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ABSTRACT
This paper proposes an adaptive denoising method that can
significantly reduce Rician noise in magnetic resonance imag-
ing (MRI). We use a Rayleigh kernel in the denoising pro-
cessing of self-snakes instead of the Gaussian kernel that is
usually used. The Rayleigh kernel is adaptively constructed
according to the estimated standard deviation of Rician noise
in images. The numerical implementation is carried out
by applying the level-set techniques with a semi-implicit
scheme. Experimental results in both synthetic and real im-
ages demonstrate the effectiveness and advantages of the
proposed method in comparison with the traditional methods.

Index Terms— MRI, denoising, self-snakes, Gaussian,
Rayleigh

1. INTRODUCTION

In magnetic resonance imaging (MRI), the raw signal is
acquired in a complex space which is corrupted by white
Gaussian noise. For presenting signal, the complex data
is transformed to a magnitude image and then the Rician-
distributed noise is generated from both real and imaginary
parts [1]. This Rician noise can significantly affect the quan-
titative analysis of MRI images, particular in the case of
Diffusion-Weighted MRI (DW-MRI), where the nature of
data acquisition is more susceptible to Rician noise because
higher water anisotropy along tissues produces progressively
lower intensities in images. Although noise can be reduced by
averaging multiple acquisitions during acquisition processes,
this is time-consuming and may not be a suitable alternative
in clinics, particularly in high angular resolution DW-MRI
where the number of acquired gradient directions can come
to hundreds and may result in prohibitive scan durations.
Thus, post-processing denoising techniques have been exten-
sively employed in MRI and then a variety of methods have
been proposed to restore the true underlying signal given a
noisy image over the years.

Generally, most denoising methods are based on the sig-
nal averaging principle, which may be the stochastic meth-
ods based on statistical strategy or the deterministic methods
based on variational formulation [2]. In this paper, we fo-
cus on discussing the application of a variational technique in
MRI image denoising. Variational methods have been found
effective in various applications, e.g. image segmentation

[3, 4]. In principle, the variational techniques of image de-
noising are constructed in a continuous domain by applying
a corresponding partial differential equation (PDE) solution
scheme, which the seminal idea was from the anisotropic dif-
fusion method proposed by Perona and Malik [5]. This de-
noising formulation can reduce noise at a faster rate and avoid
the problems such as edge blurring in comparison to other
schemes [2]. Thus, numerous PDE-based methods have been
proposed by applying different theoretical ideas for dealing
with various image modalities such as mean-curvature filter-
ing, total variation and self-snakes [2, 5, 6]. In MRI, this
denoising formulation has been used to perform anisotropic
smoothing, diffusion profile restoration and DW-MRI image
denoising [7, 8, 9]. However, such denoising formulation typ-
ically imposes certain models on local image structures that
are often too simple to capture the complexity of anatomical
MRI images [10]. In particular, a Gaussian smoothing ker-
nel is usually employed in relevant solution schemes, which
does not actually respect the nature of noise distribution in
MRI images such as the Rician distribution. These methods
could be reasonable only when signal-to-noise ratio (SNR) is
greater than 3 where Rician noise is approximated as a Gaus-
sian [1]. However, sometimes the SNR in MRI images is quite
low because a considerable amount of noise is presented in
acquisition processes. On the other hand, for enhancing and
denoising in images, self-snakes [6], as a typical PDE-based
method, was firstly induced from the mean curvature motion
that the auxiliary level-set function is the image itself. It can
effectively deal with the Gaussian noise by using a Gaussian
smoothing kernel. But, self-snakes has not been applied to
MRI images so far because the inherent Rician noise can-
not be appropriately removed by a Gaussian kernel. In our
method, we propose to use a Rayleigh kernel instead of a
Gaussian one in the denoising process of self-snakes. Fur-
thermore, by constructing a Rayleigh kernel in terms of the
standard deviation σ of the estimated noise in images, the de-
noising process can be adaptive to images so as to improve its
effectiveness. For demonstrating the performance, the pro-
posed method is applied to both synthetic and real images.
The traditional methods, self-snakes with the Gaussian kernel
and the non-local method (NLM) [11], are employed to do the
performance comparison.

In the following section, we introduce the proposed
method, together with the presence of the numerical imple-



mentation; the experimental results are presented in Section
3; finally, the paper is concluded in Section 4.

2. METHOD

2.1. Self-snakes
Self-snakes [6] has been proposed for image denoising (or en-
hancement), which is a specific variant of mean curvature mo-
tion (MCM). It can be directly derived from the geodesic ac-
tive contours (GAC) [2] by assuming the auxiliary level-sets
function u to be the image I . The image evolution equation
can then be described:

∂I

∂t
= ∥∇I∥div(g(∥∇Iσ∥)

∇I

∥∇I∥
), (1)

where g is a positive decreasing function (stopping function)
and Iσ is a smoothing version of the image by convolving a
Gaussian kernel.

2.2. Denoising principle and Rayleigh smoothing kernel
The inherent denoising idea behind eq. (1) is to carry out
a Gaussian filtering in a nonlinear way, removing the noise
while allowing the preservation of significant image features,
such as boundaries and corners [2]. This denoising technique
has two aspects of the methodology:

• Smoothing strategy: inside the regions where the gra-
dient magnitude is weak, so eq. (1) acts like the heat
equation, resulting in the simple isotropic smoothing (a
Gaussian convolution).

• Preserving strategy: near the region’s boundaries where
the gradient magnitude is large, the motion of the image
level-set is ’stopped’ and the edges are preserved.

In eq. (1), Iσ = Gσ ∗ I , it is the Gaussian convolu-
tion and performs local averaging, where the standard devi-
ation σ indicates the level at which averaging is being carried
out. Therefore, Iσ is the smoothing output at the level σ and
it can be intuitively interpreted that features of size smaller
than O(σ) have been smoothed significantly as noise and only
those features of size larger than O(σ) are still readable in
Iσ . Furthermore, in the frequency domain, a two-dimensional
Gaussian kernel can be shown in Fig. 1(b) and it is a low-pass
filter that inhibits high frequencies. The denoising process is
to smooth a pixel with a weighted average of the neighbour
pixels by convolving with the Gaussian kernel. However, this
smoothing is isotropic; it is not associated with the nature of
image noise, and the performance is the same in all directions
[2]. For Rician noise in MRI, such as shown in Fig. 1(a), the
noise is inhomogeneous and the Gaussian smoothing will not
be effective as that in the case of the Gaussian noise. Thus, an
anisotropic smoothing strategy will be desirable.

Due to image quality greatly depending on acquisition
processes in MRI, we assume that the noise level for a given

sequence should be constant on the same scanner in this study,
which is similar to the assumption in [12]. Thus, we use the
noisy regions extracted from the background of MR images
for estimating an average level of noise over all images. In
addition, because Rician is a Rayleigh distribution in back-
ground where the signal is usually considered as zero, we use
a Rayleigh distribution in background as the estimate of noise
distribution in images,

Rσ(x) =
x

σ2
exp{− x2

2σ2
}, x > 0, (2)

where the standard deviation σ is estimated by the method in-
troduced in [13]. Fig. 1(a) is the background in a real image
and its histogram is shown in Fig. 1(d) as a typical Rayleigh
distribution (σ = 34). Considering the anisotropic property
of Rician noise in MRI images, an anisotropic kernel can per-
form better than an isotropic one by inhomogenously smooth-
ing the surrounding artefacts. Hence, we use the Rayleigh
distribution (eq. (2)) to construct an anisotropic smoothing
kernel for smoothing the image in eq. (1) instead of the Gaus-
sian kernel. Eq. (1) can be expressed as follows:

∂I

∂t
= ∥∇I∥div(g(∥∇IRσ∥)

∇I

∥∇I∥
), (3)

where IRσ is to smooth the image by convolving with a
Rayleigh kernel with the standard deviation σ.

The anisotropic action of the Rayleigh kernel in eq. (3)
can be interpreted in the frequent domain. Let F [I](ω) de-
note the Fourier transform of image intensity I . The Fourier
transform of the convolution by a Rayleigh with I can be de-
rived as follows:

F [Rσ](ω) =

√
1 +

π

2
σ2ω2exp{−σ2ω2

2
}exp{iϕ}F [I](ω)

(4)
where ϕ = arctan(−

√
π
2σω). This result (eq. (4)) of

the Fourier transform indicates the frequency response of a
Raleigh convolution filter, i.e. its effect on different spatial
frequencies. Fig. 1(e) illustrates the frequency response of a
Rayleigh filter (magnitude

√
1 + π

2σ
2ω2exp(−σ2ω2

2 )) with
σ = 34. The spatial frequency axis is marked in cycles per
pixel and it shows that no value above 0.4 has a real meaning.
This demonstrates that the convolution is a low-pass filter and
the anisotropic action will be performed along the phase ϕ.

In general, the smoothing idea is to use this Rayleigh dis-
tribution as a ‘point-spread’ function and this can be achieved
by convolution with a Rayleigh kernel. In practice, we need
to provide a discrete approximation to the Rayleigh function
for performing the convolution since the image is described
as a collection of discrete pixels. Due to its distribution being
concentrated around the maximal point x = σ, the Rayleigh
distribution is effectively approximate to zero when beyond
the interval [σ/4, 2σ]. We illustrate an example of Rayleigh
kernel (σ = 34) in Fig. 1(c), which shows anisotropic prop-
erty rather than a Gaussian kernel’s isotropy in Fig. 1(b). In



Fig. 1. Riacian noise in a real MR image (a) and its intensity distribution (d);
the Gaussian kernel (b) and the Rayleigh’s kernel (c); (e) shows frequency response
of Rayleigh filter (σ = 34).

the following, we call this self-snakes using the Rayleigh ker-
nel as the Rician self-snakes and that is with the Gaussian
kernel as the Gaussian self-snakes.

2.3. Semi-implicit scheme and numerical implementation
For numerical implementation, a semi-implicit scheme [10]
is employed, which is much faster and more efficient than
the traditional explicit scheme. In our numerical implementa-
tion of the iterative approximation, the primary steps include
discretizing the diffusion equation eq. (2), forming a semi-
implicit linear system and developing an iterative approxima-
tion scheme. Eq. (2) is then discretized as given in the fol-
lowing formula:

In+1 =
1

2

∑
l∈{x,y}

(I − 2τAl(I
n))−1In (5)

where Al(u
n) = (âijl(u

n)) is the intermediate numerical
matrix in the iterative process that can be expressed in detail
as follows.
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where Nl(i) is the neighbor point in l ∈ {x, y} direction.

3. EXPERIMENTAL RESULTS

For validating the performance, we apply the proposed
method to both synthetic data and real data with various
Rician noise levels. The quality of image restoration was
assessed in terms of SNR according to actual situation. The
SNR is estimated as the mean signal in the image divided by
the σ of the background noise. The σ value is estimated based
on measuring the proximity of the Rician toward Rayleigh or
the Gaussian. For accurately assessing image quality, we es-
timate SNRs on the background and foreground of an image
separately similar to the methods in [12, 14]. In our scheme
the four rectangular regions in background are selected for
averaging the calculations and the maximised rectangular

region in foreground is selected according to actual images.
The standard deviation used in the kernels is named SD in the
following.

3.1. Results on synthetic data
We chose an image (Fig. 2(a)) and corrupted it with the Ri-
cian noise of σ = 50 (Fig. 2(b)). For examining the SD
sensitivity in the Rayleigh kernel, we applied the proposed
method with various kernel SD values in Fig. 2(b) (30 iter-
ations). Fig. 2(c) shows that the performance will be best
at SD = 3σ = 150 by considering the SNRs in both back-
ground and foreground. However, Fig. 2(f) present a over-
smoothing image using SD = 3σ. Similarly, the edge is
slightly blurred in Fig. 2(e), which the SD is 2σ. Fig. 2(d)
shows that the edge can preserve well although the SNR is not
as good as that in Fig. 2(e-f). Thus, for balancing the smooth-
ing effect and actual performance of the proposed method, we
will use SD = σ in the experiments.

Fig. 2. (a) the original image, (b) the corrupted image with the noise of σ = 50,
(c) the SNR results of performing our method with various SD values in the background
and foreground of (b), (d-f) are the results using different SD values.

For further validating the proposed method, we generated
a series of noisy images from the noise-free image, Fig. 2(a),
with different σ (10, 20, 30, 40, 50, 60, 70, 80) of Rician
noise. Our method, NLM and the Gaussian self-snakes have
been applied to perform the denoising processes on these im-
ages. For the sake of consistency and fairness, the same num-
ber of iterations (30) and the SD value (=σ) in the relevant
kernels have been used in the denoised methods. Fig. 3(a-b)
illustrates that the Rician self-snakes performs significantly
better than the other two methods in both background and
foreground of all the cases except the case of SD=10. The
performance of our method is very similar to that of the Gaus-
sian self-snakes in the case of SD=10 because the Rician is
approximated to a Gaussian when SNR is high. Fig. 3(c-e)
show the resulting images using the relevant methods in Fig.
2(b) respectively.
3.2. Results on real data
For examining the effectiveness of the proposed method in
real MRI images, a sequence of slices 51-60 (from a DTI



Fig. 3. (a) and (b) are the SNRs of the resulting images using the methods
in the synthetic images with different noise levels. (c-e) show the resulting
images by applying the methods in Fig. 2(b).

volume of 30 orientations with the magnetic gradient =
1500s/mm2) in DW-MRI are used to perform the denois-
ing process by applying the proposed method, NLM and the
Gaussian self-snakes. Due to the estimated σ = 34 in the
slices, the SD = 34 is used in the methods as discussed
above. The number of iterations is 60 for all denoising pro-
cesses. In Fig. 4(a-b), the SNRs of the denoised images are
illustrated according to the results using the methods in each
slice. Fig. 4(a) presents the SNRs in background and Fig.
4(b) for foreground. The results show that the performance of
the Gaussian self-snakes is slightly better than that of NLM
in these real images. We can see that the proposed method
performs significantly better than the other two methods in
both the background and foreground. Fig. 4(c) shows Slice
51 and The resulting images for Slice 51 are presented in Fig.
4(d-f).

Fig. 4. The SNRs of the resulting images using various methods in Slices
51-60 and an resulting example for Slice 51. (a) the SNRS of the background,
(b) the SNRs of the foreground, (c) is Slice 51 and (d-f) show the resulting
images by applying the methods in Slice 51.

4. CONCLUSION

In this paper we have described a novel use of self-snakes in
MRI. For adaptive to actual noise situation in MRI, we pro-
posed to use a Rayleigh kernel instead of the traditional Gaus-

sian kernel for removing Rician noise efficiently. In addition,
the Rayleigh kernel is adaptive to be designed according to
the standard deviation levels in noisy images. The numerical
approximation is implemented by applying the semi-implicit
solution scheme in the level-set framework. Experimental
results for both synthetic and real data demonstrate that the
proposed method can deal with Rician noise effectively in
comparison with the traditional methods such as the Gaussian
self-snakes and NLM.
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