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SUMMARY

Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety
of optimization schemes have been developed. In this paper, we present a comprehensive survey of
the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories:
continuous method and discrete method. The former includes Newton-Raphson method, gradient descent
method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic
algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-
reweighted message passing method, linear programming method, maximum margin learning method,
simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface
method, primal-dual method, and the multi-objective optimization method. In addition, we review several
comparative studies that evaluate the performance of different minimization techniques in terms of accuracy,
efficiency, or complexity. These optimization techniques are widely used in many medical applications, e.g.,
image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an
overview on those applications as well. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Medical imaging is becoming more and more prominent for disease diagnosis as well as treatment
planning. However, the medical image data collected using different sorts of imaging modalities,
e.g., magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, along with
positron-emission tomography (PET) are mostly of high ambiguity and complexity, due to the
inherent limitations of the imaging procedure like artifact, inhomogeneity, various noises, restricted
resolution, and inadequate contrast. To locate the target objects along with their boundaries, image
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2 F. ZHAO ET AL.

segmentation techniques are popularly applied, which can represent the volumetric image data in
a more meaningful way, thus makes them simpler to be analyzed. The outlining of these closely
connected anatomical structures in medical image data is critical to various medical applications
such as image enhancement, image reconstruction, disease diagnosis, surgical planning, and 3D
image visualization.

Extracting anatomical structures and subsequently rebuilding a concise geometric description of
them is a tough task because of the variability and complexity of the object shapes along with the
variation in image quality. Particularly, medical images usually contain different sorts of noises and
sampling artifacts that may create disconnected and indistinct boundaries. Conventional low-level
image processing techniques based on local intensities (e.g., edge detection, thresholding) generally
yield impracticable object boundaries. Among many other approaches, energy minimization is
particularly popular in medical image segmentation, where a function is first formulated to evaluate
the goodness of a segmentation for a certain image, and the resulting segmentation of this image is
given by minimizing such a function.

Deformable models are one of the most popular and promising methods for segmentation
employing energy minimization, which combine geometry, physics, and approximation theory
to provide powerful approaches to medical image analysis. The earliest approach is the active
contour models (also known as snakes) suggested by Kass et al. [1] for the extraction of whole
object boundaries in images, where a snake is a continuously deformable curve restricted by
interior smoothness constraints and exterior image constraints. Since snakes paved the way, there
have been numerous refinements making every effort to increase the accuracy, robustness, and
efficiency. These models are successful in the segmentation, matching, along with tracking of
the anatomies in medical images, making full use of constraints obtained from the medical data,
and the incorporation of a priori knowledge of these structures’ location, size as well as shape.
They have the ability of representing the complicated shape together with large shape variations
in different anatomical structures. In [2, 3], McInerney and Terzopoulos presented an overview
on earlier deformable models popularly applied in the analysis of medical images. Later, Xu et
al. [4] explained the definition of geometric and parametric deformable models for the recovering
of shape boundaries. They also gave a survey on a few essential generalized deformable models, in
which the prior knowledge/information specified by applications together with global properties of
shapes are utilized to achieve high robustness and accuracy. Although mostly dissimilar in nature,
the applications of these approaches to medical image segmentation are often constructed on five
predominant components: energy/cost function, segmentation characterization, image description,
training images, together with minimizer. The authors in [5] provided an in-depth discussion
of the main work in each component. Recently, Zhao and Xie [6] presented an overview on
interactive segmentation techniques for medical images, including multiple energy minimization-
based methods.

Energy minimization techniques are also popularly employed in many other medical applications
like image registration, reconstruction, motion tracking, and compressed sensing. In the past
decades, a number of new approaches to energy minimization have been proposed in the literature.
Thus, it is worth giving a systematic review on these vigorously investigated approaches. In this
survey, we classify these state-of-the-art energy minimization algorithms into two main categories:
continuous method and discrete method. The former largely includes Newton-Raphson method,
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gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent
method, and genetic algorithm-based method, while the latter mostly covers graph cuts method,
tree-reweighted message passing method, belief propagation method, linear programming method,
maximum margin learning method, simulated annealing method, and iterated conditional modes
method. We also discuss the minimal surface method, primal-dual method, and the multi-objective
optimization method. Additionally, we investigate several comparative studies that evaluate the
performance of different minimization techniques in terms of accuracy, efficiency, or complexity.

The remainder of this survey is structured as follows. In Section 2, we give the definitions and
foundations of energy minimization. The variety of energy minimization techniques is thoroughly
described in Section 3. Following that, we discuss the applications of these approaches in medical
image analysis in Section 4. The conclusions are highlighted in Section 5.

2. ENERGY FUNCTION

In energy minimization, the first step is to attain the form of the energy/cost function (objective
function), which can be formulated from different aspects and then be minimized using appropriate
optimization techniques. In this section, we focus on several representative energy formulations.

2.1. Variational formulation

This class of energy function is generally defined as a weighted sum of both internal energy and
external energy. Minimization of the overall energy produces the internal and external forces,
where the former keeps the curve/contour smooth without large bending, while the latter draws the
curve/contour towards the desired image features such as object boundaries. Assume that I(x, y)

denotes a gray-scale image, c(k) = (x(k), y(k)) describes a contour, where x, y are functions of the
coordinates, k ∈ [0, 1] stands for the parametric domain, we can write its energy functional as,

E(c(k)) = Eint(c(k)) + Eext(c(k)). (1)

The first part in Eq. (1): Eint(·), denotes the internal energy functional, defined as,

Eint(c(k)) =
1

2

∫ 1

0

(
ω1(k)|ck(k)|2 + ω2(k)|ckk(k)|2

)
dk,

=
1

2

∫ 1

0

(
ω1(k)

∣∣∣∣∂c∂k
∣∣∣∣2 + ω2(k)

∣∣∣∣∂2c

∂k2

∣∣∣∣2
)
dk, (2)

where the first- and second-order derivatives inhibit stretching and bending individually, but make
the deformation of the contour act similar to an elastic string and a rigid rod separately, while ω1

and ω2 restrict the contour’s ‘tension’ and ‘rigidity’ respectively.
The second part in Eq. (1): Eext(·), denotes the external energy functional, defined as,

Eext(c(k)) =

∫ 1

0

Q(c(k))dk, (3)
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where Q(·) is a scalar potential function derived from the images and it takes smaller values at the
desired image features (e.g., object boundaries, intensity edges). Considering the gray-scale image
I as a function with respect to continuous coordinate variables (x, y), a representative potential
function pulling a deformable contour toward intensity edges in this image can be designed as,

Q(x, y) = −ωc |∇[Gσ(x, y) ∗ I(x, y)]|2 , (4)

where ωc is a positive weighting parameter controlling the potential function’s magnitude,∇ denotes
the gradient operator, Gσ(·) stands for a 2D Gaussian smoothing function with standard deviation
σ controlling the spatial extent of the local optima of Q(·), and ∗ represents the 2D convolution
operator.

As stated by the calculus of variations lemma, contour c that minimizes the energy functional
E(·) should adequately comply with the Euler-Lagrange equation [1, 7],

∂

∂k

(
ω1
∂c

∂k

)
− ∂2

∂k2

(
ω2
∂2c

∂k2

)
−∇Q(c(k)) = 0, (5)

where the first two elements of this equation are called the internal forces that discourages stretching
and bending respectively, and the third component is the external force which draws the contour
towards the desired object boundaries. This partial differential equation (PDE) conveys the state in
which internal and external forces are balanced, in case that the contour stops moving at equilibria.

In medical image analysis, sometimes it is more convenient to formulate a dynamic model, as
the majority of anatomical structures in medical data are deformable and continuously undertake
non-rigid motions. By treating the contour c as a time-varying one: c(k, t) = (x(k, t), y(k, t)), in
accordance with Newton’s second law, the contour c(k, t) dynamics should meet the following
equation,

Finert(c) = Fdamp(c) + Fint(c) + Fext(c). (6)

Equivalently,

µ
∂2c

∂t2
= −γ ∂c

∂t
+

∂

∂k

(
ω1
∂c

∂k

)
− ∂2

∂k2

(
ω2
∂2c

∂k2

)
−∇Q(c(k, t)), (7)

where µ is the mass coefficient, γ indicates the damping coefficient. The left-hand side of this
PDE is the inertial force, the first component on the right-hand side denotes the damping force,
and similar to Eq. (5), the second and third parts characterize the internal forces of stretching and
bending respectively, while the last one stands for the external force. Equilibrium will be obtained
if the internal and external forces are balanced, and simultaneously the contour stops moving, that
is, ∂c∂t = 0 and ∂2c

∂t2 = 0.
In addition, many approaches have been developed by designing novel energy terms including

both external and internal terms to address a particular class of images or alleviate a particular
problem with the original terms. For example, Caselles et al. [8] proposed an energy functional
defined as follows,

EGAC(c(k)) =

∫ Lc

0

e(|∇I(c(k))|)dk, (8)
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where I and c are the original image and the evolving contour, Lc represents the Euclidean length
of contour c, while e stands for a function indicating edges, which disappears at boundaries of
the objects in image I . The function e embraces information relating to the object boundaries, and
an example of this function could be e(|∇I|) = 1/(1 + β|∇I|2) where β means a constant with
positive value. A rapid global minimization algorithm was presented in [9], where a convex energy
functional is formulated on the basis of the weighted total variation (TV) norm applying the primal-
dual method [10, 11],

ETVe(v, λ) =

∫
Ω

e(x)|∇v|dx︸ ︷︷ ︸
TVe(v)

+λ

∫
Ω

|v − g|dx, (9)

where Ω denotes the image domain, e(x) is the weighting function indicating the connection
between the two energy functionals EGAC(·) and ETVe(·), while v and g stand for the characteristic
function and observed image respectively, λ > 0 marks a constraint parameter. In case that these
functions and parameters satisfy specified conditions [6], it has been proved that EGAC(·) and
ETVe(·) are identical [9].

2.2. Combinatorial formulation

In graph-based works, the energy functional is often called cost function, which is composed of
boundary information and regional information. It can be expressed as sums across the vertices
along with their neighborhoods that vary as a function of how every vertex is assigned with a
label. To produce a solution which is globally optimal, the cost function needs to be formulated
appropriately.

Usually, an undirected graph G = 〈V, E〉 is formulated in terms of a group of nodes/vertices (V)
and undirected edges (E) connecting the node pairs (vp, vq) [12, 13]. Every undirected edge (e ∈ E)
is associated with a weight/cost (ωe > 0). A graph cut G(C) = 〈V, E\C〉 (C ⊂ E) means a separation
which splits edges into two terminals representing the object s and background t, respectively. The
cost of a single cut is computed by adding all of the non-negative weights of those edges that it
splits, that is, |C| =

∑
e∈C ωe .

In medical image analysis like segmentation, the pixels/voxels and the relationship of each
pair of them are depicted by the graph nodes and edges, respectively. A graph cut partitioning
those nodes indicates a potential image/volume segmentation, and the one with minimum cost
yields an optimal segmentation with respect to image properties assigned into those non-negative
edge weights. For simplicity, assume that M stands for the total number of pixels/voxels in an
image/volume, N represents all the pairs of neighboring pixels/voxels under a 8-neighborhood
(2D) or 26-neighborhood (3D) system, and C = (Cv1 , · · · , Cvp , · · · , CvM ) is a binary vector whose
component Cvp specifies the label (O: ‘object’ or B: ‘background’) assigned to a pixel/voxel vp, the
soft constraints imposed on the region and boundary properties of C could be delineated using the
following cost function,

E(C) = λR(C) +B(C),

= λ
∑
vp∈V

Rvp(Cvp) +
∑

{vp,vq}∈N

B{vp,vq}δ(Cvp , Cvq ), (10)
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where

δ(Cvp , Cvq ) =

{
1 if Cvp 6= Cvq
0 if Cvp = Cvq

,

and λ > 0 is a parameter controlling the relative significance of the two terms: R(C) and B(C)

corresponding to the region and boundary properties, respectively. The region term (also known as
label cost) R(C) implies the individual penalty for allocating a pixel/voxel vp to label O or B. For
instance, based on the intensities of pixels or voxels labeled asO and B seed points by a user (known
as hard constraints), the intensity distribution histograms for the object and background, denoted by
Pr(I|O) and Pr(I|B), can be computed and then used for the calculation of the regional penalties,

Rvp(O) = − lnPr(Ivp |O),

Rvp(B) = − lnPr(Ivp |B). (11)

In the boundary term (also known as separation cost) B(C), B{vp,vq} > 0 is a coefficient
reflecting the penalty for the discontinuity between pixels/voxels vp and vq. The coefficient can
be calculated according to criteria such as local intensity gradient and gradient direction. Its value
is big in case that vp and vq have similar properties, and near zero if the pixel/voxel pair is rather
distinct. As an example, the boundary penalties can be set using the following function,

B{vp,vq} ∝
1

dist(vp, vq)
· exp

(
−

(Ivp − Ivq )2

2σ2

)
, (12)

which makes B{vp,vq} large for discontinuities between similar pixels/voxels (i.e., |Ivp − Ivq | < σ)
and small for pixels with very different properties (i.e., |Ivp − Ivq | > σ).

Suppose a graph with numerous terminals illustrating every target object in an image/volume,
and the hard constraints imposed by a user by properly placing seeds of distinct colors, the graph-
based method can be expanded to simultaneous segmentation of multiple objects. The equivalent
cost function is a straightforward generalization of Eq. (10) to the case of multi-label setting,

E(C) = λ
∑
vp∈V

Rvp(Cvp) +
∑

{vp,vq}∈N

B{vp,vq}(Cvp , Cvq )δ(Cvp , Cvq ), (13)

where C ∈ {O1,O2, · · · ,ON}M denotes the label assignment of a multi-object image, and
B{vp,vq}(Cvp , Cvq ) is the discontinuity penalties between a pair of neighboring pixels/voxels
according to their associated labels. A multi-channel graph cut with minimum cost that partitions
the terminals into separate parts by splitting those edges with minimal cumulative cost corresponds
to an optimal multi-object image segmentation.

It is worth noting that a directed graph can be easily generalized from an undirected one by
allowing different discontinuity penalties (directed costs) for two cases: p ∈ O, q ∈ B and q ∈ O,
p ∈ B, i.e., two distinct node pairs: (vp, vq) and (vq, vp).

2.3. Stochastic formulation

Many problems such as image segmentation involve allocating a label to every pixel/voxel, which
can be effectively interpreted as energy minimization in respect with Markov random fields
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(MRFs) [14, 15], a basic type of stochastic process. The resulting energy function is made up of
two parts: data term (also known as unary term) penalizing results which are not compatible with
the observed images/volumes, and smoothness term (also called pairwise term) enforcing spatial
coherence. In other words, unary term represents data likelihoods, while pairwise term implies data
smoothness. For simplicity, let xp be the label associated with pixel p in a 2D image, x denote all
the pixel-label allocations, M represent the total number of pixels, the MRF energy function can be
defined as,

EMRF (x) = λEs(x) + Ed(x), (14)

= λ
∑

{p,q}∈N

Vpq(xp, xq) +
∑
p∈V

Dp(xp), (15)

where V denotes the pixel set, N represents all the neighboring pixel pairs under a traditional 4-
connected neighborhood system†, {p, q} is an unordered group of neighboring pixel pairs, Ed(x)

and Es(x) stand for the data energy and smoothness energy respectively. In the MRF scheme, the
(negative) log likelihood of the measurement noise mainly forms the data energy Ed(x), while
the negative log likelihood of the prior forms the smoothness energy Es(x). Usually there are
no restrictions on Ed(x), however, Es(x) is particularly adopted for specifying the assumption
of smoothness on pixel labeling. A certain Vpq corresponds to some specific assumption. A more
regulated expression of Es(x) can be given by,

Es(x) =
∑

{p,q}∈N

ωpq · V (|xp − xq|), (16)

where ωpq denotes the spatially varying pair weight and V (|xp − xq|) stands for a non-decreasing
function of the dissimilarity between pairing labels. A common choice of such a function is defined
as (the Potts model),

V (|xp − xq|) = 1− δ(|xp − xq|), here δ(∆x) =

{
1, (∆x = 0)

0, (∆x = 1)
. (17)

This function uniformly penalizes any pair of pixels with distinct label allocations.
The minimization of the energy functionals discussed above can be typically solved by gradient

descent optimization algorithms [16], combinatorial approaches [12], primal-dual methods [17, 18],
and graph cuts [19], which will be further described in the next section.

3. APPROACHES TO ENERGY MINIMIZATION

Given the formulated energy function, the minimization is a numerical procedure to find an optimal
solution (local or global) on the potential energy surface so as to attain the preferred results (e.g.,
segmentation, registration), which could be accomplished in a number of means (see Table I).

†The extension to other grid topologies such as 8-connected in 2D and 26-connected in 3D is straightforward.
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Table I. Examples of energy minimization techniques.

Method Continuous Discrete Global Local References
Newton-Raphson Yes Possible Yes [20, 21, 22, 23, 24, 25]
Gradient descent Yes Possible Yes [26, 27, 28, 29]
Conjugate gradient Yes Yes [30, 31, 32]
Proximal gradient Yes Yes Yes [33, 34, 35, 36, 37]
Coordinate descent Yes Yes [38, 39, 40, 41, 42]
Genetic algorithm Yes Yes [43, 44, 45, 46]
Graph cuts Yes Yes [47, 48, 49, 50, 51, 52]
Belief propagation Yes Yes [53, 54, 55, 56, 57]
Tree-reweighted message
passing Yes Yes [58, 59]

Linear programming Yes Yes [60, 61, 62, 63, 64, 65, 66]
Maximum margin learning Yes Yes [67, 68, 69, 70, 71]
Simulated annealing Yes Yes [72, 73, 74]
Iterated conditional modes Yes Yes [75]
Minimal surface Yes Yes Yes Yes [76, 77, 78, 12, 79, 80, 81]
Note: Continuous, Discrete, Global, and Local: types of optimization.

3.1. Continuous optimization methods

This class of optimization techniques seeks to minimize an appropriate energy function on a
continuous space, among which the earlier work was proposed in 1980’s [1, 82]. Recently, level-
set representation has been mainly applied for continuous segmentation [83, 84, 85], where a
shape can be embedded in respect with a zero-level-set of a function, and the shape priors are
described on the space of the embedding function. The optimization in regard to deformation
of shapes means minimizing an energy function. Among many other optimization approaches,
gradient methods (e.g., gradient descent [26, 27, 28, 29], conjugate gradient [30, 31, 32], proximal
gradient [33, 34, 35, 36, 37]) are particularly popular in the field.

3.1.1. Newton-Raphson method The Newton-Raphson/Newton’s method [23, 24] was developed
according to expanding a prospective energy surface at the present geometry utilizing Taylor
series, depending upon its first derivative (i.e., slope/gradient) along with second derivative (i.e.,
curvature). The evaluation of these derivatives at every iteration makes the Newton-Raphson method
computationally expensive, particularly in case of a multi-dimensional prospective energy surface
on which there exist numerous directions for calculating the curvatures as well as gradients.
Fortunately, this method normally needs the fewest iterations to find the minimum, i.e., rapid
convergence. In general, the convergence is quadratic. The Newton’s method could be applied for
finding the optimum of an energy function with a zero-value derivative, assuming that the function
approximates to a quadratic in regions close to the optimum, and utilizing the derivatives of first-
as well as second-order for finding the stationary point. In higher dimensions, the gradient together
with Hessian matrix of the second-order derivatives of the function undergoing minimization are
adopted in the Newton’s method.

The quasi-Newton method is an algorithm derived from Newton’s method for finding the local
optimum or stationary point of a function with a zero-value gradient. The most prevalent approaches
include the symmetric rank one (SR1) technique [86, 22], the Berndt-Hall-Hall-Hausman (BHHH)
technique [20], and the ubiquitous Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique [87, 25]
along with its limited-memory expansion: L-BFGS technique [88, 21]. The SR1 algorithm updates
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the second derivatives (Hessian matrix) with regard to the gradient estimated at two points, which
keeps the matrix’s symmetry without ensuring its positive definiteness being preserved. The BHHH
approach can guarantee that the iterative procedure converges under particular circumstances. The
BFGS framework is an iterative scheme to tackle nonlinear optimization tasks with no constraints,
which attempts to attain a stationary point of a function that can be continuously differentiated
for two times. Similarly, it does not assure of being converged except that the function can be
quadratically expanded nearby the optimum utilizing Taylor series, but BFGS can perform fairly
well even in case of non-smooth optimization. The L-BFGS strategy approximates BFGS by only
involving low memory, which is extraordinarily suitable for optimization tasks with numerous
variables. In contrast to BFGS that saves a compact approximation of the reversed Hessian matrix,
L-BFGS uniquely keeps several vectors which implicitly depict such an approximation.

Compared with Newton’s method, the Hessian matrix of second derivative in quasi-Newton
method is not directly evaluated, but renewed via examining consecutive gradient vectors, and the
reversed Hessian matrix for steering the line search is usually generated using an approximation
instead of being estimated which is expensive in almost every respect. However, the memory
required for operation in quasi-Newton method is generally more than Newton’s method.

3.1.2. Gradient descent method Gradient descent (called steepest descent as well) is a first-order
iterative optimization method, which is used for discovering the function’s local minimum by
shifting in the negative orientation of the present gradient of the function. This procedure converges
ultimately at the location with a zero-value gradient. Without requiring the estimation of second
derivative, this scheme is considerably quicker per step than Newton’s method, but normally
needs more steps to reach the minimum. Due to its applicability and simplicity, in medical image
analysis, gradient descent is the most prominent optimization technique used in various deformable
models [1, 8, 89], where explicit differentiation is performed in accordance with the Euler-Lagrange
equations. When these equations meet the expectations, it is assured of being converged to an
optimal result.

In [26, 27], Tsai et al. applied the gradient descent algorithm to minimize a region-based energy
function for segmenting the medical images. However, gradient descent algorithm suffers from slow
convergence. In the existence of image noises, implementing the gradient descent process may
cause unreliability in the deformations as time goes by. Moreover, the search space’s complexity
will increase if the total number of dependent factors (e.g., orientation, scale, location, shape)
rises, so in this case the number of local minima can grow and it is also necessary to calculate
more and more derivatives. To overcome the difficulty, Sundaramoorthi et al. [28] reformulated the
traditional geometric active contour (GAC) models, where the gradient is redefined employing the
inner product of Sobolev-type. As a result, the advantageous regularity properties are successfully
induced into the gradient flows, thus make the deformations smoother over time, preventing some
unacceptable local minima to a large extent. In [29], Bar and Sapiro presented a generalized Newton-
type scheme in terms of more generic norms than the l2-type norm. These norms are introduced in
calculating the descent as well as in the relevant trust-region stabilization. In addition to quicker
quadratic convergence, the proposed method achieved higher accuracy in the existence of noises.

A problem with gradient descent is that for those functions with valleys, the method zigzags as
the gradients are almost perpendicular to the orientation of the local minimum in such areas. This is
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similar to the case of being in a disc-like tube and attempting to remain in its lower position. In the
event that the local minimum is at the tube’s bottom, this will require much more time to achieve the
minimum since the algorithm keeps jumping between the tube’s two sides (zigzagging). In addition,
it is crucial to select an appropriate step size so as to avoid divergence because of larger step size or
slower convergence due to smaller step size. There are two options, one is to pick a fixed step size
which ensures the algorithm’s convergence regardless of where gradient descent starts (i.e., constant
selection), the other is to take a separate step size per iteration (i.e., adaptive selection) [90, 91].

When the energy functional is convex, gradient descent gains global convergence, because all
the local minima are global ones as well. However, problem may arise in case that the optimum is
not within the convex optima set. In such a case, the gradient descent procedure can be integrated
with an iterative projection strategy for the minimum calculation of an energy function [92]. For
convex problems, Nesterov provided a straightforward refinement of gradient descent to speed up
its convergence [93]. If the projection can be computed in an efficient way, gradient descent may be
generalized to cope with constraints by involving a projection onto the constraint set, a particular
example of the popular forward-backward technique (a proximal splitting method) for monotone
inclusion problems [37].

Gradient descent can also be applied for higher-order optimization tasks. In accordance with the
observation that an energy function or its part can often be differentiated, Ishikawa [94] introduced a
strategy that enables the fusion move procedure [95] quite faster for potentials of higher-order. The
presented method can yield the proposal labeling via shifting the present labeling by the energy
gradients, i.e., the proposal labeling in every iteration can be produced utilizing an elementary
gradient descent. Dissimilar to the standard gradient descent, the proposed algorithm can still
effectively take the gradient using even a partial energy. For example, by utilizing the higher-order
priors solely, its gradient can be achieved, and the labeling can then be shifted in that orientation,
which speeds up the fusion moves. Another benefit in comparison with standard gradient descent is
that it is possible to make the descent step very big, accelerating the optimization process especially
in the beginning stage. The reason for both improvements is that the fusion move assures a decrease
of the energy.

3.1.3. Conjugate gradient method Similar to the gradient descent method, the starting part of
the search in the conjugate gradient algorithms [31, 32] arises in the opposite (steepest descent)
orientation of the biggest gradient. To prevent the oscillating backwards and forwards problem
occurred in the gradient descent procedure when it walks towards the minimum, the conjugate
gradient strategy takes into account the previous orientation in the subsequent search, enabling the
rapid movement to the minimum. The conjugate gradient method can produce an accurate result
within a limited iterations, thus it is a direct approach theoretically. However, it is unstable even
because of slight perturbations. Fortunately, it can also be viewed as an iterative technique since the
algorithm provides increasingly better approximations to the actual result, satisfying the specified
criterion of tolerance within a fairly small number of iterations.

Mostly, preconditioning is essential for making the conjugate gradient approach converge
rapidly for solving linear systems. An important variant of such preconditioners is the inexact
preconditioned conjugate gradient method [96] accomplished by combining the inward and outward
iterations, where the preconditioned equations are worked out employing an inward iteration to
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a predetermined accuracy. In some practical implementations, the preconditioners applied are of
high complexity, potentially leading to inconsistent preconditioning that changes across iterations,
thus resulting in a remarkable increment of the time to make the algorithm converge. To improve
the convergence in such cases, Golub and Ye [97] formulated an inexact preconditioner to solve a
symmetrical and explicit definite system. Applying a local connection between consecutive residual
norms, they obtained a result that converges linearly. Furthermore, employing a global relation, the
presented method is able to converge more linearly if the inward iteration can be resolved with good
precision, suggesting that the stopping criterion for the inward iteration can be heuristically selected.

To preserve the optimal convergence property, Axelsson [98] proposed a variant of the conjugate
gradient method where the search direction vectors are explicitly orthogonalized. The algorithm
is referred to as flexible conjugate gradient [99]. It is particularly developed to adapt to variable
preconditioners. In practice, flexible conjugate gradient is required to be incorporated into a
truncation/restart scheme. In [99], Notay developed a hybrid scheme, which integrates the benefit
of pure truncation with the advantage of pure restart. He also theoretically demonstrated that the
presented work can converge independently from the preconditioner variations provided that the
variations are slight enough. Under specific conditions, its convergence rate is comparable to that
of the truncated conjugate gradient algorithm or the conventional one, while permitting rather big
variations with almost no penalty. In some other circumstances, flexible conjugate gradient achieves
better performance than traditional conjugate gradient, whereas the truncation requirement restricts
the variation levels entitled.

The nonlinear conjugate gradient method [100] is a generalized version of the conjugate gradient
approach to tackle nonlinear optimization issues, which discovers the local minimum of a nonlinear
function that can be differentiated for two times at the minimum. It performs a line search in the
opposite orientation of the gradients until achieving the minimum.

Different from Newton-based methods (e.g., Newton-Raphson algorithm and quasi-Newton
method) that compute the Hessian matrix of second derivative except for the gradient, conjugate
gradient methods need much less estimation in every iteration.

3.1.4. Proximal gradient method Proximal gradient (forward backward splitting) methods [33, 37]
are gradient-based algorithms suitable for convex optimization problems, where the objective
function consists of two convex functions, one is differentiable with Lipschitz continuous gradients
while the other one may be non-differentiable (non-smooth). They are called proximal because
each non-smooth function is engaged by means of its proximity operator, which can be viewed as
a generalized form of a projection [33, 91]. An essential method relevant to proximal techniques
is the Moreau decomposition where the identity operator is decomposed into two proximity
operators [33]. Similarly, we can consider it as the generalized version of a vector space’s orthogonal
decomposition. Typical proximal algorithms include iterative shrinkage/thresholding algorithm
(ISTA) [101, 102, 103, 90], Landweber iteration [104, 105], alternating projection [106, 107],
alternating direction method of multipliers (ADMM) [108, 109], and split Bregman method [110].

ISTA is one of the most popular techniques for tackling convex unconstrained optimization
problems, in which every iteration includes matrix-vector multiplication followed by a
shrinkage/soft-threshold step [101, 102, 103, 90]. This iterative shrinkage-thresholding scheme can
be treated as a natural expansion of the conventional gradient method, which is interesting because

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



12 F. ZHAO ET AL.

it is simple but suitable for tackling problems of large-scale with high-density matrix data. As a first-
order method where the optimization depends upon function value as well as gradient evaluation,
ISTA is a preferred option in practice for large-scale problems in many instances. However, the
linear observation operator dominates the convergence rate of ISTA, which may become fairly
slow in case of ill-conditioned/ill-posed operator [102, 33]. A variety of approaches have been
proposed to accelerate the performance of ISTA. The authors in [34] developed an interesting two-
step ISTA algorithm called TwIST, which converges much quicker than ISTA for problems that are
ill-conditioned. Regarding of numerous regularizers that are convex but non-quadratic, it was proven
that TwIST is able to converge to its objective function’s minima, for an appropriately chosen band
of values of those parameters formulating the method. Its higher effectiveness than ISTA has been
experimentally exhibited on many linear inverse problems like image restoration and deconvolution.
In [35], Elad et al. presented a method accelerating ISTA for identical problems as shown in [34],
which applies the sequential subspace optimization technique and computes the following iteration
through minimizing a function on an affine subspace that is spanned by the present gradient and at
least two earlier iterations. However, for both methods [34, 35], global non-asymptotic convergence
rate has not been achieved. To overcome the difficulty, Beck and Teboulle [36] proposed a fast ISTA
(FISTA) that maintains ISTA’s simplicity in computation and significantly increases its convergence
rate. They studied the global non-asymptotic convergence rate and the efficiency of ISTA algorithm
assessed by function values. This common analysis is able to cope with an objective function with
arbitrary continuous convex non-smooth regularizer along with convex smooth function. The initial
numerical solutions of the image deblurring tasks using wavelets show that FISTA performs rather
better than either ISTA or TwIST. It is worth noting that all of these methods [34, 35, 36] depend
upon generating the subsequent iteration in regard to at least two earlier iterations and the present
one.

The Landweber iteration is an iterative method for solving linear inverse problems that are
ill-posed [104], and has been generalized for tackling nonlinear ill-posed problems involving
constraints [105]. It may be treated as a particular version of many other generic techniques (e.g.,
gradient descent) [37]. Many variants of the Landweber algorithm have been developed in the
literature. For example, the high-dimensional least squares problem that is sparsely constrained
can be tackled employing the Landweber method [111] (a special case of projected gradient
descent). To deal with the optimization of a weighted least squares problem that is convexly
constrained, Johansson et al. [112] exploited the projected Landweber algorithm that copes with
convex constraints via enabling oblique projections instead of conventional orthogonal projections
onto closed convex sets. They also proved the convergence of the oblique-projected Landweber
method mathematically, which can be accelerated by choosing an appropriate preconditioner, in
comparison with standard projected gradient search.

The alternating projection (also called projections onto convex sets) method [106, 107] intends to
detect a crossing point from two closed convex sets, where a point is interchangeably projected onto
the two sets. Specially, for circumstances that the sets are affine spaces, the algorithm converges
to the crossing point and also to the orthogonal projection of the original point. The alternating
projection scheme converges at a linear rate [113]. The Dykstra’s projection algorithm [114, 115] is
a variant of the alternating projection method. If the number of crossing point is larger than one, the
classical alternating projection randomly yields a point in the intersection part of the two sets, while
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Dykstra produces some specified point, that is, the projected initial point onto the intersection part.
Extensions of the alternating projection method examine circumstances with several sets, nonconvex
sets, or those producing quicker convergence. In [116], Lewis and Malick developed a nonconvex
alternating projection approach and proved its local linear convergence. More variants, applications,
along with extensions of alternating projection can be found in [117, 118]. For the cases involving
circulant system, the Landweber iteration adopting a specific step size is identical to a variant of the
alternating projection technique [119]. Additionally, the projection methods converge faster than
the Landweber iteration, as they make it easier to integrate additional constraints into the standard
iteration.

ADMM [108, 109] is a variation derived from the augmented Lagrangian framework, which
applies limited up-to-date information to the paired variables. Instead of iteration till achieving
convergence, the algorithm continues to update the dual variable straightforwardly and repeat
this procedure subsequently. The ADMM technique may be treated as an implementation of the
Douglas-Rachford splitting method, which is an example of the proximal point scheme [109].
ADMM can be utilized for tackling separable convex programming problems [120]. The authors
in [121] provided a survey of ADMM including variants and extensions. They argued that the
algorithm is quite suitable for a variety of distributed convex optimizations, particularly for large-
scale cases emerging in machine learning and statistics. In order to lower the computational cost
of inner-loop coordination, Tosserams et al. applied the ADMM for updating penalty criteria
following one inner-loop iteration [122]. Experimental results demonstrated that the total amount
of sub-problem minimizations and the costs could be largely decreased by 10 to 1000 times. The
convergence rate of ADMM has been discussed by many authors in the literature. For example,
Boyd et al. [121] proved the objective and residual convergence of ADMM. Hong and Luo [123]
analyzed the ADMM’s global linear convergence in optimizing the summation of at least two non-
smooth functions that are convex and separable under linear constraints.

The split Bregman scheme [110] is an approach based on Bregman iteration [124] to tackle
a wide range of general l1 regularized optimization problems. Specially, it can effectively solve
those problems with total-variation (TV) regularizations. The method can also be viewed as a
reinterpretation of the ADMM exceptionally adapted to l1 problems. An advantage of this method
is that the continuation, enforcement, and regularization of inequality constraints is not needed.
Moreover, the algorithm can be easily parallelized because it makes extensive implementation of the
Fourier transform and Gauss-Seidel techniques. In comparison with those second-order approaches
which need exact descriptions of Hessian matrix, its requirement of memory is relatively low. Thus,
the split Bregman framework can be used to provide very efficient solutions for many problems such
as TV denoising, compressed sensing for image reconstruction from Fourier coefficients, and convex
image segmentation [125, 126]. In [127], the author proposed two improved linearized Bregman
methods to tackle the basis pursuit (BP) and relevant sparse minimization issues. The linearized
Bregman technique was interpreted as a gradient descent approach on the dual task, thus acceleration
schemes for optimization strategies relying upon gradients like line search may be used for tackling
the dual task. The experimental results demonstrate that the improved methods are mostly quicker
than linearized Bregman involving ‘kicking’. Similarly, Yang et al. utilized the split Bregman
strategy to the dual formulation of the speedy l1 minimization problem emerging in compressed
sensing [128]. Compared to Yin’s gradient descent-based algorithms [127], the proposed dual split
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Bregman method is more efficient, especially for cases containing under-determined matrix. Further
accelerating strategies utilizing the equivalence between linearized Bregman and gradient descent
have been reported in [129]. In addition, the convergence rate analysis of the split Bregman approach
may be obtained in [110, 130, 128]. Esser [131] explored the connection between split Bregman
and ADMM. Therefore, the inexact minimization and alternating step applied in split Bregman for
instances where the methods are comparable can be validated using the existing convergence theory
for ADMM.

Proximal methods provide effective optimization procedures for tackling the variational tasks that
define the l1 regularization schemes [102, 36]. These approaches are able to manipulate a variety of
machine learning techniques, termed as structured sparsity regularization [132]. With an appropriate
perturbation of the initial objective function (e.g., adding a tiny purely convex term), it is possible
to improve the computational performance with no effect on the produced result with regard to its
prediction power [132].

3.1.5. Coordinate descent method Coordinate descent [38, 39, 42] is a non-derivative multi-
dimensional optimization scheme, in accordance with the strategy that an nD optimization task
can be separated into n independent 1D sub-tasks solved by a suitable 1D optimization algorithm
(e.g., dichotomy method and golden section method [133]). The local minimum of a function
can be obtained by performing line search alongside a coordinate orientation at the present point
in every iteration. Rather than changing the descent orientation in respect with gradients, the
descent orientation is fixed in the very beginning. During this procedure, nonidentical coordinate
orientations are cyclically iterated, one at a time while all other orientations remain unchanged,
minimizing the objective function in regard to that coordinate direction. Coordinate descent may be
considered as a particular example of block coordinate descent [134], which splits the coordinates
into a few blocks and iteratively minimizes the function on the basis of one coordinate block
while the other coordinates keep no change. In [40], the authors estimated the multi-shape model’s
parameters employing the coordinate descent framework for minimizing an energy functional to
segment medical images utilizing the mutual information.

Generally, it is tough to tackle the linear least squares problem involving separable and non-
quadratic regularization by exploring traditional iterative techniques. In [41], Elad devised a
straightforward iterative strategy called parallel coordinate descent, which can be employed as a
successful approximate solution for the basis pursuit denoising (BPDN) problem. Its performance
can be further sped up by utilizing a serial subspace optimization method without increasing much
complexity [35].

Coordinate descent algorithm generally works well for separable functions. For a non-separable
function, it may have difficulty in discovering the optimum within limited iterations. To speed up
the convergence rate, Loshchilov et al. [133] developed the adaptive coordinate descent scheme,
an expansion of the coordinate descent approach to non-separable optimization problems. This
approach applies adaptive encoding [135] that is based on the powerful covariance matrix adaptation
(CMA) [136, 137] to progressively learn an appropriate transformation of the coordinate system, so
that the up-to-date searching coordinates generated utilizing principal component analysis (PCA)
are largely decorrelated in respect with the objective functions. The adaptive coordinate descent
algorithm is invariant to monotonous function transformation (scale-invariance) and orthogonal
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search-space transformation (rotation-invariance). In addition, the utilization of a suitable coordinate
system makes it perform better than coordinate descent on a non-separable function. Its convergence
is much quicker than coordinate descent and is as good as a method depending upon gradients.
The time-complexity of this novel technique presents linear property and it fairly suits nonlinear
optimization problems of large scales as well, by extending the adaptive encoding scheme to the
nonlinear circumstances applying kernel PCA. Moreover, comparison-based surrogate models [138]
can be exploited for maintaining the invariance property of the adaptive coordinate descent method.

3.1.6. Genetic algorithm-based method Genetic algorithms (GAs) have been implemented for
minimizing the energy functionals as well, although the global optima are not formally assured [44,
45, 139]. With GAs, the traditional active contour model was extended for direct minimization of
the basic energy functional [140]. Tohka [44] introduced a hybrid algorithm combining GA with
greedy algorithm [141] for the global optimization of deformable surface model represented by
simplex meshes. In [45], the authors developed a GA-based technique for explicit active contours.
In this work, Fourier descriptors are adopted and parallel GAs are employed for accelerating
the optimization. Hill and Taylor [43] incorporated GA with active shape models, in which the
maximized objective function indicates the similar nature between the gray-scale intensities of
the searching objects and the training objects. Instead of using the distinctive gradient descent
optimizer, the authors in [46] explored GAs to optimize deformable models that investigate the
medial-based, localized, and nonconvex shape variations in an explicit fashion. By evolving various
models simultaneously, the application of GA alleviates the weaknesses of deformable models
relevant with local minima, pose estimation, as well as model initializations. In addition, the search-
space’s size is decreased through restricting the evolution.

3.2. Discrete optimization methods

Algorithms for discrete energy minimization play an important role in medical image analysis,
which mainly includes graph cuts [47, 48], belief propagation (BP) [54, 56, 15], tree-reweighted
message passing (TRW) [58, 59], linear programming (LP) [61, 142, 143], and maximum margin
learning [67, 71].

3.2.1. Graph cuts method Many optimization techniques like gradient descent are prone to local
minima that could be arbitrarily distant from the genuine optima, therefore provide no promise of the
optimality of the produced results. Recently, a number of approaches [12, 79, 13, 49, 144, 9, 92, 145]
attempt to achieve the global minima of an energy function in case that the local minima are not
satisfactory. These techniques can be grouped into three categories: min-path, mini-cut, together
with convex approximation. Min-path methods [146, 147, 148, 149] are constructed in respect with
Dijkstra’s algorithm [150] to search for a path with smallest distance in an undirected graph whose
edges are associated with non-negative weights, while convex approximation [144, 9, 92] relaxes
the potential shape models from nonconvex spaces to convex spaces, thus defines convex energy
function that could be globally optimized. In convex relaxation, the energy function, the shape
space where they are minimized, and the relaxed shape space should be all convex.

Graph cuts (mini-cut, computed by max flow algorithms) [151, 152, 47, 12, 48, 49, 51] are a
global minimization technique for a prevailing energy function, a specific instance of calculating a
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geodesic over a Riemannian space with an image-based metric. In [47], Boykov et al. introduced
two popular graph-cut techniques: α-expansion moves and α-β-swap moves. Practically, the great
efficiency of the state-of-the-art expansion algorithm has been largely shown, however, it generally
applies to MRFs with metric potential functions. On the other hand, the swap algorithm can handle
more generic energy functions, as it is applicable to nonmetric potentials as well. Its drawback is
that it seems to be less effective than the expansion method. The two popular graph-cut methods
both rely upon moves which only allocate every pixel two labels for selection. Their performance
is particularly good for energies in which the potential MRFs have Potts prior, corresponding to the
assumption of a genuine piecewise-constant labeling. However, their performance may not be good
for more generic priors. To overcome the difficulty, Veksler [52] developed a new graph cuts-based
algorithm called range moves for those MRFs involving truncated convex priors, which correspond
to the assumption of piecewise smoothness. To achieve a high-quality approximation, the range-
move algorithm allows every pixel to choose from at least two labels. In order to yield a more
prevailing perspective of the graph cuts-based combinatorial optimization techniques, Komodakis
and Tziritas [153, 50] presented a novel theoretical scheme for the approximate optimization of
MRFs with metric energy functions as well as non-metric ones, utilizing the duality principles of
linear programming. The novel primal-dual algorithms could deliver instance-based sub-optimal
bounds in any case which includes discrete MRFs with any potential functions. In practice, such
bounds have been shown to be quite solid (near 1), indicating that the produced results are optimal
to a certain extent.

Graph cuts may only be utilized to submodular energy functions [48]. The produced optimal
results are discrete approximation of continuous formulations [12]. These algorithms are based on
combinatorial optimization. They are well suited for image segmentation, where the pixels or voxels
can be represented by the graph nodes and the neighborhood relationship between pixels or voxels
can be represented by the edges of the graph. A minimum-cost cut partitioning the nodes of the
graph generates a segmentation result of a potential image/volume, which is optimal on the basis of
edge weights.

3.2.2. Belief propagation method The belief propagation (BP) or sum-product message passing
approach is a technique utilizing message passing to carry out the inferring process on graphical
models (e.g., MRF, Bayesian networks), which evaluates the marginal probability distribution of
every unobserved vertex in a graph, subject to observed vertices. It was first formulated on trees,
then poly-trees as an extension. The BP scheme is a valuable approximation method for generic
graphs [53]. In [154, 155], the authors formulated the stereo matching task as a Markov network that
is made up of three coupled MRFs, and applied the Bayesian BP scheme to achieve the maximum a
posteriori (MAP) evaluation in the Markov network. Sarkis and Diepold [156] proposed a method
utilizing the BP algorithm to roughly calculate the disparity map of sparse images. The proposed
sparse BP possesses a higher efficiency than the classic BP in terms of memory consumption, as
only the nonuniform samples together with their 4-connected neighborhood pixels are stored and
subsequently handled from the left images. The authors in [55] extended earlier theoretical solutions
on tree reweighted BP (TRBP) [157, 58, 59] to secure a global minimum for the stereo energy
function, accounting for potential ties in the beliefs. Like linear programming relaxation [158],
TRBP is assured of obtaining a global minimum in case of non-fractional beliefs.
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Loopy BP (LBP) [54, 56] is a variant of BP algorithm applied to a graph with cycle (loop).
Generally, it is not assured that the LBP algorithm can reach convergence. To improve its efficiency,
Felzenszwalb and Huttenlocher [159, 57] presented numerous ways including the distance transform
method. In [14, 15], Szeliski et al. performed two distinct LBP variants: BP-M (also known as max-
product LBP) and BP-S (also known as LBP application derived from TRW-S) to compare their
performance in energy minimization. As a result, BP-M performs fairly good.

3.2.3. Tree-reweighted message passing method Tree-reweighted message passing (TRW) was first
presented by the authors in [58] as a novel message passing mechanism for energy minimization.
Compared with BP, the TRW technique could be utilized to much more energy functions. However,
it does not always converge, and is not assured of increasing the energy’s lower bound with time. To
solve the problem, Kolmogorov [59] developed an improved TRW, that is, sequential TRW (TRW-
S), where the lower bound value is promised not to become smaller, resulting in some convergence.
In comparison with original TRW, the TRW-S refreshes the messages sequentially instead of in
parallel order. Compared to conventional message passing schemes like BP, another advantage
of TRW-S is that its implementation requires only half of the memory, but it achieves a much
better performance than the original TRW [58] and the standard max-product BP [15]. Moreover,
in contrast to graph cuts [47], TRW-S can achieve a slightly lower energy in stereo cases involving
Potts interactions.

3.2.4. Linear programming method Linear programming (LP) or linear optimization [61, 142, 143]
means optimizing a linear objective function over a feasible region, in regard to a collection of linear
equality as well as linear inequality constraints. LP problems can be tackled by basis-exchange
algorithms (e.g., simplex [60, 160], criss-cross [161, 62], and conic sampling [66]), and interior-
point methods (e.g., ellipsoid [162], projective [163], and path-following [164]).

To solve the LP problems utilizing the popular simplex method [60, 160], the standard form
describing an LP problem must be converted into augmented version that brings in slack variables
with non-negative values for the substitution of inequality constraints with equality constraints. The
simplex algorithm then solve the LP issues through yielding a viable result at a poly-tope vertex
and moving down the poly-tope edges to its vertices associated with declining function values till
obtaining a minimum/maximum. The shape of the poly-tope is described using the constraints
imposed on the objective function. In practice, ‘stalling’ often occurs where numerous pivots
are generated without augmenting the function values [143], while ‘cycling’ sometimes happens
where the deterministic pivoting rules yield a loop without limit [165]. A variety of state-of-the-
art pivoting rules [166, 61, 62, 165, 143] have been designed for preventing cycling and thus
ensure the termination of the simplex procedure. The popular simplex method is normally rather
efficient and can assure of achieving a global solution. However, it may have worst-case exponential
time-complexity [167] or polynomial average-case time-complexity [168] on certain problems. To
further improve the efficiency, researchers developed the revised simplex algorithm [169, 170, 143].
In addition, advanced simplex techniques such as parametric self-dual simplex [171] solve the
LP problems through converting them utilizing an approach alike Big M [171]. Despite its
exponential time-complexity in theory, the tremendous efficiency of the simplex approaches in
practical applications indicates the possibility of simplex variants running in polynomial time or

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



18 F. ZHAO ET AL.

more efficiently. On the other hand, the simplex method along with its variants solve the LP tasks in
a way that walks alongside the poly-tope edges, vertex by vertex, implying that the maximal edge
number between poly-tope vertex pairs restricts the simplex methods’ performance in theory.

The criss-cross method [161, 62] is another basis-exchange pivoting technique, but never cycles
on linear programs. Compared with the two-phase simplex algorithm, it is simpler with only one
phase, and has no requirement of maintaining the feasibility. Moreover, the criss-cross approach is a
combinatorial algorithm for linear programming, which selects two parameters: one for entering,
another for leaving, only taking into account the coefficients’ signs instead of the real-number
ordering of them. Like Dantzig’s simplex method [60, 160], its time-complexity is not polynomial.

Similar to the simplex and criss-cross methods, the conic sampling algorithm [66] moves
between vertices as well. However, it interchanges several bases each time with no restriction
of moving alongside the poly-tope edges. When arrive at a vertex, the conic sampling method
arbitrarily selects from a group of vertices associated with increased objective values, and moves
forward alongside the predetermined direction until encountering a newly imposed constraint. Such
a process is repeated till there is no more direction for improving the objective function and
satisfying the bounding constraints, implying optimality. Such a stochastic optimization procedure
is straightforward but effective, especially for highly constrained, sparse LP problems. Furthermore,
it could be reshaped and efficiently utilized to circumstances such as some quadratic programs that
evaluate projections onto poly-topes. However, the conic sampling’s worst-case time-complexity is
still exponential.

In comparison with the simplex methods that travel across the edges between neighboring vertex
pairs of the poly-tope for discovering an optimal result, the interior-point methods [172, 173, 171]
walk alongside the strict inner part of the viable region and seek a result in an iterative manner. If
the present result meets a predetermined accuracy, they terminate and possibly utilize alternative
approaches, moving downwards the closest vertex and attaining a precise result. The ellipsoid
algorithm [162] is a scheme first introduced by Khachiyan for tackling the linear programs to a
expected precision in polynomial time, which achieves an ellipsoid of minimum volume containing
the overlapping area of the viable region and the half-space that require the objective value with no
increment. Khachiyan’s algorithm proves the solvability of LP problems, however, its efficiency is
not as competitive as the simplex method. Inspired by Khachiyan’s algorithm, Karmarkar proposed
a projective method [163] in which a logarithmic barrier function is adopted for replacing the
constraints and the feasibility along with the optimality are maximized at the same time. The
projective algorithm is assured of tackling the LP issues with polynomial time-complexity. Unlike
the ellipsoid algorithm, it is practically quicker than the simplex algorithm, and motivates significant
attention of interior-point techniques. Other variants of the interior-point methods include the
simplified primal affine-scaling method [174] and the popular path-following method [164].

For the MRF optimization, such a class of approximation algorithms [63, 64, 65] first
systematically express the problem as a natural integer program and tackle the integer program
utilizing an LP relaxation, and subsequently employ an arbitrary rounding scheme for yielding a
near-the-optimum-integer result. To ensure a suboptimal solution, these techniques mostly suppose
a metric MRF potential function.

Linear-fractional programming (LFP) [175] is an extension of the LP, and accordingly its
objective function is a proportion of two linear functions. When the denominator is a constant
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function with the value of one everywhere, LFP becomes LP. The LFP problems can be tackled
applying a variant of the simplex method [61, 176] or the extended criss-cross strategy [177]. In
fact, linear programming has motivated numerous essential concepts in the optimization theory like
decomposition, convexity as well as duality.

3.2.5. Maximum margin learning method Maximum margin Markov networks [67] was proposed
for tackling the supervised classification problems with multiple labels and multiple classes,
which integrates the benefits of the support vector machines (SVM) and the graphical model.
Image segmentation problem can be modeled utilizing random fields like Markov random fields
(MRFs) and conditional random fields (CRFs). The joint probability described by them is
generally articulated with an exponential energy, which usually contains two parts: node energies
and interaction energies, modeling every random variable and dependencies between adjoining
variables, respectively. Traditionally, the energies are linearly depicted on the basis of unary
parameter and pairwise parameter. Maximum margin learning has been recently implemented for
shaping such a model discriminatively using the ground truth data for segmenting new images. The
idea is to evaluate the parameters of an energy functional, which enables the labeled samples to
achieve the smallest energy by the biggest potential margin.

Given a labeled training set, Anguelov et al. [68] applied the maximum margin framework to
optimize the parameters of a MRF model by finding the optimum compromise between edge and
node features. Such a training strategy produces the global optimum weights. Following the work
on maximum margin estimation for probabilistic models, the authors in [69] proposed an extended
framework for structured prediction models, based on the max-margin criterion that produces a
substitute of those probabilistic evaluation algorithms relying upon likelihood, via focusing on the
robustness of a model’s decision boundary. The learning algorithms defined in this framework
can efficiently detect the scoring function parameters, therefore the highest scoring structures
approximate to the expected structures on the training data. In [71], Szummer et al. reported
a method of high efficiency to learn multiple optimal parameters of random field models, with
reference to the maximum margin network and the structured SVM. They applied graph cuts to
precisely maximize the margin learning of parameters for sub-modular CRF and MRF, and ensured
the generalization to newly collected images through a big margin regularizer. In addition, the
authors addressed acquiring parameters of the non-submodular cases utilizing α-expansion that
generates nearly optimal results. These works suppose that an individual group of optimal weights
is applicable for all the testing images. However, the weights compatible with different images
could be completely non-identical. This provides motivation for tackling the parametric problems
throughout the time of testing. Kolmogorov et al. [70] learned the optimal parameters from the
training data utilizing the maximum flow approach, based on which a parameter range is provided.
For any image of the testing set, an individual optimal parameter is decided by a user from the
given range. The efficiency of the described scheme is not high, but it can be potentially boosted by
handling the parametric problems by means of techniques like min-path.

3.2.6. Other methods There are many other discrete approaches to energy minimization, including
the well-known earlier algorithms like simulated annealing (SA) [72, 74] and iterated conditional
modes (ICMs) [75]. SA is a stochastic optimization procedure which seeks an energy function’s
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global optimum in a large search space (mostly discrete space). Such an optimization process first
melts the system to be optimized at a high temperature, and after that lowers the temperature with
the help of slow stages till the system becomes frozen with no more variation. For every temperature
value, the simulation ought to continue before the system arrives at a stable condition. On the other
hand, ICM applies a greedy procedure to detect the local minima. Starting from an initial label
estimation, for every pixel, ICM votes for the label that makes the energy function value drop to
a large extent. By repeating such a procedure, rapid convergence can be ensured. However, the
optimization results are susceptible to the labeling initialization. Except for the entirely synchronous
option, ICM is comparable to instant freezing in SA.

3.3. Minimal surface method

Minimal surface is a surface locally minimizing the entire surface area under certain constraints,
which is comparable to possessing a zero mean curvature. This description can be expanded
to contain surfaces with constant mean curvatures. This is a convex optimization problem and
there are a number of numerical methods to tackle the minimal surface problems. Chopp [76]
introduced a method utilizing the level-set curvature flow model, where the mean curvature motions
supply flows which locally evaluate the minimal surfaces. The primary strategy is to estimate a
minimal surface through linking a surface with an identified boundary and making it proceed in
respect with the mean curvatures. Caselles et al. [77, 78] extended the geodesic active contours [8]
(a popular geometric optimization technique for 2D image segmentation) to 3D segmentation,
where the preferred boundaries are achieved by the computation of minimal surfaces within a
space obtained from the prescribed images. It indicates that the object extraction is comparable
to seeking a minimal surface via a deformation equation generated by its Euler-Lagrange. In [79],
Appleton and Talbot developed an approach to globally calculate the minimal weighted surface
for segmenting images via continual maximal flow in random Riemannian space involving scalar
measures. The increased reliability and accuracy rate corresponding to globally minimal surface will
benefit numerous current implementations employing graph cut or geodesic active surface (GAS).
In [80], the discrete minimal surface task was described and tackled on a 3D weighted graph.
A natural implementation of this minimal surface solution is the expansion of the 2D intelligent
scissors or live wire scheme [178] to 3D segmentation. Recently, Grady [81] extended the 2D
shortest-path segmentation techniques on weighted-graphs appropriately to 3D image segmentation
by tackling the minimal surface problems directly through the calculation of a circulation network
flow with minimal cost with regard to discrete differential geometry. To potentially alleviate the high
sensitivity to initializations associated with active contour/surface methods [8, 77, 78], Boykov and
Kolmogorov proposed a geocuts approach [12] to segment images which integrates geodesic snake
models [8, 179] with graph cuts. The graph cuts approach is utilized to obtain globally minimal
geodesic contours (2D) or surfaces (3D) in regard to randomized Riemannian metric in the event of
multiple boundary conditions.

In [180], Bates et al. presented a surface-free energy minimization method, where the minimal
molecular surface (MMS) is used for the modeling of complex biomolecules (e.g., proteins, DNAs
and RNAs). Under biomolecular constraints, the MMSs are generated by minimizing the mean
curvature of hypersurface functions in an iterative way according to the differential geometry theory.
The proposed MMS is capable of handling internal as well as open cavities, and is typically free
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of geometric singularities. As described in [181], the molecular surfaces can also be created by
applying high-order fractional partial differential equations (PDEs). Employing the fast fractional
Fourier transform algorithm, the proposed PDE transform provides a robust and efficient approach
for molecular surface analysis.

3.4. Primal-dual method

An optimization problem can be considered from either the primal perspective or the dual
perspective, which is called the duality. The way of solving a dual problem yields a (lower) bound to
that of a primal one (minimization problem) [182]. Generally speaking, a duality gap exists between
the solutions corresponding to these two problems. In case of convex optimizations, this gap equals
zero for a constraint qualification circumstance, i.e., the optimal result to the primal task is provided
by the dual one. There are many primal-dual algorithms proposed during the past decades for both
continuous and discrete optimization problems. Here we cover a few of them.

The dual task generally means a Lagrangian dual [183, 182], while the others include the Wolfe
dual [184, 185], the Mond-Weir dual [186, 187], and the Fenchel dual [188, 189]. In Lagrangian
dual problems [183, 182], the Lagrangian is formed by employing the non-negative Lagrange
multipliers for adding restrictions to the objective function, and after that finding the values of
primal variables which make the Lagrangian minimized. The purpose of the dual task is to make
the objective function maximized in accordance with some dual variables under restraints imposed
on them. Under specific circumstances, the Lagrangian duality gap relies upon the primal problem’s
nonconvexity [190]. In [191], Giannessi discussed the advancements of the Lagrangian duality
theory. The Wolfe dual problem [184, 185] is particularly a nonconvex optimization issue, where
the objective function as well as constraints are both differentiable, and the equality constraints
are generally nonlinear. It always reserves weak duality (the duality gap is larger than zero). The
Mond-Weir dual [186, 187] is an approach for the nonlinear programming problem, which modifies
the dual task for weakening the requirements of convexity. For convex and many generalized
convex problems, both Mond-Weir dual and Wolfe dual are two special examples of a certain
generalized Lagrangian dual [192]. The Fenchel’s dual theorem [188, 189] provides duality results
for constrained convex optimization problems, where the functions involved are a proper convex
function with its convex conjugate and a proper concave function with its concave conjugate. When
these functions together with the bounded linear mapping satisfy a constraint qualification, the
Fenchel dual reserves strong duality, i.e., zero duality gap.

In the linear programming optimizations where the objective function as well as its constraints are
both linear, the primal objective function linearly combines p variables. Each of the q constraints
gives an (upper) bound on it. The primal solution is a p-component vector which maximize the
objective function value depending upon the constraints. On the other hand, the dual objective
function linearly integrates q dual variables whose values correspond to the upper limit of the q
restrictions associated with the primal task, and accordingly each of the p dual restrictions imposes
a lower bound on it. The dual vector multiplies specified values which control the primal constraints’
positions. Altering the dual vector has the same effect as changing the primal (upper) bounds. For
example, the shortest path issue in a positively-weighted graph may be expressed as a particular
example of the min-cost flow, while the Dijkstra’s method [150] is a primal-dual technique which
tackles the dual task starting from zero. The well-known A* scheme is a primal-dual approach as
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well [193], which processes the dual problem starting from -h (the constant heuristic h has a positive
value).

In the nonlinear programming optimizations where the constraints may not be definitely linear, to
ensure an optimal result, the primal objective function is generally required to be a convex one and
has a dense sublevel set, i.e., Karush-Kuhn-Tucker (KKT) condition [194]. By enabling inequality
constraints, KKT method for nonlinear programming extends the Lagrange multipliers strategy
that permits equality constraints solely. In a standard nonlinear programming, the Lagrange dual
function can be expressed by introducing Lagrange multiplier vector or dual variable. As a pointwise
infimum corresponding to a collection of affine functions, the dual function has the virtue of being
concave and produces a lower bound on the primal optimal value. The strong duality holds in case
of convex primal problems with constraint qualifications (e.g., Slater conditions [195]). In [185],
Geoffrion generalized the duality theorem of nonlinear programming to advance more theoretical
and computational implementations. Unlike many other techniques, this approach does not employ
the conjugate function principles, conventional mini-max theory, or differential calculus. It depends
upon the comparatively fundamental theory of convexity and completely exploits the influential idea
of some specified perturbation function. The author stated three elementary theorems (namely weak
duality, strong duality, and optimality), and additionally established another six theorems relevant to
the primal and dual problems. Later, Mangasarian [196] investigated the second- as well as higher-
order duality issues in the nonlinear programming problems. It was shown that the weak duality
is reserved between primal problems and their corresponding dual Mond-Weir problems, when the
necessary and sufficient conditions are both satisfied, i.e., the primal is Mond-Weir weak duality
invex [197]. Recently, Ivanov [198] introduced first- as well as second-order duality in the WD-invex
problems, which are nonlinear programming problems under inequality constraints holding weak
duality between primal and dual tasks. They proved the converse, strict converse, weak, and strong
duality along with another several theorems for both first- and second-order WD-invex problems.
Compared with Mangasarian’s method, this second-order duality generalizes first-order duality, i.e.,
all the first-order duals are second-order duals for the primal problems. It was derived that every
first-order duality result is complied with in second-order circumstances.

In the convex optimizations, the primal problem can be coupled with a dual one engaging its
functions’ conjugates. In case of primal objective functions being strictly convex, the dual problems
can be specified with reference to a Moreau envelope, i.e., a smooth convex function that can be
differentiated continuously with Lipschitz continuous gradients. In [91], Bauschke and Combettes
mathematically explored the duality issue in convex optimizations. They addressed the interaction
between primal and dual tasks in the circumstances of Fenchel duality and Lagrangian duality, and
also the minimization with regard to both inequality constraints and equality constraints.

The idea of duality for handling the TV-based image restoration (ROF denoising) [199] was
first introduced in [10], where Chan et al. employed Newton’s method for tackling the primal-
dual ROF problem. This primal-dual Newton’s method has an advantage of quick locally quadratic
convergence. Later, Chambolle [200] reported a semi-implicit gradient descent method with regard
to the Lagrangian multipliers to tackle the dual problem of the ROF model. Due to its speedy
global convergence and simplicity, this approach became very prevalent. A unified framework
reformulating the primal-dual ROF problem to second-order cone programming was presented
in [201], where the problem is sorted out by the primal-dual interior-point scheme, namely
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MOSEK package. Essentially, the update direction in every iteration is solved utilizing Newton’s
linearization. Thus, the convergence rate of this approach is comparable to [10]. Recently, Zhu
and Chan [17, 18] developed a hybrid primal-dual gradient strategy of high efficiency, which
can be implemented for solving the TV and l1 minimization problems. It explores the primal-
dual information and swaps between the primal-dual formulations. Additionally, this decent-type
framework has a fairly higher convergence rate compared to other popular approaches like [10, 200].

3.5. Multi-objective optimization method

In multi-objective optimizations, all the terms of the energy functional are optimized concurrently,
where an optimal solution is achieved when no term can be refined without sacrifice of another
one. In [202], such a solution is called Pareto optimal solution, and a group of them at the end
of search is termed as tradeoff surface (or Pareto front). Among these solutions, no preference is
desired except a sorting is supplied amid the objectives. Collette and Siarry [202] divided multi-
objective optimization techniques into three groups: a priori optimization, progressive optimization,
along with a posteriori optimization.

Hanning et al. [203] proposed a framework for image segmentation employing a piecewise
approximation of images with continuous functions. This technique exploits the multi-objective
optimizations to balance the approximation error and the total segment number. To further enhance
the accuracy of image segmentation, Nakib et al. suggested an image thresholding algorithm
recently [204] for concurrent optimization of a few segmentation criteria utilizing multi-objective
optimizations.

3.6. Comparative studies

It is generally accepted that ICM usually has a low-quality performance [15] and the graph cuts
method is a massive advancement over earlier techniques like SA [47]. To evaluate the performance
of various optimization techniques, Tappen and Freeman [205] gave a comparison of graph cuts with
LBP, while Boykov and Kolmogorov investigated the effectiveness of several max-flow schemes for
graph cuts [206]. Szeliski et al. [14, 15] conducted a comparative study on four different energy
minimization approaches including ICM, LBP, TRW, and graph cuts with regard to efficiency and
accuracy. For the Potts model, graph cuts achieve a fairly good performance among which the
expansion method performs marginally better than the swap one. TRW-S has a similar performance
to graph cuts, however, it needs much more time to arrive at convergence. Regarding of highly
connected graphs with considerably higher connectivity, Kolmogorov and Rother [207] compared
LBP, TRW, and graph cuts, and observed that graph cuts perform rather better than the others. In
addition, the escalated connectivity in message passing techniques (e.g., LBP, TRW) does not result
in the growing of their complexity. They show exactly similar complexities of memory and time to
those of 4-connected grid-graphs with exceedingly smaller connectivity [14, 15].

3.7. Software package/toolbox

There are a number of software packages/toolboxes available for the implementation, evaluation,
and comparison of different energy minimization algorithms, including free/open-source packages
(e.g., ADMB, CVXOPT, NLopt, optimx, pyOpt) and commercial toolboxes (e.g., LINGO, Maple,
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Table II. Examples of existing software package/toolbox for energy minimization.

Software Brief Description References

ADMB A powerful software package for the development of nonlinear
optimization frameworks [211]

CVXOPT A free software package written in Python for convex optimization [212]
NLopt A free/open-source library for nonlinear optimization [213]

optimx A free package supporting the optimization of smooth, nonlinear functions
with at most box constraints [214]

pyOpt A Python-based free package for formulating and solving nonlinear
constrained optimization problems [215]

LINGO A comprehensive tool for solving linear, nonlinear, integer, and stochastic
optimizations [216]

Maple
A collection of commands for numerically solving optimization problems
(e.g., linear, nonlinear, quadratic, continuous, integer, constrained,
unconstrained)

[217]

MATLAB
An optimization toolbox consisting of functions for finding parameters that
minimize or maximize objectives while satisfying constraints (e.g., linear,
nonlinear, quadratic, multiple maxima, multiple minima, non-smooth)

[218]

Mathematica
An optimization package for solving large-scale multivariate constrained
and unconstrained, linear and nonlinear, continuous and integer
optimizations

[219]

MATLAB, Mathematica). Table II lists some of these popular software. Readers are referred to
CRAN [208] and Wikipedia [209, 210] for more information.

4. APPLICATIONS OF ENERGY MINIMIZATION

Energy minimization has been widely utilized in the analysis of medical images. The book edited
by Singh et al. [220] explores various earlier techniques based on deformable models and their
applications in medical images. In this section, we focus on the applications in medical image
segmentation, registration, reconstruction, motion tracking, and compressed sensing.

4.1. Image segmentation

Medical image segmentation is a particularly difficult process owing to a variety of reasons,
including i) low signal-to-noise ratio (SNR) in images owing to the inherent limitations of the
imaging acquisition technology, ii) image artifacts because of motions from patients or short
time for data acquisition, iii) uncertain object boundaries due to the blending of soft tissue with
surrounding tissues, and iv) large tissue variability among the population. To tackle the problems,
energy minimization techniques have been extensively investigated and popularly utilized in the
segmentation of medical data. Examples include corpus callosum [221, 222, 223, 224], basal
ganglia [223], ventricle [223] and cortex [225] of the brain, left ventricular (LV) myocardium
(endocardium and epicardium) of the heart [221, 222, 179, 225, 27], bone [179], femur [224],
vertebrae [224], prostate gland [27, 40], breast cyst [179], and the bounding wall of the liver [225].
Table III lists some example image data for performance evaluation of the energy minimization-
based segmentation algorithms. We can see that most of these algorithms can be applied to 2D and
3D medical image data of various imaging modalities (e.g., MRI, CT, and ultrasound) and some of
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Table III. Examples of medical image data used in energy minimization.

Medical Image Data Set References
2D MRI brain corpus callosum [221, 222, 223, 224]
2D MRI brain basal ganglia [223]
2D MRI brain ventricle [223]
2D cardiac MRI (LV myocardium) [221, 222, 179, 225, 27]
2D CT bone [179]
2D MRI femur [224]
2D ultrasound breast cyst [179]
2D liver wall [225]
3D MRI brain cortex [225]
3D MRI vertebrae [224]
3D pelvic MRI (prostate gland) [27, 40]
Multi-dimensional (ND) data [27]

them can be further generalized to handle multi-dimensional data. These energy minimization-based
segmentation techniques can be roughly grouped into several categories discussed as follows.

4.1.1. Graph-based approaches A graph cut is a subgroup of edges separating the object terminal
from background terminal, and the cost of each cut is calculated by adding the costs of those
edges that the cut splits. According to combinatorial optimization, the segmentation problem in
graph cuts is solved by minimizing an energy function formulated by the boundary term and
region term [19, 152], where a graph is a group of nodes/vertices that represent the image
pixels/voxels, along with edges that connect the node pairs. Every edge in the graph is allocated
a weight/cost of zero or positive value. A graph cut is actually a subgroup of those edges,
which split the graph nodes into separate groups. The graph cuts techniques have been popularly
applied for segmentation in numerous approaches, including image segmentation [226, 227] and
volume segmentation [12, 228]. Essa et al. [229, 230] applied graph cuts for the segmentation of
intravascular ultrasound (IVUS) images, where the media-adventitia (MA) border is automatically
detected without user intervention, based on the minimization of a cost function derived from
features like edge/boundary, shape prior, and texture. The authors in [231, 232] incorporated the
edge-based and region-based constraints with graph cut and superpixel for interactive segmentation
of the MA border in IVUS images and lumen border in optical coherence tomography (OCT)
images. In [233], Li et al. validated the 3D surface segmentation in medical volumes employing
graph cuts, but this process is computationally expensive. To improve the efficiency, Yuan et al. [234]
applied only one layer of over-segmentation regions instead of voxels to segment medical volumes.
Similarly, Lombaert et al. [235] reduced the computation time significantly, where a resolution
pyramid was utilized to refine the segmentation results in a hierarchical fashion.

In [49], random walker was presented for accomplishing multi-label image segmentation based
on a small set of prelabeled pixels. This method is established on a traditional graph and yields
segmentation results by separating quantities specified at the graph vertices. Every unseeded pixel
is associated with the seed point label. Such a seed point is the one which a random walker could
most possibly approach first, starting from the unseeded pixel, provided that it tends to keep away
from crossing the boundaries of objects. Later, Sinop and Grady pointed out that random walker and
graph cuts are two specific instantiations of a general seeded image segmentation framework [51].
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To simultaneously extract the inner and outer walls of the lymphatic vessel in confocal
microscopy images, Essa et al. [236, 237] developed an approach based on the hidden Markov
model (HMM). The segmentation problem is transformed into minimizing the cost of an s-excess
graph, where each graph node corresponds to a hidden state and its weight is defined by the
emission probability inferred from two separate Gaussian probability distributions for the vessel
borders and background. The inter-relation between neighboring nodes is specified with respect
to the transmission probability learned from the Baum-Welch algorithm. In order to minimize
the number of tracking points, they employed radial basis functions (RBFs) to parameterize the
vessel borders. By applying the s-t cut technique, an optimal solution of the s-excess graph can
be obtained in polynomial time. Similarly, Jones et al. [238] segmented the lymph vessel wall
automatically by combining optimal surface segmentation (OSS) with HMM. The OSS is utilized
to carry out a pre-segmentation of the images, which produces the initial state for the subsequent
HMM-based segmentation stage. Although weak edges and noise exist in confocal images, a smooth
and coherent extraction of both vessel boundaries is attained, leading to a good visualization of 3D
vessel structures.

4.1.2. Level set-based approaches Level set-based segmentation [239, 240, 8, 241] involves
minimizing the energy-based snakes by calculating the geodesics or minimal distance curves. A
curving contour is first placed in a high-dimensional surface as a zero-level set, which is then
deformed for the minimization of a standard measurement described in terms of image gradient
and curvature. Various level set-based approaches have been proposed in the literature. Lorigo et al.
defined the segmentation problem as minimizing an energy over all 3D curves [242] and applied the
level-set scheme for hunting a result. This method extends earlier level-set segmentation approaches
to higher co-dimensional cases. To segment image data consisting of two or three types of regions
that are identifiable using predetermined statistics, Yezzi et al. described a new statistical method
for snakes [243], in which the active contours are evolved using both the local and global image
information, and the level-set method is utilized in the implementation to enable initial contours
to merge and split automatically. Guo and Vemuri [244] embedded the snake pedal into a level-
set scheme, allowing the model to manage topological changes without interference. To overcome
the difficulties associated with traditional point models for shape representation using a group of
marker points, Tsai et al. [26, 27] applied an Eulerian scheme for the description of shapes utilizing
the level-set techniques presented in [239]. In [245], Yeo et al. described a variational approach
for level set segmentation with statistical shape prior. By employing kernel density estimation, the
integrated shape information allows the proposed model to efficiently deal with complex shapes
from noisy and occluded images.

In traditional sequential methods, segmentation and interpolation are performed separately in
turn. Some approaches first carry out segmentation of the slices and then interpolate a 3D surface
from the segmented 2D contours, while other approaches apply interpolation of the slices first to
reconstruct a 3D volume, followed by 3D segmentation. Both of them have limitations in processing
3D and 4D sparse medical data. In [246], the authors achieved segmentation and interpolation
simultaneously by incorporating them into a RBF-interpolated level set framework, where the
flexibility of level set methods, the numerical stability of RBF-interpolated level set segmentation
methods, and the interpolation abilities of RBFs are combined. The interpolation exploits the
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Table IV. Examples of level set implementation in curve evolution.

Level Set Implementation References
Standard level set [239, 241] [243, 249, 250]
Coupled level sets [225]
Dual level sets [248]
Multiple level sets [40]
Multi-phase level sets [252]
Combination of standard and
localized level sets [253] [247]

segmenting surface and its shape information instead of pixel intensities, leading to higher
robustness and accuracy. Additionally, the outlined algorithm supports any spatial configurations
of 2D slices with arbitrary positions and orientations.

To keep the computational complexity at a reasonable level, various level-set techniques (see
Table IV) have been widely used for the implementation of the curve evolution in both parametric
models [243, 247, 40, 248] and non-parametric models [249, 250]. Compared with parametric
boundary representations, the level-set formulation is independent of parameterization and can
cope with topological changes (e.g., splitting and merging of boundaries) during deformation. To
enable free initialization of contour/surface and handle more complex topological changes in the
image data, Xie and Mirmehdi [251] brought the RBF-interpolated level sets into the region-based
active contour model. In comparison with conventional level set-based frameworks, the proposed
implicit active model does not require periodic re-initialisation and enables coarser computational
grid, potentially benefiting the modelling in high-dimensional spaces.

4.1.3. Deformable model-based approaches Among many energy minimization approaches,
deformable models gained popularity in segmenting medical images after Kass et al. introduced
the snakes model [1]. In deformable models, a curve or a surface is able to evolve, controlled by the
internal constraints preserving the model smoothness throughout the deformation, and the external
constraints drawing the models to desired features in the images (e.g., object boundary). The typical
internal forces are shape priors, while the external forces mainly include multi-scale Gaussian
potential force [1], pressure/balloon force [7, 8, 254, 255], gradient vector flow (GVF) [256, 257],
distance potential force [258], dynamic distance force [259], interactive spring and volcano
forces [1], curvature vector flow [260], diffused region forces [261], Lorentz force [262], geodesic
GVF [263], geometric potential force [264, 265], and magnetostatic forces [248]. Deformable
model-based approaches can accommodate to complicated variations in object shapes and integrate
shape priors for regularizing segmentations. In the literature, deformable models are referred to
with a variety of names, e.g., deformable contours or surfaces, active contours or surfaces, snakes,
balloons, etc. Figure. 1 shows several examples of using deformable models for contour/surface
extraction.

The representation of object boundaries and utilized external force fields usually vary in different
deformable models. Accordingly, previous strategies can be categorized into several groups:
gradient-based approaches [257, 263, 248], region-based approaches [267, 250, 268], shape-based
approaches [269, 270, 271, 92], and hybrid approaches [261, 272]. Depending on the variety
of the representation of the curve/surface evolution during deformation, some techniques can
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Figure 1. Examples of medical image segmentation using deformable models. (a) 2D heart LV inner
wall extraction [256] (circle: initial contour; curve: final result), (b) 2D spinal vertebrae boundary

extraction [266], and (c) 3D cerebral artery extraction [265].

be categorized into explicit models or parametric models [1] and implicit models or geometric
models [273].

Boundary/gradient-based deformable models The classical snake models [1] are used
extensively in medical image segmentation. Starting from an initialized curve near the object, the
curve keeps moving towards its interior normal and stops at the desired object boundary. An edge
detector relying upon the image gradient features is generally used as the constraint to stop the
curve evolution. However, the fundamental issues related to initialization and slow convergence to
the concavity of the boundaries hinder the applications of them. In case that they are not placed in
the vicinity of the contours, the traditional snakes would not be drawn by them and may straighten
to a line. An early solution was developed by Cohen [7], which adds a deflation/inflation force to
the contour attempting to shrink/grow it towards edges. In this approach, the convergence does not
require the starting curve to be in the neighborhood of the solution. The curve neglects weak edges
and stops so long as a strong edge is met.

The geometric snakes [274] and succeeding geodesic snakes [8] (GAC) are both novel schemes
for the extraction of object boundaries. The proposed approaches formulated the classical snakes or
active contours approach as discovering the geodesics or curves of minimal distance in Riemannian
space acquired from the image content. The shortest curves are those along the edges of the
image, thus GACs are able to automatically shrink the curves to the edges. This technique enables
concurrent identification of internal as well as external boundaries in multiple objects with no special
procedure of contour tracking and it does not require special stopping criteria. Yezzi et al. [179]
developed a similar method for detecting edges and segmenting medical images on the basis of
the image-dependent Riemannian metrics along with corresponding flow of gradients for the active
contour models. However, they still have troubles with handling the image noises, weak edges, as
well as boundary concavities.

Rather than rely on a constant force, Xu and Prince [257] introduced a novel external force model
termed GVF (gradient vector flow) field which extends the influence of edges off into homogeneous
image regions, thus expanding the boundary capture scope of snake models. The generalized
GVF [256, 257] further improves the performance. However, it has convergence problems, due
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to the saddle/stationary points in the force field. Later, Xie and Mirmehdi [248, 275] proposed a
model based on the edge information: MAC (magnetostatic active contour) model, introducing a
fresh external force field constructed from the presumed magnetic force between object boundaries
and active contours. The MAC model demonstrates remarkable advancements in handling broken
boundary, weak edge as well as complex geometry. The drawback of this approach is that it is
difficult to directly apply its magnetostatics-based analogy to high-dimensional images including
3D images. In [265], Yeo et al. presented a deformable model for 3D images where a geometrically
induced external force field was introduced, termed geometric potential force (GPF) field. In
order to automatically facilitate the topological changes, level-set scheme is utilized to evolve this
deformable model. Owing to the bi-directionality of the GPF field, the proposed 3D model can
adapt to any cross-boundary initializations. This will help the segmentation of complex geometries
and favors the processing of broken boundary and weak edge in images. By strengthening the
geometrical interaction field using a non-local algorithm that preserves edges, this model can
successfully deal with noise in images. In comparison with the magnetic force field [248], the
described vector force field is a generalized extension of the MAC field. However, its expansion
to higher-dimensional images is rather straightforward.

The gradient-based approaches have been proved effective in case that the gradients in images
are practical indicators of object boundaries and the prior knowledge is limited. However, these
techniques need good initialization and they may have difficulties to accomplish invariance of
initialization and robustness of convergence, particularly for the segmentation of 3D image objects
with complicated shapes and geometric structures. It is worthwhile to note that Xie developed
a snakes model employing edge information that is invariant to initializations [275], offering
considerable space for contour initialization.

Region-based/edge-free deformable models In the classical active contour models, the stopping
term generally depends on the gradient of the image. For objects with blurred boundaries owing
to their inherent nature or noises, the gradient-based snakes methods are not applicable. In
order to overcome the difficulty, Chan and Vese [89] proposed a new model integrating several
algorithms including curve evolution, level-sets, and Mumford-Shah function [82], which is capable
of extracting objects of interest in an image with boundaries that are smooth or not necessarily
described with respect to gradients. The initialized curve may be at any place in an image
and internal contours are extracted automatically. This technique is denoted as ACWE (active
contours without edges), which has turned to the canonical example of energy minimization for
image segmentation. In [276], Tsai et al. presented a comparable technique to tackle the issue
of simultaneous segmentation and smoothing of an image, which addresses the Mumford-Shah
paradigm from an aspect of curve evolution. Both methods assume the image consists of regions
with intensities that are roughly piecewise constant, and subsequently extract the objects according
to the average intensities in both sides of the contour. The methods are able to extract objects with
boundaries that are smoothly diversified. However, they may have problems in manipulating image
regions with inhomogeneous intensities. In such cases, a piecewise-smooth approximation will be
more suitable. Thus, Chan et al. [277] developed an extension to the piecewise-smooth function. In
addition, other region-based approaches [243, 247] supposed that the objects in an image are made
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up of different regional features (e.g. means, variances, textures). In practice, this is generally not
the case for real images because of inhomogeneous intensities and the nature of multi-modality.

Shape-based deformable models In case both boundary and region statistics cannot be derived
from the image, shape prior information is useful that provides resilience to noisy, missing or diffuse
boundaries. A variety of models [278, 269, 270, 224, 279, 271, 280, 27, 281, 282, 283, 92] have been
successfully developed to secure the boundary smoothness by means of minimizing the curvature,
segmentation area, curve length, or the dissimilarity between the shape of the segmentation and
some prior model of the shape.

Unlike previous methods that designed individual shape models specific to particular shapes,
the authors in [221] integrated the global shape information into segmentation task, utilizing an
elliptic Fourier decomposition of a large number of salient feature points to parameterize the
segmenting curve, and then adding Gaussian priors to the coefficients of Fourier decomposition.
Cootes et al. [269] designed a parametric point distribution model to describe the segmenting
curve by linearly combining the eigenvectors that reflect variations in the mean shapes. To locate
an object’s boundary, Wang and Staib [223] constructed a statistical model of shape variations
based on the correspondence points in a group of training samples. Throughout the optimization
process, the parameters of both the pose and shape are searched concurrently, yielding a more
desirable optimum. During the searching process, they adopted consecutive penalizing criteria with
regard to a Gaussian distribution obtained from a training set for the prior parameters of pose and
shape. Moreover, the proposed optimization technique is more efficient and robust than the one
presented in [269]. In [284], Duta and Sonka applied an active shape model (ASM) for extracting
subcortical structure from MRI brain image data, which integrates an outlier detection scheme in
every deformation process. Following that, Frangi et al. introduced a novel framework [285] to
produce salient feature points automatically for the construction of 3D statistical shape model, in
respect with automatic detection of a compact feature point mesh from an atlas built on the training
shape samples. Later on, these extracted salient feature points will be warped to every shape in
the training set by means of a non-rigid volumetric registration procedure employing hierarchical
B-spline deformation models.

Leventon et al. presented a prior parametric shape model [224], which incorporates prior shape
information into GAC model [8] to restrict its flow. The segmenting curve evolves according to
the gradient force of the image and the competing force exerted by the estimated shape. The shape
parameters are calculated based on the image gradients and the current curve position. In [26, 27],
Tsai et al. proposed a method for curve evolution employing the shape information to segment
medical images with known object categories. Motivated by Leventon’s work [224], they obtained a
parametric model to represent the segmenting curve implicitly, where principal component analysis
(PCA) is applied to an accumulation of signed distance functions representing the training data.
After that, they calculated the parameters of such an implicit representation via gradient descent
to make a region-based energy function minimized [89] for segmentation. During the training
phase, point correspondence is not required, as the implicit representation is set in an Eulerian
framework. This method could cope with topological changes of the segmenting curve, and it is
robust to contour initializations and noises. To further improve the performance, the authors in [40]
extended the shape-based deformable model [26, 27] to multiple shapes. The new segmentation
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Table V. Examples of shape representation in energy minimization techniques.

Shape Representation References
Explicit parametric contour/surface model [1, 286, 258, 287]
Explicit spring-mass model [3, 288]
Explicit figural model (M-Reps) [289]
Explicit topology adaptive contour/surface model [290, 291, 255, 292]
Elliptic Fourier decomposition of various landmark points [221]
Parametric point distribution model with variations from
the mean shape [269]

Statistical point models obtained from a training set using
PCA of the covariance matrix [223]

Graph-based shape representation [146, 293, 19, 152, 12, 13, 49]
3D statistical shape models with a dense mesh of
landmark points from a training set [285]

Prior parametric shape model incorporating shape priors
into GAC model [224]

Tubular spring-mass model (vessel crawlers) [294]
Implicit parametric representation of a single shape by the
signed distance function [239, 8, 26, 27]

Implicit representation of multiple shape classes by
multiple signed distance functions [40]

Implicit representation of shapes by probability maps [92]
Implicit multi-class shape representation [295, 267, 296]
Graph-based multi-class shape representation [152, 297]

framework enables simultaneous segmentation of multiple shapes by employing multiple signed
distance functions implicitly representing the multiple shape types in an image. To obtain a coupling
between these shapes and capture the co-variations among them, a parametric model is derived for
such a newly proposed representation where PCA is applied to an accumulation of multiple signed
distance functions. In order to minimize the cost criterion based on mutual information, this multi-
shape model’s parameters will be estimated subsequently. The resulting algorithm has the ability of
capturing large shape variabilities and it achieves good robustness to additive noise.

For shape-based segmentation algorithms, the representation of various shapes is of great
significance. Table V gives some examples that can represent single or multiple shapes with high
computational efficiency and accuracy, are effective in acquiring large shape variabilities and are
capable of dealing with topological changes.

Hybrid deformable models Gradient-based boundary finding and region-based segmentation are
two conventional approaches to medical image segmentation. Both methods have their advantages
and limitations. To integrate the strengths of the two approaches, Chakraborty et al. [222, 298]
formed a hybrid segmentation model by applying the Green’s theorem to obtain the boundary of a
homogeneous area with classified regions and combining it with a boundary finder involving gray-
level image gradients. Such an integrated method achieves robustness to noises as well as poor
boundary initializations. The authors in [299] proposed a unified framework to match an atlas to
a target image using intensity as well as shape information. The deformable anatomical atlas can
be built using a statistical appearance model constructed from a set of labeled training examples,
delineating acceptable variations in intensity and shape in medical images.

In [300], the directions of image gradients are employed for the measurement of alignment, in
combination with the criterion of minimal variance [89] and the geodesic active contour (GAC). The
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author applied this alignment measurement to optimize the curve orientation according to image
gradients. In association with the geodesic measurement based on image gradients as well as the
criterion of minimal variance based on image regions, the alignment measurement is later utilized
to attract the contour toward image boundaries. To link the gradients and regional information
effectively, the parameters of different measurements need to be tuned carefully. Moreover, in
this alignment measurement, the author exclusively adopted the local information of edges without
considering the edge information of those pixels with a large distance from the contour.

In [272], Bresson et al. developed a variational model for segmenting objects in medical
images, attempting to incorporate the complementary shape, piecewise-constant, and edge terms
into one formulation. With many different competing presumptions on the images and objects
intrinsic in every formulation, a trade-off of a certain extent should be constructed in the final
functional, namely, the weights of different terms ought to be assigned. Otherwise, the weights
may result in remarkable errors. McIntosh and Hamarneh [301] proved that optimizing the weights
can dramatically reduce the errors in big data sets. Nevertheless, manual optimization of these
weights is time-consuming and boring even for one image, without assurance of achieving accurate
segmentation results. A variety of recent works [70, 301, 302, 303] attempt to find a way of assigning
the weights automatically.

Coupled deformable models In the literature, various coupled snakes models were developed
for segmenting the medical image data. For objects like brain cortex with an almost unchanging
thickness, they can be modeled in terms of a volumetric layer described by two bounding surfaces
along with the in-between homogeneity. Inspired by this truth, Zeng et al. designed a coupled-
surface propagation scheme [225], in which both embedded surfaces are evolved concurrently to
identify the internal along with external object boundaries in brain cortex images. In this technique,
every deforming surface is controlled by a coupling force as well as an information force acquired
from the image, preserving a certain distance between the two surfaces. Chan and Vese [252]
proposed an efficient multi-phase level-set formulation to segment images based on the piecewise-
constant Mumford-Shah model, where only p level-set functions are required for the representation
of 2p image segments. These functions are coupled with each other via an energy functional. To
evolve several sets of contours concurrently, the authors in [243, 247] obtained multiple curve
evolution equations coupled with each other from only one global energy functional. In this
coupled curve evolution model, the evolution of every curve always relies on each image pixel
and it is coupled to every other curve evolution straightforwardly, despite the mutual proximity of
them. Similarly, Tsai et al. presented a parametric multi-shape model [40] for the segmentation of
medical images. The proposed model is capable of obtaining a coupling between multiple shapes
and capturing predominant co-variations that are shared in various types of shapes. Since the
deformation of a shape always relies on every other shape despite their proximity, the benefit of
adopting only one mutual information-based cost criterion is that it can enhance the multi-shape
coupling more likely.

Mutual information-based deformable models Mutual information (also known as relative
entropy) fundamentally comes from the information theory (refer to [304]), which statistically
evaluates the dependence between variable pairs or the information one variable holds for another
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one. It has been introduced for the segmentation of images recently. In [249, 250], Kim et
al. presented an information-theoretic technique integrating curve evolution with non-parametric
statistics, where the image segmentation task is formulated as maximizing the mutual information
shared between region labels and pixel intensities, susceptible to the constraints on the entire
boundary length of regions. The optimization of such an information-theoretic task is solved by
utilizing the curve-evolution strategies and acquiring the corresponding flow of gradients. Because
of the non-parametric aspect of this formulation, the proposed technique has no limitations on the
probability distribution for the image regions or desire the a priori extraction of representative
statistics for each region, when compared with many currently available curve evolution-based
techniques. The authors in [40] developed a parametric model for multiple shapes that is combined
with a framework relying on mutual information for the segmentation of medical images. The
parameters of this model are estimated for the minimization of the generalized energy function
based on mutual information that was originally suggested in [249] for segmenting images.

The segmentation schemes based on mutual information solely presume that the pixel intensities
in individual image regions are statistically dependent with each other, and have no requirement of
a specific probability distribution for these regions. In comparison with edge-based methods and
those statistical models relying on mean/variance, the mutual information-based models are able to
automatically deal with a broader scope of segmentation problems.

Explicit deformable models In explicit deformable models (or parametric deformable
models) [1, 7, 221, 287, 305, 306, 70], surfaces or curves are represented with regard to their
parametric form explicitly throughout the deformation, which are capable of tracking the points
on curves/surfaces over time. This enables the user to interact with the model directly, leading
to a representation that can be easily implemented in real time. To locate the object boundary
in an image, parametric curves are initialized and then pushed to advance towards the potential
energy optima by the constraints of internal and external forces. Numerically, parametric deformable
contours can be implemented using the greedy algorithm [141], finite difference method [1],
and dynamic programming [307]. On the other hand, parametric deformable surfaces can be
implemented by utilizing the finite difference method [308] and finite element method [309, 287].
The finite difference approach is very efficient and it only needs local operations, while the finite
element technique is computationally expensive, but it can be easily modified to suit deformable
surfaces represented by irregular meshes.

Due to the parameterization of the surfaces or curves, explicit models usually have troubles in
coping with topological changes like splitting or merging throughout the deformation. To tackle the
difficulties, McInerney and Terzopoulos proposed deformable models adaptive to topologies [255],
where the deformable surfaces are formulated in regard to an affine decomposition of cell images
so as to process the topological changes which can generally be found in medical images. In
this model, a periodical reparameterization scheme is needed for dealing with complicated shapes
and topological changes. The presented method can be easily applied for the segmentation of
complicated anatomies in medical images, but this model achieves good performance only if it
is needed to inflate/deflate everywhere, thus hinder its applications in practice. Besides, there are
many other approaches [310, 311] available in the literature for handling topological changes. In
these methods, a range of heuristic schemes are usually utilized for extracting self-intersections and
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manipulating splitting/merging during deformation, which may take much time. Furthermore, they
may have a poor performance in case of working on complicated topological structures.

Implicit deformable models In order to overcome the shortcomings of explicit deformable
models, implicit models (or geometric deformable models) [274, 240, 273, 8, 179, 244, 26, 300, 27,
263, 40, 261, 265] were proposed, in which surfaces/curves are implicitly depicted by a level-set
embedded in a high-dimensional scalar function, based on the prevailing level-set technique [241]
and the theory of curve evolution [312, 313]. In implicit deformable models, the curves/surfaces
evolve according to geometric measures (e.g., curvature, unit normal). The parameterizations of
them are independent of the evolution, thus adaptivity to topological changes can be accommodated
automatically. The numerical implementation of implicit deformable models can be achieved by
using the methods described in [76, 273, 241]. These methods have been popularly utilized for
segmenting anatomical structures in volumetric medical images [314, 27, 40, 315, 316].

Numerous extensions have been proposed to the traditional parametric and geometric deformable
models by incorporating additional prior knowledge together with global shape properties into
the models, leading to more robust and accurate results. Especially, the integration of global
shape properties can remarkably increase the robustness of initialization. In [221], Staib and
Duncan presented a Fourier representation for the parameterization of deformable surfaces and
contours. By truncating the series, they acquired a compact representation of smooth shapes. For
the characterization of global shape property, the authors attained a geometric shape description as
well. In this technique, a Bayesian approach is employed for incorporating the prior information,
and the maximization of the posterior probability function is accomplished utilizing an algorithm
of gradient ascent, which can be secured through other means (e.g., genetic algorithm [317]).
Terzopoulos and Metaxas [309] proposed a deformable superquadric approach which combines
global as well as local shape features. This deformable superquadric model has been extended
to multi-resolution shape modeling [318] and multi-level shape representation [319]. In [318],
Vemuri and Radisavljevic exploited the multi-resolution wavelet decomposition to parameterize
local deformations, which provides a powerful transformation from local descriptors to global shape
deformations. In [319], Metaxas et al. achieved a hierarchical shape description for dense along with
sparse range data, utilizing the locally adaptive finite element technique and global deformation
of the dynamic model. To integrate the prior information of shapes, Cootes et al. developed the
ASM models [320, 269], where the prior models are based on a set of aligned landmark points
manually labeled on the training images, instead of the parameterization. To describe the variability
in the coordinates of every point as a prior model, they designed the point distribution model. The
model is employed to restrict the action of deformable models [284, 223], which exclusively allows
deformations producing shapes indistinguishable to those of the training examples. As the prior
models of ASM do not contain intensity variation across images, Cootes et al. extended the ASM
to active appearance models (AAM) [321, 299]. The prior model of AAM represents shape as well
as texture variations of the objects across images, leading to more robust results. In [244], Guo
and Vemuri proposed extensions to a geometric deformable model by integrating the global shape
prior information. Like traditional geometric models, this hybrid model can automatically manage
topological changes. The authors in [322] presented a robust topology independent solution for
segmenting the left ventricle and right ventricle in cardiac images utilizing an implicit deformable
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model that is constrained by the conditional random fields (CRFs). By employing a graphical
model, this deformable model is successfully incorporated with the CRFs strategy. The model
deformation is completed by estimating a maximum a posteriori (MAP) problem, in which the
desired conditional probability is divided into two terms: the internal one and the one driven by
images. In this framework, both patch- and pixel-based discriminative CRFs are applied to attain
smooth probability fields with respect to the corresponding image features (i.e., the pixel intensity
and the multi-scale texture). Moreover, the variations of local features are handled by refreshing the
model interior statistics.

4.1.4. Atlas-based approaches In atlas-based medical image segmentation techniques, some
specific anatomical structures of interest are first labeled by an expert from images collected by
different imaging modalities like MRI and CT. The manually labeled diagram is called atlas, which
contains the prior knowledge and captures the anatomical variations in the medical data. The
relevant anatomies are then extracted based on the atlas, which can help the clinicians to diagnose
diseases. These atlas-based segmentation methods have been popularly utilized in numerous
clinical tasks, e.g., kidney and renal cortex extraction for perfusion measurement, coronary artery
segmentation for tracking coronary vessels, brain structure segmentation for disease diagnosis, and
heart detection for cardiac analysis [323, 324, 325].

Image alignment/registration plays a crucial role in atlas-based segmentation, which finds a
mapping between a target image to be segmented and a reference image by minimizing a predefined
energy function. A variety of algorithms have been presented in the literature, including affine/linear
registration [326] and nonlinear registration [327]. Mostly, these atlas-based techniques label the
target structures in an automated fashion. Han et al. [324] designed an automatic atlas-based
algorithm to segment the head and neck data, utilizing a hierarchical registration method that
incorporates both linear and nonlinear registrations. Bauer et al. [328] developed a non-parametric
framework for the identification of normal tissues in 3D brain tumor image data, relying upon
atlas segmentation that combines non-rigid atlas registration with a tumor growth model. In [329],
Fortunati et al. presented an atlas-based approach to automatically extract thermo-sensitive tissues
from the CT head and neck images. Taking the large variation in such anatomies into account,
they integrated atlas-based registration with intensity-based classification. Graph cuts are utilized to
minimize a specified cost function globally.

To further increase the segmentation accuracy, multi-atlas-based segmentation was introduced,
where multiple atlases are involved. Klein and Hirsch automatically identified the large cortical
structures in MRI brain data combining multiple atlases [330]. The authors in [331] proposed
an automatic algorithm for the segmentation of brain anatomies. They combined different atlas
segmentations employing a fusion strategy at the decision level, in which each segmentation is
propagated to another one according to the estimated anatomical correspondence between an atlas
image and a target image. Later, Lijn et al. described an automated scheme to accurately segment the
hippocampal volume (hippocampus) from the MRI brain images [332]. The atlas-based registration
is incorporated into the voxel-based classification. By employing graph cuts, a cost function is
minimized globally, which is made up of both intensity energy and prior energy including spatial
prior as well as regularity prior terms. The presented approach achieved a better performance than
the multi-atlas-based segmentation techniques.
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Table VI. Examples of measurements for the performance evaluation of energy minimization algorithms.

Performance Metric References
Average Euclidean distance [221, 299]
Squared Euclidean distance [222]
Boundary maximum error, boundary average
error, and correspondence average error [223]

Undirected partial Hausdorff distance [337, 224]

To enhance the segmentation performance, atlases yielding good results can be selected according
to some criteria like minimum Hausdorff distance [333], and multiple atlas results can be weighted
and combined using some fusion strategies such as majority voting [334, 335, 336].

4.1.5. Performance evaluation As illustrated in Table VI, various measures have been used to
assess/validate the similarity/agreement between the segmented boundary/contour and the ground
truth. Most of them are based on the average distance between the corresponding point pairs on
two cruves/surfaces. Sometimes, the goodness of a segmentation algorithm is subjectively and
qualitatively rated by an expert (e.g., radiologist) [27].

4.2. Image registration

One of the fundamental problems in the medical image analysis field is the registration (also known
as alignment, fusion, or matching) of the volumetric images captured by the same imaging modality
or at different time points, due to the continuous movement of the anatomical tissue undergoing
examination. On the other hand, multi-modal registration of medical images plays a crucial role in
clinical practice by integrating the complementary information from multiple images of the same
subject that are collected by various imaging modalities. For instance, by registering the MRI images
in neurosurgery with the CT images in the established stereotaxy technology, it becomes possible to
transfer the tumor coordinates from MRI images to CT stereotaxy. Similarly, for the analysis of brain
functions, PET image data yield functional information, whereas MRI images contain anatomical
information, thus it is helpful to correlate functional information from PET with MRI for anatomical
reference.

Image registration aims to recover the geometric relationship between corresponding points in
multiple images. Various schemes have been implemented to tackle the medical image registration
problems. The authors in [338] discussed and classified the earlier approaches concerning the
registration of multi-modal images. Following that, Maintz and Viergever presented a review on
medical image registration techniques covering the literature between 1993 and 1998 [339]. Later
in 2003, Pluim et al. provided an overview on mutual information-based registrations [340], and
Maes et al. gave a survey on the registration criteria of maximizing the mutual information and their
applications for 3D medical image registration [341]. All of these three papers provide a valuable
collection of registration algorithms for both mono-modal and multi-modal images.

4.2.1. Mono-modality image registration The medical image registration problem can be modeled
as an energy minimization framework. An earlier approach was proposed by Bookstein [342]
for the registration of medical data captured using the same imaging modality, employing
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Figure 2. Examples of 3D mono-modality image registration [347].

the decomposition of deformations through principal warps. Later, Gueziec and Ayache [343]
developed an efficient technique based on geometric hashing for rigid registration of 3D curves
extracted from CT vertebra and head images. A locally affine deformation algorithm for non-rigid
registration of two surfaces was presented by Feldmar and Ayache [344], which has no requirement
of a prior parameterization or the topological information of the surfaces. In [345], Lavallée and
Szeliski introduced a 3D distance map depicted by an octree spline for efficient and accurate
registration of 3D anatomical surfaces with a set of 2D projections. Rueckert et al. described a
non-rigid approach to align 3D MRI breast images [346]. By interpreting the local and global
breast motions with freeform deformations and affine transformations respectively, they obtained
a completely automatic registration based on energy minimization. As a result, the presented non-
rigid registration method sufficiently reduces the motion artifact in many breast image pairs and it
outperforms other rigid/affine registration schemes for matching volumetric breast images. Figure. 2
shows a few examples of 3D registration results across two MRI brain volumes.

To embed the utilization of explicit a prior information into a deformable model, Bajcsy and
Kovacic developed a multi-resolution elastic registration algorithm [348] for 3D CT brain data.
Following a preliminary global registration, the brain atlas evolves gradually in a hierarchical
fashion, which increases the local similarity as well as global coherence. This method presumes
that normal brains, minimally at a certain degree of description, contain identical topological
structures, but different shape features. This elastically deformable atlas approach implemented to
brain image registration can be found in [349, 350, 351, 352, 353]. However, it is susceptible to atlas
initializations, i.e., in case that the bias of preliminary rigid registration is rather big, the subsequent
elastic matching could be poor. In addition, the existence of neighboring features can possibly make
the atlas warp to inaccurate boundaries, and the atlas may not be able to converge to complex object
boundaries if no user intervention. To overcome the difficulties, Sandor and Leahy [354] applied
the 3D edge detection together with morphological operations to preprocess the brain images, so as

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



38 F. ZHAO ET AL.

to produce a smooth delineation of the brain surface based on which the 3D B-spline deformable
model may achieve a rapid convergence.

In [347], Tang and Chung formulated the non-rigid medical image alignment as an energy
minimization problem, and then achieved its optimization employing the graph-cuts technique
through α-expansions. The problem is that the dissimilarity measurement adopted in the constructed
cost function is confined to the summation of squared differences and the total amount of absolute
differences. This graph-cuts-based approach was extended in [355] by adopting an improved
dissimilarity measurement like mutual information. As a result, the registration errors are largely
reduced. The non-rigid medical image registration may also be described as a MAP inference
problem in a MRF [356, 357, 358], and its optimization can be secured utilizing the pairwise Gibbs
energy minimization framework.

To obtain a denser set of point correspondences from a few manually labeled landmark
correspondences, the authors in [359] proposed a reliable semi-automatic approach for the
registration of 3D aortic meshes. They employed a two-stage process to estimate the local non-
rigid transformation based on B-spline freeform deformation, in which the B-spline parameters are
optimized through gradient descent method. While lowering the possibility of edge overlapping, this
strategy prevents sharp peaks/troughs in the mesh surface and alleviates the over-fitting problem.

As a measurement of the amount of information that one image holds for the other, mutual
information has been commonly used for automatic rigid as well as affine mono-modality/intra-
modality image registration. Viola and Wells [360, 361] first introduced an efficient and reliable
information-theoretic strategy for registering the volumetric medical image data collected using
the same imaging modality. Obtained from information theory, the registration is achieved by
maximizing the mutual information between the images. Without requiring preprocessing (e.g.,
edge detection) or prior segmentation, this intensity-based technique attains good performance in
fields where edge/gradient-based approaches perform poorly, and it secures more robustness and
higher flexibility compared to other schemes based on intensity (e.g., conventional correlation).

4.2.2. Multi-modality image registration Taking advantage of the complementary information
between images from different modalities, many techniques employing deformable models have
been developed for multi-modality/inter-modality image registration (see Figure. 3). In [362],
Moshfeghi developed an elastic matching scheme using contour knowledge for the registration of
2D images acquired by different imaging modalities. This technique was extended by Moshfeghi
et al. [363] for 3D multi-modality volume registration using surface knowledge. In their work, a
2D image or 3D volume is formulated as being deformed in respect with another target image or
volume. The correspondences between contours/surfaces in two images/volumes are adopted for
stretching or warping the evolved image/volume towards its target. Such a procedure is iterated till
good registration result is secured.

Guimond et al. [364] described an approach for elastic registration of 3D images of multi-
modality, using an iterative strategy that repeats many times between obtaining the coefficients
corresponding to polynomial intensity transformations and matching the images utilizing the
demons scheme [365]. It supposes a maximum of two function dependencies within anatomical
structure intensities existing in those images to align, which hinders its implementations in cases
where noise and inhomogeneity exist. To overcome this difficulty, Arce-Santana and Alba [358]
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Figure 3. Examples of multi-modality image registration (MRI-CT) [364]. Contours are obtained utilizing
a Canny-Deriche edge detector for the CT image, and then overlaid on the other two images for a better

evaluation of the registration quality.

presented an intensity-based algorithm relying on Bayesian estimation for 2D multi-modal image
registration, where two different types of MRFs are formulated, describing the coefficients related
to local polynomial intensity transformations (MRCF) and the parameters corresponding to local
geometric transformations (MRGTF), respectively. In this approach, the resulting posteriori energy
function is minimized by the Newtonian gradient descent method. Additionally, the proposed
registration method achieves great robustness to noise and large inhomogeneity in the images,
because of the spatial attributes of MRGTF and MRCF. In [356], Glocker et al. introduced a
procedure for deformable image alignment, which links the continuous deformation with the most
suitable discrete optimization. Without requiring estimating the derivatives of the adopted energy
function, they modeled the registration problem utilizing a discrete MRF objective function and
recovered the most proper solution to the specified objective function by means of efficient linear
programming applying the primal-dual technique.

Mutual information has also been widely used for automatic rigid and affine multi-modality
image registration. The authors in [366, 367, 368, 369, 370, 371] proposed approaches for aligning
images of different modalities from the same underlying anatomy (e.g., CT, MRI, and PET brain
images), based on the maximization of the information which an image holds for the other one. This
necessitates no a priori model of the connection within different imaging modalities, and is robust
to the partial occlusions of one of the imagery. In [372], Studholme et al. studied the robustness
of standard and normalized mutual information for automatic alignment of 3D medical images of
multi-modality, showing that the normalized mutual information outperforms the standard mutual
information. To further improve the registration accuracy and robustness, the authors in [373, 374]
incorporated the spatial information by extending the intensity-based mutual information with a
term based on other derived features such as edges or gradients.

The maximization of mutual information can be achieved using various strategies. In [360, 369,
361], the maximization is attained by locally seeking an optimum via approximating the gradient
descent stochastically. Collignon et al. [366] and Maes et al. [367, 370] applied Powell’s method
to maximize the mutual information measure based on the joint histogram of image intensities
obtained from the overlaying area of both images. Studholme et al. employed a multi-resolution
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scheme [368] to accelerate a heuristic searching strategy for the maximization. They updated the
parameters one by one with slight amount in an iterative way. Meyer et al. utilized a downhill
simplex searching mechanism for optimizing the parameters of a thin-plate spline-warped or affine
alignment [371]. In [375], Positano et al. applied the downhill simplex searching technique and
Powell’s method for aligning image pairs of identical modality, while genetic algorithm (GA) is
employed as an optimization technique in [376] to achieve correctly aligned images of both the same
and different modalities. Comparative studies were conducted by Maes at al. [377] to systematically
explore the performance of diversified optimization techniques as well as multi-resolution schemes
for registration of high-resolution medical images of multi-modality by maximizing the mutual
information. By applying a coarse-to-fine multi-resolution technique, they evaluated multiple
different nongradient-based together with gradient-based methods including downhill simplex,
Powell, steepest gradient descent, Levenberg-Marquardt, conjugate gradient, and quasi-Newton
algorithms. The outcome of this evaluation clearly show that in comparison with Powell’s approach
which is utilized at full image resolution, the Levenberg-Marquardt, conjugate gradient, and simplex
methods accomplish an average three-time increment in efficiency employing a two-stage multi-
resolution framework, with comparable preciseness as well as equivalent robustness. Similarly, to
make the number of local maxima existed in the mutual information-based cost function smaller
and make the optimization procedure faster for multi-modality image registration, Zibaeifard and
Rahmati [378] proposed a two-level searching scheme where Powell’s method is applied in the first
stage and a simulated annealing algorithm is exploited in the second stage when the original scope
of the searching space is secured for any stochastic searching approach. The described simulated
annealing framework is adaptive to normalized mutual information function for handling multiple
parameters with respective preliminary scopes.

In addition, mutual information can be applied for non-rigid registration of medical images
as well. Palos et al. [379] presented a non-rigid method for the registration of MRI and CT
images. In [380], Klein et al. compared the capability of multiple optimization techniques for non-
rigid alignment of medical image data by maximizing the mutual information, associated with a
deformation field described in terms of cubic B-spline. The experiments involving various organs
and imaging modalities indicate that the Robbins-Monro strategy achieves highest efficiency, while
the nonlinear conjugate gradient and quasi-Newton schemes yield a moderately better preciseness
compared to the Robbins-Monro strategy, at the cost of much more computational time.

The value of mutual information may be influenced by interpolation, which can potentially restrict
the image registration quality. Freire and Godinho [381] conducted a cross-validation study to
evaluate how the interpolation level and the elaboration of joint histogram after voxel intensity
rescaling influence the overall accuracy of mutual information-based registration of both mono-
modality and multi-modality images. They concluded that cubic-spline interpolation associated with
multiple joint histogram update is the best. Following that, Tsao [382] investigated the interpolation
artifacts from eight interpolators for multi-modality image alignment and the strategies of high
efficiency to reduce the artifacts. This work showed that several strategies could be adopted to
assure the registration accuracy and enhance the registration robustness, namely, nearest neighbor
with a histogram blurring, preventing a great intensity bin number, nearest neighbor with a jittered
sampling, as well as resampling the image data in a rolling direction employing unequal sizes of
voxels.
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Table VII. Examples of energy minimization-based registration algorithms for medical images.

Classification Criterion References
2D image data [362, 353, 368, 375, 382, 376, 347, 358, 355]

3D image data [348, 350, 344, 343, 363, 351, 345, 360, 367, 368, 369, 370,
371, 361, 377, 372, 381, 373, 364, 378, 376, 347, 355]

MRI image data [350, 344, 351, 353, 367, 368, 369, 370, 371, 377, 372, 381,
373, 364, 375, 382, 378, 376, 347, 358, 355]

CT image data [348, 343, 345, 360, 368, 361, 367, 369, 370, 371, 377, 372,
373, 364, 378, 376, 358]

PET image data [367, 369, 370, 371, 372, 381, 373, 378]
SPECT image data [371, 382]
Rigid registration [343, 366, 360, 367, 368, 369, 370, 371, 361, 372, 373, 374]
Non-rigid registration [344, 379, 380, 347, 356, 357, 358]

Mono-modality registration [348, 342, 349, 350, 344, 343, 351, 345, 354, 352, 360, 353,
361, 347, 356, 357, 358, 355]

Multi-modality registration [362, 363, 366, 367, 368, 369, 370, 371, 372, 373, 364, 379,
378, 376, 380, 356, 358, 374]

The quality of those registration algorithms which rely upon aligning object surfaces or
anatomical landmark points is susceptible to the errors during segmentation, while the voxel-based
approaches like mutual information measures the statistical dependence between the intensities
associated with every voxel pair within the two images, supposing that it is maximized in case
that both images will be matched geometrically. Maximizing the mutual information is a rather
strong and generic principle, permitting completely automatic, robust as well as accurate alignment
of multi-modal image data of dissimilar contrast and resolution without requiring preprocessing,
prior segmentation, or user intervention, making them well suited for a variety of applications in
clinical practice.

A simple quality measurement for the image registration of the same modality is the total squared
difference of all the voxel pairs. However, it is not effective for the measurement of the registration of
multi-modal images. Table VII gives a summary of the registration methods discussed above, from
which we can see that most of these techniques are well suited for the alignment of the brain and
the LV of the heart data, and some earlier approaches are relevant to wrist, vertebra and skull image
fusion as well. The imaging modality involved are mainly MRI, CT and PET. Some algorithms
are applicable for 2D medical image registration and some are valid on 3D image registration,
while others are appropriate for aligning 2D along with 3D images. Both rigid and non-rigid image
alignment strategies are available in the field of medical image analysis. Some of them are for the
registration of images of the same modality, while some others are related to images of different
modalities. It is worth noting that some energy minimization techniques can be applied to both
mono- and multi-modality medical image registration [381, 373, 376, 356, 358].

4.3. Image reconstruction

In medical image analysis, finding a smooth surface which fits a range of specific unstructured
3D data plays a crucial role. Generally, deformable model-based approaches present satisfactory
results. The superiority of parametric deformable models (e.g., superquadrics [309]) is their ability
of describing shapes using a few parameters. However, it may be difficult for them to accurately
calculate complicated surfaces using a limited range of shapes represented using superquadrics.
In order to elaborate the calculation, Bardinet et al. [383] introduced a superquadric-fitting-based
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parametric deformable model, which is succeeded by freeform deformations to suit a range of
unstructured 3D data. By applying superellipsoids as the initial shapes, this model has been
successfully used for reconstructing the left ventricle (LV) from many different 3D cardiac images.
The significant benefit of such a hybrid scheme is that a complicated shape could be depicted
compactly and the fitting is very robust, even though outliers or sparse data are presented. The
authors in [384] developed a bank of graduated nonconvexity (GNC) techniques for minimizing
the MAP energies comprising terms of convex data-fidelity along with nonconvex/nonsmooth
potential functions, which can be utilized for reconstructing the emission computed tomography
(ECT) data. The proposed algorithm is of high efficiency and succeeds in dealing with the ill-
posed problems associated with the traditional iterated conditional modes (ICMs) method [75]. Raj
et al. [385] applied the MRF for reconstructing the MRI images by solving the resultant energy
minimization problem via graph cuts, greatly improving the reconstruction performance in terms
of the SNR. In [386], Benameur et al. considered the 3D reconstruction of scoliotic ribcages as
a group of optimization issues, each of which is accompanied and controlled by a particular kind
of pathological deformation discovered from a typical training population of scoliotic ribcages and
effectively identified employing the probabilistic PCA mixture model. The presented method can
efficiently minimizes the X-ray dose and it can be exploited to many other reconstruction tasks of
medical data such as knee and pelvis, where an anatomical structure data set is obtained involving
at least two radiographic projections.

Generally, the motion estimation and image reconstruction problems are treated separately. For
example, Cunningham et al. [387] specified the 3D reconstruction of first-pass low-count cardiac
single-photon emission computed tomography (SPECT) images in a Bayesian scheme by employing
the geometric deformable models. They minimized the whole surface curvature using a weighted
prior. Lalush and Tsui [388] presented an effective block-iterative MAP technique with Gibbs priors
for 4D reconstruction of gated cardiac perfusion SPECT image data. Based on the minimization
of an objective function by a two-step iterative procedure, Mair et al. [389] investigated the
simultaneous estimation of non-rigid motion vector field as well as emission medical image data
during the dynamic imaging processes like gated cardiac ECT. The gated data are subsequently
utilized for reconstructing the myocardial motion and emission intensity.

Because of the noise in medical images and distortions in staining, it is challengeable to
reconstruct the 3D models from a group of nanoscale images. In [390], Yang and Choe proposed a
method to automatically obtain the 2D contours and track them via cross-sections to construct 3D
structures of the electron microscopy (EM) image stack, where graph-cuts algorithm is employed
to achieve a globally optimal result of a cost function comprising the distance function, image
gray-scale intensity, as well as flux of the gradient vector field. The incorporation of a distance
function tackles the ambiguity problems existing in the EM image boundaries. To secure an entire
3D volume structure that includes branching of the EM images, they combined both 3D volumes
acquired by implementing the minimization of MAP-MRF cost function utilizing backwards and
forwards algorithms of graph-cuts throughout the image data [391]. In this approach, the over-
segmented regions using a marker-controlled watershed method are viewed as the graph nodes
while the weight of every edge between the node pairs in neighboring image slices are specified
according to the information in overlapped areas.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



ENERGY MINIMIZATION IN MEDICAL IMAGE ANALYSIS 43

4.4. Motion tracking

Energy minimization techniques are also well suited to motion estimation/tracking in medical image
data. Among many other approaches, deformable models are popularly applied.

4.4.1. Deformable model-based approaches Metaxas [392] as well as Blake and Isard [393]
introduced a large variety of earlier deformable approaches applied in motion tracking. In medical
image analysis, deformable models are mainly exploited for the motion tracking by measuring the
dynamic heart behavior, particularly the LV dynamics. A simple way is to apply 2D deformable
contour models for the segmentation of the LV boundary in every volumetric image and then
deformed the contours for the extraction of an updated range of the LV boundaries [394, 395, 396].
With the purpose of tracking non-rigid LV motions in 4D cardiac CT data, McInerney and
Terzopoulos implemented this temporal propagation method using a 3D dynamic deformable
balloon model [287].

Deformable models [397, 398, 399, 400, 401, 402, 403] have also been applied to magnetic
resonance tagged image data that can capture complicated non-rigid motions like twisting of the
heart. Kumar and Goldgof [397] applied 2D active contour models to automatically track the
spatial modulation of magnetization (SPAMM) grid points in cardiac MRI image data. Together
with the thin-plate spline model, the correspondences between grid points are utilized for building
a mapping between images, which is then used for motion estimation. In [400, 402, 403], Park
et al. exploited a novel group of volumetric physics-based deformable models with parametric
global deformations to analyze the 3D LV motions from the MRI-SPAMM image data. The
model parameters are functions and could acquire the local LV shape variation (e.g., contraction,
twisting). Furthermore, to obtain a more precise estimation of the LV motions, they constructed a
3D finite-element model with datapoint samples taken from surfaces of the mid-wall, epicardium,
and endocardium. Earlier 3D finite-element schemes constructed from boundary delineations of the
surfaces of epicardium as well as endocardium for tracking the 3D LV motions from the MRI-
SPAMM data can be found in [404, 405, 406, 401]. O’Donnell et al. introduced a deformable thick-
walled ellipsoid model [407] with local and global elements of 3D cardiac motions, resembling
the LV of the heart. The deformation parameters are adapted to a priori stripe and contour data.
They applied a model-based smoothing constraint for the penalization of the deformation variations
and the interpolation of the scattered guide data, which can interactively produce a global smooth
deformation intuitively without separating global from local deformations. Aiming to locate and
track the deformations of the LV in the SPAMM MRI data, Radeva et al. proposed a 3D tensor
product B-spline model [408], where the parameters are directly adapted to the stripes in the images
of short-axis applying a snakes-like approach. In this work, a volumetric model is employed as
two coupled B-spline surfaces of epicardium and endocardium for tracking the motions from image
boundaries and confining the image constraints to myocardium only. By exploring a B-solid for
the tagged images, the information contained in various slice images is adopted, which makes the
proposed method achieve noise robustness. To track the motions of the myocardium in the LV,
the authors in [409] developed a completely automatic approach according to the non-rigid image
registration utilizing multi-level deformations of free form. The heart images of short-axis and long-
axis are both involved for the estimation of the complete 4D motion field within the myocardium.
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Compared to other techniques, the localization of tags and reconstruction of deformation fields are
fulfilled concurrently in this method. Similarly, non-rigid image registration was applied to track
the myocardial motion involving untagged as well as 3D tagged MRI images from short-axis and
long-axis views [410], where a series of tagged and untagged MRI images acquired in the cardiac
process are registered with a group of reference images collected in the course of end-diastole. A
key benefit is the parallel adoption of supplementary motion knowledge embraced in tagged as well
as untagged image data.

Unlike previous approaches, Young [411] proposed a method for directly tracking the motions
of 3D heart wall from tagged MRI images of short-axis and long-axis, without requiring the prior
detection of both outer and inner ventricle boundaries or locations of tag stripes. Similarly, a finite-
element scheme was utilized for depicting the heart motions and heart shapes. The author attained an
objective function for measuring the matching similarity between image stripes and model tags, and
minimized it by allowing the model to evolve immediately which is controlled by the image forces,
employing an effective algorithm to calculate the motion constraints obtained from images. In [412],
Chen et al. applied a meshless deformable model that incorporates smoothness, phase, and image
knowledge to refine the tracking of interior myocardial motions from a tagged MRI acquisition.
By employing the displacement magnitude as the smoothness constraint, they improved the overall
motion tracking accuracy. In addition, the proposed tracking method can increase the credibility and
throughput of quantitative cardiac analysis.

For the tracking of 3D living tissues in minimally invasive surgery, Wong et al. [413] developed an
innovative deformable model on the basis of a quasi-spherical triangle. They utilized the triangle’s
three vertices for the description of the affine model and integrated a curving parameter to fit the
nonlinear properties of soft-tissue motions. These parameters can be estimated using an effective
second-order minimization approach [414]. To deal with the occlusion problems, they proposed a
motion prediction framework by investigating the motion signals’ peak-valley features.

4.4.2. Modal analysis-based approaches In [415], Pentland and Horowitz introduced a dynamic
deformable model on the basis of modal analysis using the finite-element technique to estimate
the rigid and non-rigid motions of the LV. However, it may be difficult to observe some kind
of rigid-body motion and non-rigid motion in case of orthographic projections. Moreover, the
adoption of optical flow data instead of feature points necessitates the integration of past object
motions for determining the present shape along with position of the object. Similarly, Nastar and
Ayache [416, 417] developed a physically-based deformable model for tracking and analyzing non-
rigid dynamic structure motions in 2D/3D medical data. They applied modal analysis of the motion
for an enhanced fitting of the physical model, which enables a dense depiction of a complicated
deformation using less parameters. Later, they extended this work to non-rigid motion analysis
of spatio-temporal (4D) medical images by linking modal analysis with Fourier analysis [418].
In this frequency-based framework, the authors utilized a physically-based deformable surface
to approximate the non-rigid motions of the evolving object contours dynamically. To decrease
the deformation parameter number, they applied the modal analysis that yields a spatial surface
smoothing. On the other hand, the Fourier analysis of the temporal part of the principal deformation
spectrum produces a useful data smoothing in the time domain. Thus, a complicated non-rigid
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deformation process can be expressed by only several coefficients including the major Fourier
harmonics and the predominant modal amplitudes.

4.4.3. Deformable superquadric-based approaches As described in [419], the deformable
superquadrics [309] can be used for estimating non-rigid motions from insufficient data with
time-variance and noise-corruption. Chen et al. presented a hierarchical decomposition-based
approach [420] for estimating the global rigid LV motions from angiographic data. The hierarchical
motion model is assembled by integrating a locally deformable surface secured through making
spherical harmonic primitives of shape modeling with a globally deformable superquadric, which
yields a coarse-to-fine decomposition that hierarchically characterizes the LV motions, and results
in fairly effective estimation techniques. In [421], Bardinet et al. proposed a compact and robust
deformable superquadric model to track anatomical structures of the LV of the heart in 4D image
data.

4.4.4. Bending energy approaches The authors in [422, 423, 424] proposed a unified scheme to
track the non-rigid LV motions of the endocardial wall from a 3D image sequence, based on bending
energy along with surface curvature. By selecting geometrically salient feature points representing
the surfaces of epicardium and endocardium respectively, they created a pair of scattered subgroups
of surface points. Following that, they modeled all the surface patches around these points as thin
flexible plates. By assuming the local and slight evolution of every surface patch during a short
period of time, for every salient feature point on the first surface, the authors constructed a hunting
window on the surface of the LV in the subsequent time interval. The point correspondence between
the two surfaces are found by minimizing the bending energy. Based on the preliminary motion
vectors produced by such a matching procedure, they performed a smoothing process to create a
compact field of motion vectors on the surfaces of the LV. To improve this bending energy technique
in tracking the heart structure from 2D ultrasound image sequences, Cohen et al. [425] incorporated
a new energy term which inclines to keep the alignment of points with high curvatures, while
securing a displacement vector field with good smoothness in all places.

4.4.5. Curvature-based approaches A confined type of non-rigid motion of the LV is termed as
conformal motion, defined as a motion maintaining angles instead of distances between curve pairs
on the surface. In conformal motions, the stretching of a surface is equivalent in every direction,
but unequal at individual point. To deal with surfaces undertaking conformal motion, a number of
approaches have been developed with regard to variations in Gaussian curvatures [426, 427, 428,
429].

4.5. Compressed sensing

Compressed sensing (CS, also called compressive sampling/sensing) [430, 431] is a newly
developed numerical paradigm for rapid data acquisition and reconstruction. Compared to
traditional methods, it allows comparatively fewer measurements of the image to be collected by
means of a linear way (undersampling) while enabling accurate reconstruction through a nonlinear
recovery procedure. CS effectively utilizes structured prior information in a generic style of
sparsity, i.e., representing an image using several coefficients in an appropriate transform basis (e.g.,
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wavelet, Fourier). If the image is adequately sparse or compressible, it can be completely recovered
from undersampled k-space measurements via minimizing a convex function. For the theory or
mathematics of CS, we refer the readers to several overviews in the literature [432, 433, 431].

CS has significantly expedited some specific medical image acquisition process like MRI [434,
435, 436, 437], owing to the coded nature of MRI image acquisition along with the transform
sparsity of MRI data. In addition, to lower the memory burden as well as the computational
complexity, block-based CS [438] is popularly applied in high-dimensional image reconstruction,
where an image is divided into non-overlapping parts of small size that are obtained separately but
reconstructed collaboratively. Furthermore, Razzaq et al. [439] reported an extension of the CS:
locally sparsified CS, in which local sparsity constraints for independent subregions are adopted
instead of global constraints. The proposed method may be implemented for reducing the noise
artifacts as well as improving the image reconstruction quality without raising the overall sampling
rate or slowing down the acquisition procedure.

During the CS-based image reconstruction process, energy minimization techniques are
employed to optimize the unconstrained Lagrangian formulation (refer to Basis Pursuit
denoising [440]),

min
x̃
‖x̃‖1 + λ‖y −ΦΨ−1x̃‖22, (18)

where x̃ and y denote the transform coefficients and the CS measurements, Φ and Ψ represent the
measurement matrix and the sparsity transform basis respectively, and λ is the Lagrangian multiplier
balancing the l1 norm-driven sparsity over the l2 norm-based measurement of data fidelity. Many
different strategies have been invented for tackling such a convex optimization problem [441],
including convex-programming algorithms, gradient descent approaches, greedy methods, and
iterative thresholding techniques. Compared to convex-programming-based reconstruction, the
other three approaches to CS reconstruction provide remarkable reduction of computational
complexity.

5. CONCLUSIONS

In this paper, we present an overview on the development and refinement of both continuous
and discrete approaches to energy minimization. These techniques are popularly used in medical
applications, such as image segmentation, registration, reconstruction, motion tracking, and
compressed sensing. Although the systematic investigation into optimization schemes is growing
very quickly, there are still numerous challengeable problems to be tackled. According to the above
discussions, we make a few observations listed as follows.

1. Energy minimization has been widely applied in medical image analysis, providing
opportunities to handle medical images with various sorts of noises and sampling artifacts
in an easier and more meaningful way.

2. The energy function plays a crucial role in energy minimization, which can be formulated
from different aspects and minimized using appropriate optimization algorithms such as
gradient descent, graph cuts, and primal-dual.
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3. The energy minimization techniques can be classified into continuous and discrete methods
in terms of the space that the energy functionals are optimized over. With respect to different
criteria, these optimization approaches can also be categorized in other styles (e.g., local
and global, linear and nonlinear, convex and nonconvex), taking into account the objective
functionals and/or the collection of constraints.

4. Gradient-based algorithms such as gradient descent, conjugate gradient, proximal gradient are
the most prominent continuous optimization techniques in medical imaging, while graph cuts,
belief propagation, and linear programming dominate the discrete optimization approaches.

5. Newton’s method is computationally expensive due to the evaluation of both first and second
derivatives (namely gradients and curvatures) at every iteration. Fortunately, it needs the
fewest iterations to find the optimal solution (i.e., rapid convergence). On the contrary,
gradient descent methods are considerably faster in every iteration without requiring the
computation of second derivatives, but it usually involves many more iterations to reach the
minimum (i.e., slow convergence).

6. Conjugate gradient method needs much less computation than Newton’s method per iteration
without calculating the second derivatives, and it achieves quicker convergence than gradient
descent as it involves the previous orientation in the subsequent search.

7. Proximal gradient techniques are popularly applied for tackling convex optimization
problems, however their convergence rates still need to be further improved, nevertheless
multiple acceleration algorithms have been developed for this purpose.

8. In contrast to many continuous optimization techniques like gradient descent that are prone to
local minima, the discrete optimization approaches such as combinatorial graph cuts attempt
to obtain global optima. The expansion and swap algorithms are two prevalent graph-cut
methods. The former is fairly efficient in practice, but it generally applies to MRFs with
metric potential functions, while the latter can handle more generic energy functions as it is
applicable to nonmetric potentials as well, nevertheless it is less effective than the expansion
algorithm.

9. Tree-reweighted message passing (TRW) together with belief propagation (BP) are two
traditional message passing approaches. In comparison with BP, TRW can be utilized to much
more energy functions, but its convergence is not ensured.

10. Linear programming (LP) has motivated countless essential theories in optimization like
decomposition, convexity as well as duality. The LP problems can be tackled by basis-
exchange algorithms (e.g., simplex, criss-cross, conic sampling) together with interior-point
methods (e.g., ellipsoid, projective, path-following). However, the former may have worst-
case exponential time-complexity, while the latter can achieve a global solution in polynomial
time.

11. Primal-dual strategy takes advantage of the duality of an optimization problem, exploiting the
information contained in primal variable and dual variable. The dual problem can be tackled
by numerous techniques (e.g., gradient descent, interior-point, and Newton’s method), which
yields a (lower) bound for the primal solution. A variety of primal-dual algorithms have been
proposed for solving both continuous and discrete optimization problems with very promising
results. However, there are still many problems (e.g., time-complexity, higher-order duality,
duality gap) to be addressed.
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12. Segmenting anatomical structures in the medical images continues to exist as a tough mission
because of the large variation in object shapes and variability of image quality. In order to
tackle the problems, energy minimization techniques have been substantially investigated and
popularly applied in segmenting medical data with encouraging results.

13. Deformable models are one of the earliest developed and most recognized examples of energy
minimization techniques being applied to medical image segmentation. The description of
object boundaries and applied exterior forces in these models are usually non-identical. The
segmentation accuracy and efficiency may vary on different data sets. It is still desirable to
design efficient algorithms that are capable of extracting anatomical structures with higher
accuracy and more robustness. Fortunately, these approaches are not mutually exclusive,
which may be combined together for handling tasks in practice.

14. Gradient-based deformable models generally require careful initial contour placement and
computation of derivatives that is susceptible to image noise. They could ‘leak’ via the object
boundaries in case of insufficient remarkable edge features in some specific image regions.

15. Region-based models depend upon the homogeneous properties of spatially localized features.
In general, they are more attractive than gradient-based techniques for segmentation, as
they are more robust to noise by avoiding derivatives of the image intensity and contour
initialization by being less local than most gradient-based approaches.

16. Most gradient-based approaches primarily rely on local information around the active
contours, while the region-based methods incline to utilize local information together with
global information in the image .

17. For the segmentation of an anatomical structure in a medical image, the prior information
of the target shape belonging to this structure could impressively benefit the segmentation
procedure. The integration of such priors into the segmentation framework reduces the
medical image segmentation complexity.

18. The hybrid deformable models take advantage of the complementary information of gradient-
based, region-based, and shape-based methods, thus are more robust to noise and poor
boundary initialization.

19. Energy minimization techniques have been vigorously investigated and popularly adopted
in medical applications like image segmentation, registration, reconstruction, and motion
tracking. The segmentation as well as registration of 2D/3D images allow the construction of
anatomical databank, which can possibly be used for exploring the morphological variations,
pathological evolution, or growth of organs.

20. By making good use of the complementary information in different imagery, the successful
registration of medical images of multi-modality indicates a great potential for surgical
implementations such as tumor detection.

21. Compressed sensing is a very promising technique for rapid data acquisition and
reconstruction, where energy minimization is involved for the accurate reconstruction of
the image from rather fewer measurements in the transform domain. It offers potentially
significant reduction of the scan time during medical imaging procedures, which will benefit
both patients and healthcare economics.

22. The integration of energy minimization techniques with current medical systems (e.g., disease
diagnosis, surgical planning) can additionally validate their implementations in clinical
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practice and inevitably benefit the advancement of more effective energy minimization
schemes that is highly desirable for clinical applications.

23. To carry out a marvelous comparison of various energy minimization methods, it is very
necessary to collect some medical data sets as a benchmark and define appropriate protocols
for performance evaluation.
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177. Illés T, Szirmai Á, Terlaky T. The finite criss-cross method for hyperbolic programming. European J. Operational

Research Apr 1999; 114(1):198–214.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



ENERGY MINIMIZATION IN MEDICAL IMAGE ANALYSIS 55

178. Mortensen EN, Barrett WA. Interactive segmentation with intelligent scissors. Graphical Models and Image
Processing 1998; 60(5):349–384.

179. Yezzi AJ, Kichenassamy S, Kumar A, Olver P, Tannenbaum A. A geometric snake model for segmentation of
medical imagery. IEEE Trans. Med. Imag. Apr 1997; 16(2):199–209.

180. Bates P, Wei GW, Zhao S. Minimal molecular surfaces and their applications. J. Comput. Chem. 2008; 29(3):380–
391.

181. Hu L, Chen D, Wei GW. High-order fractional partial differential equation transform for molecular surface
construction. Mol. Based Math. Biol. Jan 2013; 1:1–25.

182. Boyd S, Vandenberghe L. Convex Optimization (Ch. 5). Cambridge University Press, 2004.
183. Rockafellar RT. Convex Analysis (Part VI). Princeton University Press, 1970.
184. Wolfe P. A duality theorem for non-linear programming. Quarterly of Applied Math. 1961; 19:239–244.
185. Geoffrion AM. Duality in nonlinear programming: A simplified applications-oriented development. SIAM Review

1971; 13(1):1–37.
186. Mond B, Weir T. Generalized concavity and duality. in: Generalized Concavity in Optimization and Economics,

S. Schaible and W. T. Ziemba (Eds.), Academic Press 1981; :263–279.
187. Mond B. Mond-Weir duality. in: Structure and Applications, Springer Optimization and Its Applications, Vol. 32

(Ch. 8), C. Pearce and E. Hunt (Eds.), Springer 2009; :157–165.
188. Fenchel W. Convex Cones, Sets and Functions. Princeton University, 1951.
189. Rockafellar RT. Extension of Fenchel’s duality theorem for convex functions. Duke Math. J. 1966; 33(1):1–245.
190. Aubin JP, Ekeland I. Estimates of the duality gap in nonconvex optimization. Math. Oper. Res. Aug 1976;

1(3):225–245.
191. Giannessi F. On the theory of Lagrangian duality. Optim. Lett. Jan 2007; 1(1):9–20.
192. Giannessi F, Mastroeni G. Separation of sets and Wolfe duality. J. Glob. Optim. Nov 2008; 42(3):401–412.
193. Ye X, Han SP, Lin A. A note on the connection between the primal-dual and the A* algorithm. Int. J. Operations

Research and Information Systems 2010; 1(1):73–85.
194. Kuhn HW, Tucker AW. Nonlinear programming. Proc. 2nd Berkeley Symp., 1951; 481–492.
195. Borwein JM, Lewis AS. Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd ed. Springer,

2006.
196. Mangasarian OL. Second- and higher-order duality in nonlinear programming. J. Math. Anal. Appl. Sep 1975;

51(3):607–620.
197. Ivanov VI. On the optimality of some classes of invex problems. Optim. Lett. Jan 2012; 6(1):43–54.
198. Ivanov VI. Duality in nonlinear programming. Optim. Lett. Dec 2013; 7(8):1643–1658.
199. Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys. D 1992; 60(1-

4):259–268.
200. Chambolle A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004; 20(1-

2):89–97.
201. Goldfarb D, Yin W. Second-order cone programming methods for total variation-based image restoration. SIAM

J. Sci. Comput. 2005; 27(2):622–645.
202. Collette Y, Siarry P. Multiobjective Optimization: Principles and Case Studies. Springer, Berlin, Germany, 2002.
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357. Shekhovtsov A, Kovtun I, Hlaváč V. Efficient MRF deformation model for non-rigid image matching. Comput.
Vis. Image Understand. 2008; 112(1):91–99.

358. Arce-Santana ER, Alba A. Image registration using Markov random coefficient and geometric transformation
fields. Pattern Recognit. 2009; 42(8):1660–1671.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



ENERGY MINIMIZATION IN MEDICAL IMAGE ANALYSIS 61

359. Palmer R, Tam G, Xie X, Alock R, Roobottom C. Computing 3D mesh correspondence for aortic root shape
modelling. Proc. 19th Conf. Medical Image Understanding and Analysis, 2015.

360. Viola P, Wells III WM. Alignment by maximization of mutual information. Proc. IEEE Int. Conf. Comput. Vis.,
1995; 16–23.

361. Viola P, Wells III WM. Alignment by maximization of mutual information. Int. J. Comput. Vis. 1997; 24(2):137–
154.

362. Moshfeghi M. Elastic matching of multimodality medical images. CVGIP: Graphical Models and Image Process.
1991; 53(3):271–282.

363. Moshfeghi M, Ranganath S, Nawyn K. Three-dimensional elastic matching of volumes. IEEE Trans. Image
Process. Mar 1994; 3(2):128–138.

364. Guimond A, Roche A, Ayache N, Meunier J. Three-dimensional multimodal brain warping using the demons
algorithm and adaptive intensity corrections. IEEE Trans. Med. Imag. 2001; 20(1):58–69.

365. Thirion JP. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 1998;
2(3):243–260.

366. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated multimodality medical
image registration using information theory. Proc. Int. Conf. Information Processing in Medical Imaging, vol. 3,
1995; 263–274.

367. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multi-modality image registration by maximization
of mutual information. Proc. Workshop Mathematical Methods in Biomedical Image Analysis, 1996; 14–22.

368. Studholme C, Hill DLG, Hawkes DJ. Automated 3-D registration of MR and CT images of the head. Med. Image
Anal. 1996; 1(2):163–175.

369. Wells III WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of
mutual information. Med. Image Anal. 1996; 1(1):35–51.

370. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization
of mutual information. IEEE Trans. Med. Imag. Apr 1997; 16(2):187–198.

371. Meyer CR, Boes JL, Kim B, Bland PH, Zasadny KR, Kison PV, Koral K, Frey KA, Wahl RL. Demonstration of
accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and
thin plate spline-warped geometric deformations. Med. Image Anal. 1997; 1(3):195–206.

372. Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment.
Pattern Recognit. Jan 1999; 32(1):71–86.

373. Pluim JPW, Maintz JBA, Viergever MA. Image registration by maximization of combined mutual information and
gradient information. IEEE Trans. Med. Imag. Aug 2000; 19(8):809–814.

374. Cheah TC, Shanmugam SA, Mann KAL. Medical image registration by maximizing mutual information based on
combination of intensity and gradient information. Proc. Int. Conf. Biomedical Engineering, 2012; 368–372.

375. Positano V, Santarelli MF, Landini L, Benassi A. Automatic time sequence alignment in contrast enhanced MRI
by maximization of mutual information. Proc. IEEE Int. Conf. Engineering in Medicine and Biology Society,
vol. 3, 2001; 2407–2410.

376. Bhattacharya M, Das A. Multi resolution medical image registration using maximization of mutual information &
optimization by genetic algorithm. Proc. IEEE Nuclear Science Symp. Conf. Record, vol. 4, 2007; 2961–2964.

377. Maes F, Vandermeulen D, Suetens P. Comparative evaluation of multiresolution optimization strategies for
multimodalitiy image registration by maximization of mutual information. Med. Image Anal. 1999; 3(4):373–386.

378. Zibaeifard M, Rahmati M. An adaptive simulated annealing scheme for multi-modality medical image registration
by maximization of mutual information. Proc. Int. Conf. Signal Processing, vol. 2, 2006.

379. Palos G, Betrouni N, Coulanges M, Vermandel M, Devlaminck V, Rousseau J. Multimodal matching by
maximisation of mutual information and optical flow technique. Proc. IEEE Int. Conf. Engineering in Medicine
and Biology Society, vol. 1, 2004; 1679–1682.

380. Klein S, Staring M, Pluim JPW. Evaluation of optimization methods for nonrigid medical image registration using
mutual information and B-splines. IEEE Trans. Image Process. Dec 2007; 16(12):2879–2890.

381. Freire L, Godinho F. Registration by maximization of mutual information - a cross validation study. Proc. IEEE
Int. Symp. Bio-Informatics and Biomedical Engineering, 2000; 322–329.

382. Tsao J. Interpolation artifacts in multimodality image registration based on maximization of mutual information.
IEEE Trans. Med. Imag. Jul 2003; 22(7):854–864.

383. Bardinet E, Cohen LD, Ayache N. A parametric deformable model to fit unstructured 3D data. Comp. Vis. Imag.
Under. 1998; 71(1):39–54.

384. Nikolova M. Markovian reconstruction using a GNC approach. IEEE Trans. Image Process. Sep 1999; 8(9):1204–
1220.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



62 F. ZHAO ET AL.

385. Raj A, Singh G, Zabih R. MRF’s for MRI’s: Bayesian reconstruction of MR images via graph cuts. Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., vol. 1, 2006; 1061–1068.

386. Benameur S, Mignotte M, Destrempes F, de Guise JA. Three-dimensional biplanar reconstruction of scoliotic
rib cage using the estimation of a mixture of probabilistic prior models. IEEE Trans. Biomed. Eng. Oct 2005;
52(10):1713–1728.

387. Cunningham GS, Hanson KM, Battle XL. Three-dimensional reconstructions from low-count SPECT data using
deformable models. Optics Express Mar 1998; 2(6):227–236.

388. Lalush DS, Tsui BMW. Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated
cardiac SPECT. Phys. Med. Biol. 1998; 43(4):875–886.

389. Mair BA, Gilland DR, Cao Z. Simultaneous motion estimation and image reconstruction from gated data. Proc.
IEEE Int. Symp. Biomedical Imaging, 2002; 661–664.

390. Yang HF, Choe Y. Cell tracking and segmentation in electron microscopy images using graph cuts. Proc. IEEE
Int. Symp. Biomedical Imaging: From Nano to Macro, 2009; 306–309.

391. Yang HF, Choe Y. 3D volume extraction of densely packed cells in EM data stack by forward and backward graph
cuts. Proc. IEEE Symp. Computational Intelligence for Multimedia Signal and Vision Processing, 2009; 47–52.

392. Metaxas DN. Physics-Based Deformable Models: Applications to Computer Vision, Graphics and Medical
Imaging. Boston: Kluwer Academic Publishers, 1996.

393. Blake A, Isard M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and
Statistics to Visual Tracking of Shapes in Motion. New York: Springer-Verlag, 1998.

394. Ueda N, Mase K. Tracking moving contours using energy-minimizing elastic contour models. Proc. European
Conf. Comput. Vis., 1992; 453–457.

395. Gupta A, von Kurowski L, Singh A, Geiger D, Liang CC, Chiu MY, Adler LP, Haacke M, Wilson DL. Cardiac
MR image segmentation using deformable models. Proc. Computers in Cardiology, 1993; 747–750.

396. Geiger D, Gupta A, Costa LA, Vlontzos J. Dynamic programming for detecting, tracking and matching deformable
contours. IEEE Trans. Pattern Anal. Mach. Intell. Mar 1995; 17(3):294–302.

397. Kumar S, Goldgof D. Automatic tracking of SPAMM grid and the estimation of deformation parameters from
cardiac MR images. IEEE Trans. Med. Imag. 1994; 13(1):122–132.

398. Amini AA, Curwen RW, Klein AK, Egglin TK, Pollak J, Lee F, Gore JC. Physics based snakes, Kalman snakes,
and snake grids for feature localization and tracking in medical images. Proc. Int. Conf. Information Processing
in Medical Imaging, 1995; 363–364.

399. Kraitchman DL, Young AA, Chang CN, Axel L. Semi-automatic tracking of myocardial motion in MR tagged
images. IEEE Trans. Med. Imag. 1995; 14(3):422–432.

400. Park J, Metaxas D, Axel L. Volumetric deformable models with parameter functions: A new approach to the 3D
motion analysis of the LV from MRI-SPAMM. Proc. IEEE Int. Conf. Comput. Vis., 1995; 700–705.

401. Young AA, Kraitchman DL, Dougherty L, Axel L. Tracking and finite element analysis of stripe deformation in
magnetic resonance tagging. IEEE Trans. Med. Imag. 1995; 14(3):413–421.

402. Park J, Metaxas D, Axel L. Analysis of left ventricular wall motion based on volumetric deformable models and
MRI-SPAMM. Med. Image Anal. 1996; 1(1):53–72.

403. Park J, Metaxas D, Young AA, Axel L. Deformable models with parameter functions for cardiac motion analysis
from tagged MRI data. IEEE Trans. Med. Imag. Jun 1996; 15(3):278–289.

404. Creswell LL, Wyers SG, Pirolo JS, Perman WH, Vannier MW, Pasque MK. Mathematical modelling of the heart
using magnetic resonance imaging. IEEE Trans. Med. Imag. 1992; 11(4):581–589.

405. Young AA, Axel L. Non-rigid wall motion using MR tagging. Proc. IEEE Int. Conf. Comput. Vis., 1992; 399–404.
406. Young AA, Axel L. Three-dimensional motion and deformation of the heart wall: estimation with spatial

modulation of magnetization - a model-based approach. Radiology 1992; 185(1):241–247.
407. O’Donnell T, Boult T, Gupta A. Global models with parametric offsets as applied to cardiac motion recovery.

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1996; 293–299.
408. Radeva P, Amini AA, Huang J. Deformable B-solids and implicit snakes for 3D localization and tracking of

SPAMM MRI data. Comput. Vis. Image Understand. May 1997; 66(2):163–178.
409. Chandrashekara R, Mohiaddin RH, Rueckert D. Analysis of 3-D myocardial motion in tagged MR images using

nonrigid image registration. IEEE Trans. Med. Imag. Oct 2004; 23(10):1245–1250.
410. Shi W, Zhuang X, Wang H, Duckett S, Luong DVN, Tobon-Gomez C, Tung K, Edwards PJ, Rhode KS, Razavi RS,

et al.. A comprehensive cardiac motion estimation framework using both untagged and 3-D tagged MR images
based on nonrigid registration. IEEE Trans. Med. Imag. Jun 2012; 31(6):1263–1275.

411. Young AA. Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance
images. Med. Image Anal. 1999; 3(4):361–372.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



ENERGY MINIMIZATION IN MEDICAL IMAGE ANALYSIS 63

412. Chen T, Wang X, Chung S, Metaxas D, Axel L. Automated 3D motion tracking using Gabor filter bank, robust
point matching, and deformable models. IEEE Trans. Med. Imag. Jan 2010; 29(1):1–11.

413. Wong WK, Yang B, Liu C, Poignet P. A quasi-spherical triangle-based approach for efficient 3-D soft-tissue
motion tracking. IEEE/ASME Trans. Mechatronics Oct 2013; 18(5):1472–1484.

414. Malis E. An efficient unified approach to direct visual tracking of rigid and deformable surfaces. Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2007; 2729–2734.

415. Pentland A, Horowitz B. Recovery of nonrigid motion and structure. IEEE Trans. Pattern Anal. Mach. Intell.
1991; 13(7):730–742.

416. Nastar C, Ayache N. Fast segmentation, tracking, and analysis of deformable objects. Proc. IEEE Int. Conf.
Comput. Vis., 1993; 275–279.

417. Nastar C, Ayache N. Non-rigid motion analysis in medical images: A physically based approach. Proc. Int. Conf.
Information Processing in Medical Imaging, 1993; 17–32.

418. Nastar C, Ayache N. Frequency-based nonrigid motion analysis: application to four dimensional medical images.
IEEE Trans. Pattern Anal. Mach. Intell. 1996; 18(11):1067–1079.

419. Metaxas D, Terzopoulos D. Shape and nonrigid motion estimation through physics-based synthesis. IEEE Trans.
Pattern Anal. Mach. Intell. 1993; 15(6):580–591.

420. Chen CW, Huang TS, Arrott M. Modeling, analysis and visualization of left ventricle shape and motion by
hierarchical decomposition. IEEE Trans. Pattern Anal. Mach. Intell. Apr 1994; 16(4):342–356.

421. Bardinet E, Cohen LD, Ayache N. Tracking and motion analysis of the left ventricle with deformable
superquadrics. Med. Image Anal. 1996; 1(2):129–149.

422. Amini AA, Owen RL, Anandan P, Duncan JS. Non-rigid motion models for tracking the left-ventricular wall.
Proc. Int. Conf. Information Processing in Medical Imaging, 1991; 343–357.

423. Duncan JS, Owen RL, Staib LH, Anandan P. Measurement of non-rigid motion using contour shape descriptors.
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1991; 318–324.

424. Amini AA, Duncan JS. Bending and stretching models for LV wall motion analysis from curves and surfaces.
Image Vision Comput. 1992; 10(6):418–430.

425. Cohen I, Ayache N, Sulger P. Tracking points on deformable objects using curvature information. Proc. European
Conf. Comput. Vis., 1992; 458–466.

426. Mishra SK, Goldgof DB, Huang TS. Motion analysis and epicardial deformation estimation from angiography
data. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1991; 331–336.

427. Kambhamettu C, Goldgof DB. Point correspondence recovery in non-rigid motion. Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 1992; 222–227.

428. Huang WC, Goldgof DB. Adaptive-size meshes for rigid and nonrigid shape analysis and synthesis. IEEE Trans.
Pattern Anal. Mach. Intell. 1993; 15(6):611–616.

429. Kambhamettu C, Goldgof DB. Curvature-based approach to point correspondence recovery in conformal nonrigid
motion. CVGIP: Image Understanding 1994; 60(1):26–43.

430. Donoho DL. Compressed sensing. IEEE Trans. Infor. Theory Apr 2006; 52(4):1289–1306.
431. Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Processing Magazine Mar 2008;

25(2):21–30.
432. Candès EJ. Compressive sampling. Proc. IEEE Cong. Mathematicians, vol. 3, 2006; 1433–1452.
433. Baraniuk RG. Compressive sensing. IEEE Signal Processing Magazine Jul 2007; 24(4):118–121.
434. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. iterative image reconstruction using

a total variation constraint. Magnetic Resonance in Medicine Jun 2007; 57(6):1086–1098.
435. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging.

Magnetic Resonance in Medicine Dec 2007; 58(6):1182–1195.
436. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magnetic Resonance in Medicine Feb

2008; 59(2):365–373.
437. Lustig M, Donoho D, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Processing Magazine Mar

2008; 25(2):72–82.
438. Fowler JE, Mun S, Tramel EW. Block-based compressed sensing of images and video. Foundations and Trends in

Signal Processing Apr 2012; 4(4):297–416.
439. Razzaq FA, Mohamed S, Bhatti A, Nahavandi S. Locally sparsified compressive sensing for improved MR image

quality. Proc. IEEE Conf. Systems, Man, and Cybernetics, 2013; 2163–2167.
440. Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. Aug 1998;

20(1):33–61.
441. Tropp JA, Wright SJ. Computational methods for sparse solution of linear inverse problems. Proceedings of the

IEEE Jun 2010; 98(6):948–958.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm


	1 Introduction
	2 Energy function
	2.1 Variational formulation
	2.2 Combinatorial formulation
	2.3 Stochastic formulation

	3 Approaches to energy minimization
	3.1 Continuous optimization methods
	3.1.1 Newton-Raphson method
	3.1.2 Gradient descent method
	3.1.3 Conjugate gradient method
	3.1.4 Proximal gradient method
	3.1.5 Coordinate descent method
	3.1.6 Genetic algorithm-based method

	3.2 Discrete optimization methods
	3.2.1 Graph cuts method
	3.2.2 Belief propagation method
	3.2.3 Tree-reweighted message passing method
	3.2.4 Linear programming method
	3.2.5 Maximum margin learning method
	3.2.6 Other methods

	3.3 Minimal surface method
	3.4 Primal-dual method
	3.5 Multi-objective optimization method
	3.6 Comparative studies
	3.7 Software package/toolbox

	4 Applications of energy minimization
	4.1 Image segmentation
	4.1.1 Graph-based approaches
	4.1.2 Level set-based approaches
	4.1.3 Deformable model-based approaches
	4.1.4 Atlas-based approaches
	4.1.5 Performance evaluation

	4.2 Image registration
	4.2.1 Mono-modality image registration
	4.2.2 Multi-modality image registration

	4.3 Image reconstruction
	4.4 Motion tracking
	4.4.1 Deformable model-based approaches
	4.4.2 Modal analysis-based approaches
	4.4.3 Deformable superquadric-based approaches
	4.4.4 Bending energy approaches
	4.4.5 Curvature-based approaches

	4.5 Compressed sensing

	5 Conclusions

