut can therefore be represented by:

E =
∑
v∈V

w(v) (3)

C. HMM Segmentation

The results from the OSS are used to set the initial
state of our HMM. We trained the HMM with 1024 image
slices from 2 confocal samples, using the unraveled polar
coordinates for the voxels in our image. It is computationally
very expensive to track all the border points in the polar
coordinates, but in our case, this is unnecessary. We used
an RBF to approximate the border of interest, with the
hidden states of the HMM referring to the RBF centers. The
border was evenly sampled into M points and from each of
these a line segment is extended either side, perpendicular
to the border’s tangent at that point, with line segments each
having K points, with the index of the RBF centers denoted
φ = 1, ...,M and the index along each of these normal lines
being denotes as ψ = 1, ...,K where K is an odd integer.
Our initial RBF centers are derived from the result of the
OSS, and are located at the center of the normal line ψ =
(K+1)/2. The steerable filter is used to determine the edge,
in this case the vessel wall, and the emission probability is
computed using Gaussian distributions calculated from the
image observation. Our transmission probability is learned
from the training set. In our proposed HMM, we denote
all possible sequences of hidden states as Q = {q} where
q = {q1, ..., qφ, ..., qM} is one of the possible state sequences
(corresponding to possible RBF center locations) and qφ is
the state being on the normal at φ. The observations O
of the HMM are extracted from the normal lines as such
that O = {o1, ..., oφ, ..., oM}, and the HMM is specified
by the probability measures λ = (A,B, π). Let Oφ =
{oφ,1, ..., oφ,ψ, ..., oφ,K} be the set of features along the
normal φ and oφ,ψ be a feature extracted from point ψ on
the line, thusly P (oφ,ψ | FG) and P (oφ,ψ | BG) are the
probabilities of the feature being foreground or background
respectively. The state-emission probability can therefore be



Fig. 2. Results for the inner wall of the lymph vessel. Light blue is the
proposed method, red OSS only and green the ground truth

defined as:

P (Oφ | qφ) ∝ P (oφ,ψ | FG)
∏
ψ 6=qφ

P (oφ,ψ | BG) (4)

We then use the Viterbi algorithm, which is a refinement of
the Baum-Welch algorithm. The Baum-Welch algorithm uses
Expectation-Maximization method to compute the maximum
likelihood in the HMM the probability of moving from a
state i at normal φ to new state j at normal φ + 1, where
1 ≤ φ ≤ M and 1 ≤ i,j ≤ K between states q with two
normals φ and φ+ 1 as:

ξφ(i, j) = P (qφ = i, qφ+1 = j | O, λ) (5)

In the Viterbi algorithm, the sequence of states q∗ can be
efficiently found given the image observation Ot and the
HMM model λ:

q∗ = argmax
q∈Q

P (q | Ot, λ). (6)

III. RESULTS

The results were drawn from 3,072 slices from 6 different
experiments, separate from those used in the training set. Fig-
ure 2 and Figure 3 show the results obtained for segmentation
of the inner and outer walls respectively, before conversion
back from polar to Cartesian coordinates. The results show
the improvement of the HMM method (blue) over the OSS
alone (red). The results for the outer wall are significantly
better than those for the inner. In both methods (though less
so in the proposed method), this is because the valve extends
from the wall, into the lumen, this makes it hard to even
manually label the slices where the valve originates. Our
proposed method shows a significant improvement in these
regions, as well as those with very poor contrast or missing
areas. because the training helps the segmentation to cope
with interference and gaps in the edge.

Table I provides a quantitative comparison between the
proposed method and the results obtained using OSS alone.

Fig. 3. Results for the outer wall of the lymph vessel. Light blue is the
proposed method, red OSS only and green the ground truth

The proposed method clearly benefited from HMM modeling
and produced consistently better results.

In Figure 4, we show some typical results of segmentation
of both inner and outer walls of the vessel using the proposed
method. It can be seen that by combining optimal surface
segmentation with HMM, a coherent and smooth segmenta-
tion of both boundaries is achieved in the presence of noise
and frequent weak edges.

IV. CONCLUSIONS
Our results show that our proposed method is a reliable

means to automatically segment bother inner and outer
surfaces of the walls of the lymph vessel, allowing for it
to be visualized in 3D. By using OSS and HMM, we are
able to find a global minimum to the segmentation problem
in polynomial time without user intervention despite the low
quality, and diffuse nature of the confocal images taken from
the lymph vessels.
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