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ABSTRACT
In this paper, we present a graph based segmentation method
that only requires a single point from user initialization.
We incorporate a new image feature into the segmentation
scheme. It is derived from a vector field that takes into ac-
count gradient vector interactions across the image domain,
and has the simplicity of edge based features but also proves
to be a useful region indication in two-level segmentation.
Effective vector field diffusion is proposed to deal with exces-
sive image noise. Based on a single user point we unravel the
image and transfer the object segmentation into a height field
segmentation in polar coordinates, which in effect imposes
a star shape prior. The search of a minimum closed set on
a node weighted, directed graph produces the segmentation
result. Comparative analysis on real world images demon-
strates promising performances of the proposed method in
segmentation accuracy and its simplicity in user interaction.

Index Terms— Graph cut, interactive segmentation, op-
timal surface segmentation, star graph

1. INTRODUCTION

Interactive image segmentation is of increasing interest in re-
cent years due to their practical use in various applications,
e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Among these meth-
ods, graph cut technique [4, 6] is a common approach to in-
corporating user interaction in two-level segmentation due to
its guaranteed polynomial time efficiency in reaching global
minimum. The min-cut/max-flow algorithms, widely used
in realizing the cut [4, 6, 12, 13, 14], are formulated by en-
coding the user interaction term (data) and the regularization
term (prior) where the augmenting path algorithm is found
superior for computer vision problems [13]. User interac-
tions can help model and update the object/background in-
formation so that a stable representation of the objects of in-
terest can be obtained and accurate segmentation is therefore
achieved. However, conventional graph cut methods are with
little shape constraints and greatly depend on user interac-
tions; thus, the extracted shapes are sensitive to initial seed
selections. In addition, extensive manual interferences may
significantly reduce the efficiency of segmentation. Consid-
erable effort has been made to deal with these limitations,

particularly the use of shape prior for reducing user interac-
tions. Object specific shape prior [15] has been shown to be
a powerful approach whereas incorporating generic priors for
general image segmentation remains a challenging task. An
elliptical shape prior in [16] is used to iteratively refine object
extraction while a blob-like shape prior is adopted in [17, 7].
However, these shape priors are too restrictive for general im-
age segmentation. Vicente et al. in [8] extended the grab
cut [3] to improve its performance towards thin and elongated
structures, at the cost of much greater user interaction. Em-
bedding user input into a distance function to regularize graph
cut [18] has also been found to improve the accuracy, the de-
gree of which may largely depend on its user initialization.
Recently, the star-like shape assumption is proposed in [10]
to provide a generic shape prior for graph cut segmentation.
Only a single user input is imposed and a global optimizer is
obtained subject to the star-like prior. To avoid bias towards
small segments, a length-based “balloon” force term is used
in the cost function, which can be intractable. Very recently,
this method is extended to deal with more complex shape by
allowing more user input [11].

In this work, we adopt a similar assumption as in star
graph [10], that is given a star point, often the center of an
object, the object boundary does not occlude itself from the
star point. This assumption does not apply to all objects, but is
applicable to a large number of real world objects as demon-
strated in [10]. Note, the objects do not have to be convex, and
“star” is a more generic term used to refer to this shape prior
than assuming the objects have to be star-like. But, instead
of constructing the graph in the original image domain, we
unravel the image into polar coordinates and carry out a dif-
ferent graph construction. The star prior is hence translated to
the assumption that object boundary in the polar coordinates
is unfolded, but by doing so, we remove the bias towards
shorter cut and avoid the dedicated process to work out the
graph path from star point to each image pixel. This trans-
formation also allows us to apply the optimal surface graph
construction [19], whose global optimality is guaranteed and
it can be searched without user interference. Moreover, we
incorporate a novel image feature to the cost function, instead
of merely image intensity or local gradient. The image fea-
ture is derived from the gradient vector interaction across the
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image domain and possesses the characteristics of regional
features. Another benefit is that diffusion can be effectively
taken place in its vector field to deal with image noise. We
show this image feature, by combining with optimal graph cut
and star prior, provides promising segmentation performances
with minimal user interaction, that is a single user point. In
the following section, we describe the details of the proposed
approach both in modeling and implementation. The exper-
imental results are presented in Section 3 and the paper is
concluded in Section 4.

2. PROPOSED METHOD

2.1. Image feature
In graph cut, the cost function can be generally categorized
as edge based and region based. Edge based cost functions
assume that object boundary is largely collocated with image
intensity discontinuity, and typically use derivatives of image
intensity function as a local estimation of likelihood of an ob-
ject boundary. Region based ones are usually non-edge based,
e.g. piecewise constant assumption. Quite often, image in-
tensity values are directly used in general image segmenta-
tion. Although graph cut algorithms provide global optimal-
ity in two-level segmentation, a reliable but also generic im-
age feature that does not assume strong image prior is desir-
able for general segmentation that is useful for, for instance,
object recognition. We consider intensity discontinuity per-
haps is the least constrained and most widely applicable ob-
ject boundary estimation. Its performance can be easily com-
promised by image noise, smooth varying intensity at object
boundary, and so on. These shortcomings are essentially be-
cause it is a local measurement and it does not take into ac-
count interactions among image gradient vectors. As an ex-
ample, a region with relatively large image gradient magni-
tude by varying gradient directions suggests that it is unlikely
a location of object boundary, despite their large magnitude.
On the contrary, weak gradient vectors that are aligned to each
other suggest greater likelihood of object boundary than what
the magnitude itself suggests. Hence, we present a gradient
vector field that is a result of global interactions among orig-
inal image gradient vectors, and we show that its circulation
density can be used as a reliable image feature for graph cut.
The zero-crossings of this circulation density provides a better
indication of the location of object boundary, and the mag-
nitude of oscillation at zero-crossings indicates the strength
of object boundary presence. The signs (positive and neg-
ative) of circulation density actually indicate the foreground
and background. The derived gradient vector can also be dif-
fused to produce more coherent circulation density. The im-
age feature is directly derived from edge based assumption,
but resembles closely to region based methods.

Let ∇iI = f Îx and ∇jI = f Îy denote the two com-
ponents of the image gradient ∇I in the image coordinates
(i, j), respectively, i.e. ∇I = (∇iI,∇jI)

T where f is edge

map (magnitude). We carry out the convolution computation
on both components with the kernel k(x) = m(x). More-
over, we choose the magnitude function m as an inverse of
distance, i.e. m(r) = 1/rζ with ζ = 1. Since we further
compute the spatial derivatives of the convolution results, the
spatial decay is actually raised to power of two, i.e. ζ = 2.
Thus, the result of this convolution process can be expressed
as: Ei(x) = ∇iI ∗ k(x) =

∑
s̸=x

∇iI(s)
Rxs

=
∑

s̸=x f(s)
Îx(s)
Rxs

,

Ej(x) = ∇jI ∗ k(x) =
∑

s̸=x
∇jI(s)

Rxs
=

∑
s̸=x f(s)

Îy(s)

Rxs
,

(1)

where Rxs is the distance from x to s in the image plane
and E = (Ei, Ej) denotes the resulting gradient convolu-
tion field. Due to the smoothing effect when applying the
kernel function, the original image gradient vectors have ex-
tended their influence from immediate vicinity of edge pixels
to much larger neighborhood. In fact, the computation in (1)
is across the whole image domain.

Next, we compute the circulation density, i.e.

B = ∇ ·E(x) = ∇ · (Ei, Ej) = ∇× (−Ej , Ei). (2)

It can be shown that this circulation density has an intrin-
sic link to the magnetic field used in the MAC model [2]
in a variational framework. Specifically, when ζ = 1, B
is equivalent to the third and only effectively component
of the magnetic field in the MAC model. Hence, the posi-
tive and negative values of this circulation density indicate
foreground/background and background/foreground. The
zero crossings of the circulation density would indicate the
location of object boundaries. In particular, the proposed
circulation density method is a generalization of the effective
component used in MAC. Moreover, we can refine the com-
putation of this circulation density by performing efficient
Laplacian diffusion in the extended gradient vector field to
overcome, for instance, noise interference.

Note that the gradient vector field is actually along the
edge direction so substantial diffusion in the components can
result in significantly improved boundary description. There
are various diffusion strategies for this smoothing task. For
implementation convenience and less parameter intervention,
we use an isotropic/Laplacian diffusion scheme in this paper,
which is carried out by solving the following Euler equations.{

∂
∂tEi = p(Ei)∆Ei − q(Ei)(Ei − Ei),
∂
∂tEj = p(Ej)∆Ej − q(Ej)(Ej − Ej),

(3)

where Ei(0,x) = Ei(x), Ej(0,x) = Ej(x), and p(y) and
q(y) are given as:

p(y) = exp(−|y|f/K), q(y) = 1− p(y)), (4)

where f = |∇I| and K is a constant.

2.2. Graph construction
The image is unraveled from the original Cartesian coordi-
nates to polar coordinates based on a user specified origin,
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Fig. 1: Top row: original image, MAC [2] result, and s − t
cut [4] result. Bottom row: star graph [10] result, result of the
proposed method without image feature diffusion, and result
of the proposed method with diffusion.

which is usually the center of the object of interest. We thus
assume that the object boundary intersects with each column
of pixels once and once only, which is equivalent to the star
graph assumption [10] that object boundary does not occlude
itself from the single user point in the Cartesian coordinates.
However, transforming the image into polar coordinates elim-
inates the need for a length penalty term in the cost function
to avoid bias towards shorter cut. It also provides a regular
graph grid that is easy to work on, in contrast to the nonuni-
form graph structure in star graph method [10]. It is hence
natural to adopt the optimal surface method, proposed in [19],
to construct the graph as it guarantees global optimal.

For the constructed graph G = ⟨V,E⟩, each node V (x, y)
corresponds to a pixel in 2D image I(x, y). There are two
types of arcs included in the graph G: intra-column arcs
and inter-column arcs. For intra-column, every node V (x, y)
where y > 0 has a directed arc to the node V (x, y − 1).
For inter-column, each node V (x, y) links to a node V (x +
1,max(0, y −∆)) with a directed arc, where ∆ is a smooth-
ing factor. Similarly, node V (x + 1, y) is established to
connect V (x,max(0, y−∆)). The last row of the graph is to
connect each other of the nodes so as to keep a closed graph.
Fig. 2(a) provides an illustration of this directed graph on
two columns. Fig. 2(b) shows the unravelled image given in
Fig. 1. Image cost is then assigned to the nodes of this di-
rected graph, which is then transformed to an edge weighted
graph with the upper interface of its minimum closed set from
bottom of the graph corresponds to an optimal cut.

2.3. Cost function and graph cut
Boundary based cost function is used in our solution scheme,
whose energy is described as E =

∑
V ∈S Ĉ(x, y) where

Ĉ(x, y) denotes the normalized cost function (Ĉ(x, y) ∈
[0, 1]) and S is a path in the derived directed graph. As
aforementioned, the zero-crossings of the circulation density
feature computed from gradient vector interaction indicate
the location of object boundary. The degree of circulation

p q

∆ = 3

(a) (b)

Fig. 2: (a) An illustration of inter-column and intra-column
arcs. (b) An example unravelled image and its segmentation
result.

density oscillation at the zero-crossing suggests the strength
of object boundary. A direct assignment of circulation den-
sity to the graph as nodal cost would be inappropriate, since
the minimum or maximum of circulation density is not an
indication of either location or strength of object boundary.
However, a simple transformation, for instance computing
its gradient magnitude, can be applied. Since the decay of
circulation density from object boundary is exponential, a log
transformation can be added in order to avoid extreme values
to be assigned to the graph, i.e. C = −log|∇B|. Each graph
node is then weighted by a value representing its rank to be
selected in the minimum closed set graph where the arc costs
between graph nodes are infinitive. The weight of each graph
node is assigned as follows:

ω(x, y) =

{
C(x, y) if y = 0,
C(x, y)− C(x, y − 1) otherwise.

(5)

where C is the cost function and ω the weight for each node
in the directed graph, which the weighted nodes can be fur-
ther decomposed into nonnegative and negative sets. Accord-
ingly, the minimum closed set can be obtained by the s−t cut
method where the source s is to connect each negative node
and every nonnegative node is connected to the sink t. The
interface, corresponding to the object boundary, is presented
by solving this s − t cut problem. Fig. 2(b) shows an exam-
ple of segmentation in the polar coordinates and its result in
Cartesian coordinates is given in Fig. 1.

3. EXPERIMENTAL RESULTS

The proposed method was tested on various real world images
and was compared against a number of segmentation tech-
niques, including MAC model [2], s − t graph cut [4], and
star graph [10]. Due to lack of space, the comparison with
MAC and conventional graph cut is briefly presented, and our
method is mainly compared against star graph method, which
is mostly close to the proposed method. In all cases, the star
graph and the proposed method were using the same user ini-
tializations. We found that the balloon force in the star graph
method has a significant impact on its segmentation result.
Hence, multiple runs were carried out for star graph, follow-
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ing the careful parameter selection according to the sugges-
tion by the authors in [10], and the best results were presented
here.

In Fig. 1, the MAC model with the diffused magnetic field
produced a reasonable result, but it under-segmented the ob-
ject due to large variations at the bottom half of the object.
The fact that a gradient descent optimization was used also
suggests that it may be trapped at a local minima. The s − t
cut required the user to specify foreground and background
in order to assign cost function and establish terminal links.
Its result however was not satisfactory due to varying image
intensity. Star graph method, actually affected by the textured
background, over-segmented the object. On the other hand,
the proposed method without diffusion achieved reasonable
result, which was further improved by performing image fea-
ture diffusion. The user initialization for both star graph and
the proposed method is minimal, i.e. a single point.

Fig. 3 provides typical comparative results of the pro-
posed method against the star graph method. The original
images are shown in the first column (a), followed by results
of star graph (b) and results of the proposed method (c). The
testing images have varying degrees of difficulties, such as
weak edges, nonuniform intensity, textured appearance, and
cluttered background. Albeit careful parameter tuning with
the star graph method, it tends to under-segment objects in
the presence of weak edges and over-segment when objects
are textured. In fact, this is due to the use of the intractable
“balloon” force that is for dealing with the bias issue in the
star graph method. In contrast, by effectively taking the im-
age feature, the proposed method achieved consistently supe-
rior performance with the same user initializations. For fur-
ther demonstrating the effectiveness of the proposed method,
another eight examples using the proposed method are pre-
sented in Fig. 4. Note that our method had some difficulties
in the last two examples in Fig. 4 because their thin and long
structures posed challenge to our image unraveling strategy.

4. CONCLUSIONS

We propose a graph based segmentation that requires minimal
user interaction. Its cost function is based on a novel image
feature that is derived from global interactions of image gra-
dient vectors. Diffusion scheme could be applied to further
refine the features in order to produce more coherent segmen-
tation. Preliminary comparative analysis on real world images
showed promising performances. The method may be further
extended to deal with long, thin structures, e.g. the last two
examples shown in Fig. 4. Combining Dijkstra graph to ex-
tend the segmentation method may be able to tackle such is-
sues. In addition, considering the effectiveness of segmenting
the images with textured background, the proposed method
may be further applied to deal with some segmentation diffi-
culties in specific medical image modalities such as Optical
Coherent Tomography, which the traditional methods are of-
ten stuck in serious artefacts/noise in the images.

(a) Original Image (b) Star Shape Method (c) Proposed Method

Fig. 3: Comparison results for various images. Column (a):
Original Image; Column (b): Results using star graph [10] ;
Column (c): Results using the proposed method. The green
dots indicate the user initializations.

Fig. 4: Further examples of the proposed method.
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