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Abstract—Since the introduction of next generation sequencing
there is a demand for sophisticated methods to classify proteins
based on sequence data. Two main approaches for this task
are to use the raw sequence data and align them against
other sequences, or to extract discrete high level features from
the protein sequences and compare the features. Two machine
learning methods are demonstrated to show each approach.
Profile Hidden Markov Models are built from multiple alignment
of raw sequence data and learn amino acid emission and transi-
tion parameters for a given alignment and effectively harness
the power of aligning a test protein to a model built form
many proteins. Random Forests on the other hand are used to
discriminate between two sets of proteins based on features such
as functional amino acid groups and physiochemical properties
extracted from the raw sequences. The strengths and limitations
of each method are presented and discussed, focussing on the
individual merits and how they could work possibly compliment
each other rather than just being compared by their classification
accuracy.

I. INTRODUCTION

The problem of protein family classification in biology is

one that has benefited greatly from the application of machine

learning and pattern recognition techniques. Research teams

world-wide curate electronic biological databases of proteins

sequenced from organisms, of which the size of such databases

increase exponentially, and it is the role of machine learning

and automated pattern recognition techniques to ensure that

the function and structure of these proteins are analysed at the

same rate proteins sequences are made available in the public

domain. In biological terms, two proteins may be related based

on common patterns found in the sequences, where families

of proteins are typically classified by the functional purpose.

It is therefore not only interesting to know which family a

protein belongs to, but also what features in the sequence are

common to those within the family. The two main approaches

for classification are to (i) to use the raw sequences and

align them, where in alignment space common sub-strings

are identified and scored based on metrics such as whether

a certain sub-string is conserved in nature, or (ii) use high

dimensional meta data extracted from the sequence such as

hydrophilic scale [1] where the features are arbitrarily pre-

defined.

In the literature it has often been the case that regardless of

whether the technique uses meta data or actual sequence data,

it is usually the classification accuracy that is compared rather

than the merits of each technique, even though many works

show similar accuracy.

The statistics behind position-specific scoring based meth-

ods on pairwise alignments of proteins have been established

in [2] and their work on these scoring systems produced

BLAST (Basic Local Alignment Search Tool), where sub

strings of two sequences are compared when aligning them,

and each substring in the alignment is scored based on matches

and mis-matches between the two.

Fig. 1. A simple pairwise alignment. The alignment shows the two may be
related based on matched amino acids in the sequence, where some amino
acid substitutions are tolerated in nature better than others. It can also be seen
in the sequence that some amino acid deletions may have occurred over time
and dashes represent these when aligned to the first sequence.

Fig. 1 provides an example alignment which shows how it

may be possible to related one sequence to another for pairwise

alignments, however a more sophisticated scoring system is

desired that could harness the power of aligning multiple

sequences. Multiple sequence models were introduced by

Taylor et al. in 1986 [3] and further developed by Henikoff

et al. [4] and Eddy [5] as a means to use position-specific

information from defined sequence alignments. Traditional

HMM (Hidden Markov Model) provide a method to determine

what state a system is in based on emitted symbols, such as

those from a protein sequence. Profile HMM builds upon this

by determining how likely a symbol in a sequence is emitted

in a certain position of a multiple sequence alignment, as well

as modelling the probability of transitioning to an insert or

delete state. HMM can be built on either aligned or unaligned

sequences, where a previous multiple sequence alignment may

used if the inserts and deletion in a protein may be of interest.

From the multiple sequence alignment, the probability of

all match, insert and delete states at each position in the

multiple sequence alignment are determined through some

training methods, such as the forward-backward or Viterbi

methods. New sequences can then be aligned to the model and

scored based on the path it takes through the HMM model.

The success of profile HMM has been shown by Eddy [5]

where the PFAM database [6] holds information on protein

family domains built entirely from profile HMM.

In contrast to algorithms such as BLAST and HMM that
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use alignments of raw sequences to classify proteins, there

are many other techniques such as artificial neural networks,

SVM (Support Vector Machine) and RDT (Random Decision

Tree) that use meta data extracted from raw sequence data.

Statistics ranging from simple frequencies of amino acids to

functional groups, secondary protein structure all frequently

used as pre-defined inputs to such classifiers. Randomized

decision trees as classifiers have shown accurate results in

protein classification in the literature, although not nearly

as widely used as popular techniques such as SVM and

ANN (Artificial Neural Network). RF (Random Forests) is an

ensemble machine learning technique which builds decision

trees at training time to output classes within the training set

based on splitting the data at each node by a threshold. For

each tree in the forest, the tree is trained and tested using

bootstrapped samples (with replacement) of the dataset where

the test data is referred to as OOB (“Out of Bag”) data that

is used to estimate an OOB error. This is particularly useful

to biologists trying to classify proteins, as it allows training

and testing to be tailored towards certain proteins features, for

example groups of amino acids that represent hydrophilic in

a protein.

Kandaswamy et al. [7] demonstrated RF to be a successful

classifier for antifreeze proteins when using non-antifreeze

proteins as a negative test set, achieving 84% accuracy, which

are better than other methods used such as HMM, SVM and

ANN in their study. RF can be used and should be explored

for other protein families to be established as a tool for future

classification when new proteins are found. Another useful

feature from the RF algorithm that has been explored in the

literature is feature importance using measures such as Gini

importance and permutative importance. Feature importance

is an integral part of protein-protein interaction studies as it

explains the relationships between a protein bonds, and as

this experiment shows, the Gini importance picks out features

known in the literature to be essential features as part of

tansmembrane and antifreeze proteins that are used to split

the classify the proteins best over a range of other features.

The work in this paper describes the implementation of hidden

Markov models and random forests for protein classification

and the strengths and weaknesses of both when analysing

different groups of proteins.

II. DATASET

The following two experiments use the RF and HMM to

classify two different types of protein families: ion channel

transmembrane proteins from non transmembrane proteins

and antifreeze from antifreeze-like proteins. Transmembrane

proteins exist within the membranes of cells that trans-

port molecules and ions across the membrane to inside the

cell. Transmembrane proteins show high structural homology

across the family. In contrast, antifreeze proteins do not show

high structural homology, however are generally arranged

in such a way that water molecules do not unfold them.

The type III clan consists of two sub groups: one being

antifreeze and similar proteins such as flagella and pilus

proteins that provide a similar functional role, and the second

being homologous proteins in terms of function, which for

ease of use will be referred to as antifreeze and antifreeze-

like proteins respectively. This particular family of antifreeze

proteins have been chosen in contrast to the transmembrane

proteins. Antifreeze proteins do not have such well defined

structure because they have conversantly evolved from various

different types of organisms [8] and as such the high variance

in structure of the subtype constituents if each family will be

a good test for classification.

A. HMM data

The PFAM database [9] stores protein family data built

using HMM. Three sub-types of transmembrane proteins were

obtained: 3732 ligand-gated ion channel (PF00060 44 train-

ing, 3228 testing sequences), potassium-transporting ATPase

A subunit proteins (PF03814 14 training, 2239 testing se-

quences) and inward rectifier potassium channel (PF01007 14

training, 1452 testing sequences). A negative training dataset

consisting of 1445 randomly selected non-transmembrane

proteins were also obtained from PFAM. For the antifreeze

proteins, type III antifreeze proteins were obtained from the

PFAM database, where the family is split into antifreeze

proteins (PF086666 169 training, 4935 testing sequences)

and their homologous antifreeze-like proteins (PF13144 119

training, 1927 testing sequences). All proteins used to train

and test the HMM were pre-aligned to include insertions and

deletions in the sequences.

B. Random Forests data

Meta data extracted from raw sequence data can take a long

time depending on what features are desired to aid classifica-

ton and as such smaller test sets were used in the random

forests data. 337 voltage gated ion channel transmembrane

proteins (297 training, 40 test sequences) were taken from

the Transporter Classification Database [10] and 297 and 40

non transmembrane respective training and testing sets were

taken from PFAM. A training set of 100 antifreeze proteins

(PF086666) and 100 antifreeze-like proteins (PF13144) were

taken from the PFAM database, and 26 antifreeze proteins and

26 antifreeze-like proteins were used as test sets.

III. MODEL AND FEATURE

Profile hidden Markov models are available from PFAM

website, or can be built using the raw sequences contained

within the family. In this paper, in total 5 HMMs were built

(3 transmembrane and 2 antifreeze), in which the length

after aligning all training set proteins was used to generate

each model and. was taken as the model length. The Baum-

Welch learning algorithm is used to estimate the transition and

emission matrices. Fig. 2 illustrates the HMM model. Once

each model is built, test proteins can be aligned to the model

using the Viterbi algorithm and scored against that HMM

model. Three classification tests were devised to show the

strengths and weaknesses of profile HMM: i) Transmembrane

vs. non-Transmembrane proteins ii) Ligand transmembrane
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Fig. 2. HMM model. There are three states of a profile HMM: match,insert
and delete states. Match states emit the amino acid observed at that position
of the sequence. Insert states occur when there is is an amino acid(s) inserted
in the sequence which also emit 1 of 20 different amino acids, which can
be pre-configured to emit background amino acids or amino acids known to
be found in that particular protein. Delete states are silent states that emit no
amino acid.

proteins vs. potassium and inward rectifier transmembrane

proteins, and iii) antifreeze vs. antifreeze-like proteins. High

level meta-data was extracted from the random forest data

using a variety of techniques and are summarised as follows:

Protein features

# Features No. of features

1 Amino acids 20

2 Functional groups 17

3 Chemical properties 6

4 Secondary Structure 60

Total 93

1) Frequency of amino acids: The frequency of each of the

20 naturally occuring acids was calculated.

2) Frequency of functional groups: The amino acids found

within each protein sequence were categorized into 17

functional groups such as phenylene, valine, leucine,

proline and hydroxyl, where the frequency of each

functional group was calculated.

3) Secondary Structure Frequency of helix, beta sheet and

coil structures within each protein were predicted using

PSIPRED. The frequency of each amino acid found

within each secondary structure element was calculated.

PSIPRED [11].

4) Physio-chemical properties: The frequency of physio-

chemical properties of each protein was derived from

the amino acid index (AAINDEX) [12] database, and

their methodologies were used to calculate the isoelec-

tric point, aromaticity, grand average of hydropathicity

index, instability index as well as molecular mass of all

protein sequences [13].

IV. FEATURE IMPORTANCE

The measure used in this work to determine which features

best split the data from the RF algorithm is the Gini index. The

Gini index is essentially measured by calculating the level of

impurity of the data at each node split found within the child

nodes. At each node j, the impurity, or “Gini impurity” G(j)

is defined as:

G(j) = 1− p21 − p22 (1)

where pk = nk/n is the fraction of nk samples from class

k = 0, 1 from n samples at the node j. The change in the

Gini impurity as the data is split into two child nodes is

δG(j) = G(j)− pLG(jL)− pRG(jR) (2)

where pL and pR are the respective sample fractions held

in the child nodes. At each node, an exhaustive search over

features and thresholds yields a pair Φ, τ that represents the

maxmimum value of G(j) that decreases with each node split,

and for each node j in each tree T the Gini importance is the

sum of all pairs yielding maximum G(j)

IG(Φ) =
∑

T

∑

j

δG(j)Φ(j, T ) (3)

IG(Φ) is a measure of how often feature Φ was used to split

a node. If the Gini index decreases at each node, then clearly

the larger the Gini importance for Φ, the more important that

feature is in classifying the data.

Where accurate classification is a prequisite for any protein

classifaction experiment, feature importance is perhaps more

interesting than simply comparing different algorithms to see

which classifier performs best as it is important to understand

the nuances of each protein in biological terms i.e why they

belong to that family. It has to be noted however that any

classification and feature extraction of random forests are only

relative to the training sets used. A protein is suspected to

belong to a family then the positive dataset is not so much of a

problem, but the negative dataset equally important. Therefore

negative training sets should be devised and randomly selected

to represent background frequencies of any of the features used

as input into the training process.

A comparison of the feature importance between the fre-

quency of amino acids and the entire feature set in the

transmembrane proteins is shown in Fig. 3. The frequency of

phenylene denoted by FH (Helix Positions), closely followed

by molecular weight were found to be the two most important

features for classifying the dataset as measured by the Gini

index.

Fig. 3. Feature importance of frequency of amino acids against the entire
feature set in transmembrane proteins.
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Phenylene helices are integral in promoting folding of

proteins to perform the functions that transmembrane proteins

carry out in cells, and are also involved initiating interaction

between other transmembrane proteins [14], and so confirms

the validity of using the Gini Index for feature importance

measures. The role of molecular weight in any type of

analysis between proteins is trivial in terms of function, yet

useful for discriminatory measures. It is encouraging that the

random forest process used the GRAVY to split the data.

Kyte and Doolittle’s work on hydropathy [1] showed that

transmembrane proteins will have a higher GRAVY score than

other globular proteins. Other notable features of the data

that would perhaps be expected to help determine between

a transmembrane protein and a non-transmembrane protein

that are also found to be of importance in this study are

hydroxyl groups typically found in the form of glycerol that

are found in cellular membranes, and the frequency of amino

acids found in helices of each protein. Helices are responsible

for the structure of transmembrane proteins where Bowie et
al [15] documented“helix packing” in transmembrane proteins,

but will fall to background frequencies in globular proteins.

A comparison of the feature importance between the fre-

quency of amino acids and the entire feature set in the

antifreeze proteins is shown in Fig. 4. Molecular weight being

the most important feature to classify the data does not really

have much meaning, in particular from the biological function

point of view, as on average the non homologous antifreeze-

like proteins have even longer sequence than the antifreeze

proteins. Glutamate (Q), pointed out as an important feature

has been proven to be an essential solute that increases the

ability for antifreeze proteins to increase thermal hysteris four-

fold [16] The absence of functional groups in data splitting

between the antifreeze proteins and antifreeze-like proteins

would be expected as functionally they are near identical

while being structurally different, as seen by the amount of

secondary structure features splitting the data.

Fig. 4. Feature importance of frequency of amino acids against the entire
feature set in antifreeze proteins.

Although random forest classification of antifreeze and non-

antifreeze proteins have been reported by Kandaswamy et
al. at just under 84% accuracy, a dataset of antifreeze and

antifreeze-like proteins were chosen to test the discriminative

power of random forests. It would be expected that it would

be difficult to classify two sub families of proteins rather

than classifying antifreeze from non-antifreeze proteins. On

the face of the results in this experiment a baseline accuracy

of 86% was achieved leading up to 92%. However looking

at the importance as measured by the Gini index it is clear

that molecular weight, and thus sequence length has played a

big part in exceeding accuracy normally achieved in protein

classification. However the baseline accuracy of 86% achieved

using the amino acid frequencies alone suggest that random

forest can classify between the two well. This is not so

surprising given that in each of the two sub families of

antifreeze proteins, many of the individual proteins will have

evolved from a large range of bacterial proteins, each with

their own distribution of amino acids. It is an interesting

observation that functional groups are mainly absent from the

Gini importance as the antifreeze and antifreeze-like proteins

share similar functions.

V. RESULT AND DISCUSSION

A. HMM results
Testing of proteins against a given HMM is performed by

aligning the sequence to the model and scoring it via the

Viterbi algorithm. The protein is then scored and expressed

a log-odds ratio of the probability of the protein belonging

to that HMM divided by the null model. The HMM results

are shown in Fig. 5 for transmembrane proteins and Fig. 6 for

antifreeze proteins. The results is a bit score, in which for each

family PFAM suggests a unique threshold score to be required

for a protein to be a possible homology of that protein family.

Fig. 5. Left: Non-transport and ligand proteins aligned to the ligand HMM
model. Right: the three different sub-types of transmembrane proteins aligned
to the ligand HMM model.

Fig. 6. Left: Non-transport and ligand proteins aligned to the ligand HMM
model. Right: the three different sub-types of antifreeze proteins aligned to
the ligand HMM model.
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Testing transmembrane proteins against respective HMMs

yield high classification accuracy, not only against non-

transmembrane proteins, but distinguishing between their sub-

types despite similar structure and function. This is not supris-

ing however, as this is because the transmembrane proteins

between subfamilies share a lot of sequence similarity, but

the HMM models are very sensitive to amino acid changes in

certain positions, and vary according to the type of subsitution.

On the other hand, because antifreeze proteins evolve from

many different ancestors, and generally converge to functional

similarity as opposed to sequence similarity, the HMM model

struggles to distinguish between antifreeze and antifreeze-like

proteins when aligned against the pure antifreeze HMM. The

fact that this is not the case when aligned to the antifreeze-

like model possibly suggests the antifreeze-like HMM requires

any protein to have functional properties that largely reflect

the variety of functional groups present within the family,

where the antifreeze HMM only requires sub-sequences within

the protein responsible for antifreeze functionality - a feature

shared between both sub-families. The fact that antifreeze-like

proteins scored against the antifreeze-like model yields high

variation in the distribution of log-odds scores, yet shows a

lower distribution when scored against the antifreeze HMM

informs us that a functional, rather then purely sequenced

based approach to classifying certain amino acid families may

often be needed in families of low sequence homology.

B. Random Forest results

Random Forest however was consistent over both trans-

membrane and antifreeze classification, however it should be

noted that RF is a discriminative process in which classifi-

cation is performed against a negative training set, and as

such a comparison between HMM and RF classification is

not explicit here. The results in Table I are listed as the

four main feature sets are cumulatively introduced into the

training/testing process.

TABLE I: Cumulative classification

Features Transmembrane Antifreeze

Amino acids 62.5% 86.9%

Chemical properties 72.5% 89.1%

Functional groups 75% 89.1%

Secondary Structure 85% 91.2%

The Fig. 7 and Fig. 8 show the OOB error of RF training

on transmembrane proteins and antifreeze proteins with four

different sets of features respectively. The black curves are the

OOB error which represents the error of proteins used outside

of the training process from both classes. The green curves

denote false positive rates, while red ones are false negatives.

Fig. 7. The OOB error of RF training on transmembrane proteins by using
different sets of features. Top Left: Amino acids; Top Right: Amino acids, and
functional groups; Bottom Left: Amino acids, functional groups, and chemical
properties; Bottom Right: Entire feature sets. The black curves are the OOB
error which represents the error of proteins used outside of the training process
from both classes, the green curves denote flase positives, while red ones are
false negatives.

Fig. 8. The OOB error of RF training on antifreeze proteins by using different
sets of features. Top Left: Amino acids; Top Right: Amino acids, and functional
groups; Bottom Left: Amino acids, functional groups, and chemical properties;
Bottom Right: Entire feature sets. The black curves are the OOB error which
represents the error of proteins used outside of the training process from
both classes, the green curves denote flase positives, while red ones are false
negatives.
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The class error in non-transmembrane and antifreeze-like

proteins are particular high compared to that of the class

error of classifying transmembrane proteins and thus shows

high sensitivity. In particular it can be seen in Fig. 7 that

introducing secondary structure into the classification process

for transmembrane proteins vastly increases the class error of

non-transmembrane proteins. This is expected as a prominent

biological features of transmembrane proteins are their rigid

structure. The results are not only useful to obtain the accuracy

of ranfom forest classification, but it can inform what features

are needed to obtain near-optimal results. For example, the

classification for antifreeze proteins as a whole shows high

accuracy from a small amount of features, even using amino

acid frequencies alone. The classification does not show as

much improvement form introducing more features, and the

classification process is optimal using only 50 trees. The error

reduces dramatically as secondary structure is added into the

transmembrane classification, as in general transmembrane

proteins have rigid secondary structure compared to non-

transmembrane proteins.

C. Discussion

The aim of this work was to provide an insight of machine

learning in the context of protein classification, in particular

the random forest and hidden markov model algorithms. Ran-

dom forest uses meta data extracted from protein sequences

to split the data into user-defined classes, where HMM builds

a statistical model from directly aligning protein sequences

of known homology, and new sequences are then aligned to

the model. There is a large focus in bioinformatics on how

various machine learning algorithms compare to each other

in terms of classification accuracy, but just as was illustrated

in the differences between local and global alignments of

sequences (Needleman-Wunsch [] and Smith-Waterman al-

gorithms), each machine learning algorithm should also be

viewed on its individual merits and what they can offer.

The fact that profile HMM is built from directly aligning

sequences to a model built by aligning many sequences

provides a classification tool that specialises in finding the

local segments of protein sequences that are conserved through

evolution and thus provide a way to find distant homologue

that have diverged through evolutionary processes. Another

aspect of HMM is that a log-odds scoring system provides a

metric that is far more expansive than simple and discrete

yes/no labels used in Random Forests. This can provide

biologists a way of focussing on proteins which do not classify

as well and explore through other methods to discriminate

them against a family. Random forests on the other hand

excel at discriminating between two groups of protiens and

are not constrained to classifying on raw sequence data. The

ability to extract and train on a vast array of features allows

for customisation that can tailor the process based on prior

knowledge of the protein groups. The features used to best

split the data are computed via the Gini index (or permutation

importance is an alternative method) and so provide an insight

into what features were used to classify the data. This is an a

particularly useful and intutive feature of random forests and

can not only be used to verify that important features expected
to be found within certain families are part of the classifier,

but also could potentially provide a platform for investigating

features picked out by random forest that were not necessarily

thought to be important. One further conclusion from this work

is that these two different approaches can perhaps be combined

to perform protein classification, e.g. a two-step process where

a test protein may score well against a group of HMM can

then be used to discriminate which one is the most likely using

Random Forest.
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