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Abstract: The authors propose a novel spatiotemporal constraint based on shape and appearance and combine it with a level-set
deformable model for left ventricle (LV) segmentation in four-dimensional gated cardiac SPECT, particularly in the presence of
perfusion defects. The model incorporates appearance and shape information into a ‘soft-to-hard’ probabilistic constraint, and
utilises spatiotemporal regularisation via a maximum a posteriori framework. This constraint force allows more flexibility
than the rigid forces of shape constraint-only schemes, as well as other state of the art joint shape and appearance constraints.
The combined model can hypothesise defective LV borders based on prior knowledge. The authors present comparative
results to illustrate the improvement gain. A brief defect detection example is finally presented as an application of the
proposed method.

1 Introduction

Single-photon emission computed-tomography (SPECT) is a
commonly used approach for clinical evaluation of coronary
artery disease. It visualises functional information of the
left ventricle (LV) in three-dimension (3D), such as
discontinuous perfusion scintigrams because of scarred or
ischaemic myocardium. Gated cardiac SPECT also provides
cardiac motion information along the time dimension.
The segmentation of LV epicardial and endocardial borders

allows quantitative analysis of perfusion defects and cardiac
function, and hence is of significant importance for
diagnosis and clinical study. In SPECT, normal perfusion
has high brightness in good contrast against a dark
background, whereas perfusion defects have low or no
brightness and hence low or no contrast against the
background. Moreover, SPECT imaging can suffer from
motion artefacts because of long imaging times [1], which
is not a trivial task to compensate. As a result, accurate
determination of the LV borders around the defect is
difficult as there are few or no defined image features, such
as gradients. In addition, the image data very often contains
hot structures in the proximity of the LV, such as the liver,
considered as perfusion artefacts that impose similar
difficulties for correct LV segmentation. Furthermore,
although resolution recovery techniques, such as [2], can be
applied to increase SPECT spatial resolution, SPECT
images have far lower resolution, as well as exhibit fewer
anatomical landmarks (since the images suffer degradation
because of various types of attenuation), in comparison
with other modalities, such as Computed tomography (CT)
and magnetic resonance imaging (MRI). Methods that are

purely data-driven may only work well on SPECT images
that do contain those image artefacts and ambiguities
caused by perfusion at surrounding tissues, for example,
paper [3] which uses a conventional edge based active
contour method. Prior knowledge of the LV shape is hence
usually required to estimate myocardium borders and
defective borders in particular.
Beyond such analysis in static LV data, segmentation of

LV in 4D allows analysis of cardiac motion. However,
because the low-resolution nature of SPECT imaging
produces a partial volume effect, the images at end-systole
tend to look brighter than end-diastole – known as the
artefact of myocardial brightening [4]. Hence, prior
knowledge of cardiac motion is also required to estimate
LV borders to guarantee correct motion estimation.
We propose a level-set framework that incorporates a

novel shape and appearance-based spatiotemporal
constraint into a general data-driven deformable model.
The proposed constraint makes use of a priori knowledge
in shape, appearance and their correlation, as well as
spatiotemporal variations of the object under study,
allowing more flexibility and reliability in the overall
model. This helps cope with misleading image data such
as defects, artefacts and temporal inconsistencies in gated
cardiac SPECT.
In the next section, we review previous work on LV

segmentation in cardiac SPECT data and other related
issues. Section 3 covers charged active contour based on
electrostatics (CACE), the basis for the proposed
constrained CACE (CCACE) model. Section 4 gives details
of CCACE, followed by experimental results of the model
in Section 5. Finally, the paper is concluded in Section 6.
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2 Previous work

A variety of deformable models have been proposed for LV
segmentation in cardiac SPECT (e.g. [5–10]). Although
bottom-up methods, for example [9] based on piecewise
constant assumption, have been used, they generally suffer
from image ambiguities, for instance, caused by
under-perfusion. Top-down approaches in comparison are
probably more robust, owning to the rigidity of the
pre-defined models. For example, in [10], a predefined LV
mesh is manually initialised and subsequently deformed to
fit into local image gradients. Defective borders in SPECT
can be hypothesised with these models as they sustain the
shape of an LV during segmentation. However, these
models have neglected the time dimension and deal with
static LV only, missing the advantages that time consistent
segmentation can offer [11]. Others have pursued a
sequential segmentation approach, for example [12, 13],
by taking the segmentation result of the previous
timeframe as an initial guess for the current timeframe,
but this generally leads to an underestimation of cardiac
motion [14]. Paying more attention to the time dimension,
[15] built a statistical model on the motion fields between
the images at end-systole and end-diastole for better
estimate of cardiac motion. Nonetheless, this approach, as
well as other motion tracking algorithms [15, 16–18],
track cardiac motion along sampled points in the image,
which may not provide accurate segmentation of the LV
shape.
There are also some elaborate spatiotemporal methods for

better estimates of LV shape and motion on gated cardiac
SPECT. Debreuve et al. [11] and Charnoz et al. [19]
implemented a geometric active contour to determine LV
borders taking into account all the timeframes of the
sequence to cope with background noise and provide more
temporally smooth results. Montagnat and Delingette [14]
used a pre-determined 4D shape model registered onto the
input image sequence under shape and temporal constraints.
Similar to [20–22], Kohlberger et al. [23] built a statistical
constraint through principal component analysis (PCA) on
training shapes. The constraint is applied to a level-set
model searching LV borders in a Mumford–Shah’s
formulation [24, 19]. We hereafter refer to this model as
SCMS, that is, the Spatiotemporally Constrained Mumford–
Shah’s model. The model in [25] was extended from [23]
and inferred the constraint by utilising a kernel density
estimator as suggested in [26] instead of the multivariate
Gaussian model.
The main limitations of the above models would become

apparent if they dealt with pathological cases. For example,
the authors of [11, 19] assumed that the LV has constant
pixel values, Montagnat and Delingette [14] relied on its
own rigidity to hypothesise on the defective borders, and
the constraints in [23, 25] were applied to the models
rigidly, that is, with equal strength everywhere. Also,
Kohlberger et al. [23] only allows local variations that the
statistical priors can recover. Such shortcomings can
compromise the accuracy of the estimate, especially on LVs
with local variations and medium-to-severe perfusion
defects. Furthermore, the constraints of these models are
shape-based, with no mechanism proposed to incorporate
appearance information correlating to the shape in the
constraint forces. Since the shape of a perfusion does not
always correspond to the LV shape in the presence of
defects, we argue that these shape-based constraints still
lack flexibility to deal with abnormal perfusion and hence

can compromise segmentation accuracy. Appearance
information, in addition to shape, should be considered.
In [27], Rousson and Paragios proposed a constraint via

finding maximum probability density function (pdf) of the
shape and combined it with a level-set model for object
detection in optical images with noisy or missing data. This
Self-Constrained Geodesic Active Regions model is
hereafter referred to as SCGAR. Their probabilistic
approach took into account shape variability, producing a
soft-to-hard force, which allowed a wider range of shape
variations than the models in [23, 25]. We will use this
methodology as part of our approach towards LV detection
in cardiac SPECT as LV shapes contain large degrees of
irregular inter-class variations [28].
For more reliable application in SPECT, we take inspiration

from the soft-to-hard probabilistic framework of SCGAR and
replace its shape-based pdf objective function with a posterior
that considers the shape and appearance ‘of the whole
sequence’, leading to a novel shape and appearance-based
spatiotemporal constraint derived with maximum a
posteriori (MAP) estimation. Instead of globally aligning
shapes when evaluating the pdf in SCGAR, we apply a
global-to-local alignment. Meanwhile, as in [23, 25], PCA
is employed in our model to reduce data dimension and
statistically depict shape variations. However, unlike [23,
25], instead of applying PCA to the whole level-set domain,
we apply it to the deformation fields of the level sets,
characterised by transformation parameters, to further
reduce data space and allow better control over temporal
shape variations. Compared with current works on joint
shape and appearance constraints such as [29–33], our
soft-to-hard constraint allows more flexibility than their
rigid forces. In addition, we argue that the probabilistic
framework makes better use of the correlation between
shape and appearance than those that linearly combine the
two, for example [29–33].
In all, we present a model combining our recently proposed

general-purpose deformable model for boundary detection,
namely CACE [34], with a shape and appearance-based
constraint that is capable of incorporating prior knowledge
of correlated LV shape and appearance, as well as
spatiotemporal variations. This is designed to cope with the
irregularities in variations of LV shapes and motions and
the extremely fuzzy gradients because of (temporal)
perfusion defects and artefacts in cardiac SPECT. We refer
to this combined model as CCACE.

3 Review of the CACE model

We now briefly review the CACE model [34] which is the
foundation stone for the proposed CCACE method. CACE
is a general-purpose active contour model that incorporates
particle-based electrostatic interactions into the geometric
active contour framework. It can be used for object
boundary detection in a variety of images and applications.
Embedded in level sets, CACE propagates under the
influence of a bi-directional force field that simulates the
electrostatic interaction between an image-derived point
charge field and a charged contour. The force field leads the
contour towards object boundaries and dynamically adapts
as the contour evolves. It is a joint electrostatic force
consisting of a boundary attraction force FA and a
competition force FC

J = lAFA + (1− lA)FC (1)
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where

FA = pj
∑Nc

i=1,ri=sj

qi
4p10

sj − ri
|sj − ri|3

, sj [ X (2)

FC = g(sj)pj
∑Mc

k=1,k=j

f (sk)pk
4p10

sj − sk
|sj − sk |3

, sj [ X (3)

λA is a constant balancing the contributions from the two
forces. f (.) is the edge map of the input image, and g(.) is
an edge stopping function (commonly defined as g = 1/(1 +
f )). qi is the negative fixed charge assigned to location ri,
with magnitude proportional to its edge strength, that is, qi
= − f(ri). pj (or pk) is the positive charge at location sj (or
sk) on the active contour, and is set to unity for all sj,
although pj can be treated as a variable that can be tuned
for specific applications. Nc and Mc are the number of
negative and positive charges, respectively. ε0 is the
permittivity of free space and X is the set of all possible
locations in image domain.
The attraction force FA acts as a vector field that leads each

contour point towards the boundaries from both sides. The
competition force FC upon a contour is proportional to the
inverted strength of the edge (i.e. g(sj)) covered by this
contour. Contours that are on the object boundaries endow
most to the competition force with contributions
proportional to edge strength. In other words, the
competition force exerts most influence once any part of the
snake reaches a boundary and repels ‘free’ contours nearby
from reaching the already occupied boundary, forcing them
to search for unoccupied boundaries. This repelling force is
also designed in a way such that only contours in
homogeneous regions are most affected. It means contours
that reach object boundaries will exert repellent forces upon
other contours, whereas they themselves will be least
affected by others and remain on the boundaries. At the
same time, contours in homogeneous regions will continue
to deform according to both attraction and competition forces.
As the joint force field dynamically adapts by updating

itself when a contour reaches a boundary, it brings
flexibility in initialisation and better curve propagation
towards object boundaries. The level-set φ evolution of
CACE is

∂f

∂t
= lkgk|∇f|− 1− lk

( )
J · ∇f (4)

where λκ is a real positive constant and κ denotes the
curvature of the contour (which regualrises it). For more
details of CACE the reader is referred to [34]. As
mentioned earlier, we build CCACE on the CACE
framework and effectively CCACE is CACE with
application of specific constraints for 4D LV segmentation.

4 Proposed CCACE model

4.1 Overview

As shown in Fig. 1, the proposed model comprises of two
stages: training and segmentation. Through the training
stage, sets of pixel-wise Gaussian and spatiotemporal priors
are obtained. The Gaussian priors include a prior image, a
prior shape, an image variation term, a shape variation term
and the correlation between image and shape. The

spatiotemporal priors are the products of applying PCA to
global-to-local transformation parameters of shape
variations, and include mean of the parameters, eigenmodes
(i.e. modes of variations), weights for the eigenmodes, as
well as the covariance of the weights.
During segmentation, an initial surface embedded in level

sets is placed in the input image. A constraint force is
derived by finding the maximum of the multivariate pdf of
the input image and shape (the evolving level sets) based
on the Gaussian priors from the training stage. As the level
sets evolve, the pdf continuously updates by aligning the
prior image and shape with the input image and shape via
global-to-local transformations to enable meaningful
evaluation of the pdf. The alignment is regularised by prior
distribution over a set of ‘spatiotemporal parameters’ of the
transformations. The force derived from this regularised
multivariate pdf, effectively a posterior, is a shape and
appearance-based spatiotemporal constraint obtained via
MAP estimation. The evolving level sets update according
to the combination of CACE forces and this constraint to
reach (and hypothesise missing or defective) LV borders.
Next, we discuss the training and segmentation stages in
detail.

4.2 Training

A training set M =
{(
Ì i, f̀i

)
:i [ [1, N ]

}
of N-gated SPECT

samples is constructed from manually labelled 4D sequences.
Each sample

(
Ì i, f̀i

)
comprises of a pair – an image sequence

Ì i and its corresponding LV shape sequence f̀i, where Ì i is
the ith training image sequence, and f̀i is the ith training
shape sequence embedded in level sets constructed by
manual labelling on Ì i. Each training sequence consists of
K timeframes, that is, Ì i =

{
Ì i,k : k [ [1, K]

}
and

f̀i = f̀i,k : k [ [1, K]
{ }

. Any known defect-free sequence

can be selected as the reference shape sequence φ = φk:k∈
[1, K ]. To reduce non-linearity to fit in a Gaussian prior,
each training shape f̀i,k is globally and locally aligned
towards the corresponding timeframe of the reference shape
sequence, that is, fk

◦
, via a global-to-local registration

method, whose details are given in the Appendix. The
transformations recovered from these shape registrations are
then applied to the training images accordingly to sustain
the correspondence between training images and shapes.
From the aligned training set, we derive two sets of priors:
pixel-wise Gaussian priors and spatiotemporal priors.
Gaussian priors – We compute pixel-wise means of the

aligned images !I = !Ik : k [ [1, K]
{ }

, image standard

deviations !sI = !sIk
: k [ [1, K]

{ }
, means of the aligned

shapes !f = !fk : k [ [1, K]
{ }

, shape standard deviations
!sf =

{
!sfk

: k [ [1, K]
}

and the correlation coefficients
between image and shape !r = !rk : k [ [1, K]

{ }
. !I and !f

are also referred to as the prior image/appearance and prior
shape sequence, respectively. As the training shapes are
locally aligned, there is risk of bias in the priors towards the

reference f
◦
, whose impact on model performance is

however insignificant, as will be mentioned later at the
segmentation stage. In practice, we choose a sample with a
typical LV shape that has the least local variations from the
mean shape of the training set, in order to further reduce
the bias. Along with their standard deviations, the mean
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image and shape sequences of our training set, for K = 8 and
N = 15, are shown in Fig. 2.
Spatiotemporal priors – We seek parameterised temporal

correlation among the spatial variations by applying two
levels of PCA to a set of transformation parameters that
describe how the training shape sequences f̀i vary from the
prior shape sequence !f. These transformation parameters,
denoted as

{
Q̀i,k : (i, k) [ [1, N ]× [1, K]

}
, are recovered by

mapping the prior shape sequence !f into the training shape
sequences f̀i for i∈ [1, N ], again via the global-to-local
registration model (25). Note that in this mapping !f is the
source shape and f̀i are the target shapes, whereas in the

alignment of the training set above, f̀i is the source and f
◦

the target. The reason for mapping here is that the
distribution of Q̀i,k can be used to regularise segmentation
later during which the prior appearance and shape !I , !f

( )

are aligned towards the input appearance and shape when
evaluating the posterior.
The first-level PCA is applied to the recovered

transformation parameters
{
Q̀i,k : i [ [1, N ]

}
at each

timeframe k individually, each giving a mean !Qk ,
eigenmodes Pk comprising the mk most significant modes of
variations, and weights for the eigenmodes
b̀i,k : i [ [1, N ]
{ }

. The transformation parameters Q̀i,k can

then be approximated as

Q̀i,k = !Qk + Pk b̀i,k (5)

This PCA captures the variations among shape
transformations. We also consider that there is potential
correlation among the global and local transformations
which are both included in the PCA.
A further PCA is then applied to the weights of all

timeframes, that is, {b̀i,k : (i, k) [ [1, N ]× [1, K]}, and
produces second-level eigenmodes Q = Q′

1 . . .Q
′
K

[ ]′

representing the n most significant modes of variations, and
weights c̀i: i [ [1, N ]

{ }
, giving the following representation

b̀i,k = Qk c̀i (6)

The transformation parameters Q̂i,k can be therefore
represented in ĉk as

Q̂k = !Qk + PkQk ĉi (7)

Different to the first-level PCA, in this second-level one the
entire sequence is taken as one dataset as an observation,
hence the weights ĉi do not relate to time dimension as b̂i,k
does, that is, ĉi is not indexed by k.
The weights from the first PCA statistically depict shape

variations of every timeframe, and the second PCA on them
produces parameters that control their temporal variations.
This is similar to Cootes et al. [35] where an appearance
model is built by applying second-level PCA to the results
of a first-level PCA on shape and image greylevel data,
respectively. These two levels of PCA give an
approximation for a new set of transformation parameters

Qk = !Qk + PkQkc (8)

where c is a varying parameter to be determined with many
fewer dimensions than the transformation parameters Θk.
As it indirectly controls both spatial and temporal variations
of the sequence by affecting its transformations, we refer to
c as the ‘spatiotemporal parameters’. Assuming normal
distribution, the prior distribution of c is

Pc(c) =
**********
(2p)n|U |

√( )−1
exp − 1

2
c′U−1c

( )
(9)

where U is the covariance matrix whose diagonal comprises
the eigenvalues obtained from the two-level PCA.

Fig. 1 Overview of CCACE

Fig. 2 Top two rows: mean appearance sequence !I and its
corresponding standard deviations; bottom two rows: mean shape
sequence !f and its corresponding standard deviations
From left: timeframes 1–8

www.ietdl.org

IET Comput. Vis., 2013, Vol. 7, Iss. 3, pp. 170–183 173
doi: 10.1049/iet-cvi.2012.0081 & The Institution of Engineering and Technology 2013



To show the effect of varying the spatiotemporal
parameters, we reconstruct transformations by varying each
of the first two spatiotemporal parameters in turn, keeping
the others zero, and apply the transformations to the prior
shape, as shown in Fig. 3. It can be seen that the first
parameter of c has obvious influence over global motions
such as scaling and rotation of the LV, as well as local
features such as the height of the septum. The second
parameter, on the other hand, affects the LV shapes more
subtly, for example, in changing the shape of the apical
region and the ratio of the apical region over the whole LV
size.
In summary, from the training stage, we obtain sets of

Gaussian and spatiotemporal priors. The priors that are later
used in the segmentation stage are listed in Table 1.

4.3 Shape and appearance-based spatiotemporal
constraint

We now outline the derivation of our proposed constraint
force based on the priors obtained during training and then
give the combined formulation of CCACE in the next

section. We use a variational framework to derive the
constraint force that helps evolve the level sets to optimise
a posterior, defined as the product of a shape and
appearance-based multivariate pdf and prior distribution
over the spatiotemporal parameters. The posterior measures
the probability of an input shape and appearance to occur in
a multivariate normal distribution characterised by the
Gaussian priors obtained from the training stage, under
spatiotemporal regularisation through prior distribution.
Given the input image sequence I = Ik: k∈ [1, K ] and the

evolving level sets φ = φk: k∈ [1, K ] placed on the image,
the posterior is defined as

PA(f, c) =
∏K

k=1

(2p)
*****
|S
k
|

√( )−1

exp − 1
2
a′k
∑−1

k

ak

( )

Pc(c)

(10)

where

ak =
afk
aIk

[ ]
= (1− lI ) skfk − !fk (T )

( )

lI Ik − !Ik(T )
( )

[ ]
(11)

∑

k

= 1
1− !r2k (T )

!s2
fk
(T ) !rk(T )!sfk

(T )!sIk
(T )

!rk (T )!sfk
(T )!sIk

(T ) !s2
Ik
(T )

[ ]

(12)

and T is the simplified representation of a global-to-local
transformation model T(Θk;x), details of which are given in
the Appendix. The joint priors !I , !f

( )
are aligned with the

input appearance and shape (I, φ) through T(Θk;x), for k∈
[1, K ]. The transformations act on the priors so that the
derived constraint force applies straightforwardly to the
level sets and can be directly combined with CACE. Note
that the impact of potential bias in the priors towards the

reference f
◦

is largely alleviated via the alignment here.
Positive constant λI balances the contributions from image
and shape. Σk is the covariance between image and shape.
sk, a component of Θk, is the scaling factor at kth
timeframe. The reason for applying sk to φk is that level-set
representation is not invariant to scaling – see [27] for
details. As both φ and c are unknown, a coupled
optimisation task can optimise the posterior

kf̃, c̃l = argmin
f,c

EA(f, c) (13)

where EA(f, c) is the posterior-based objective function
defined as

EA(f, c) = −
∫

X
log PA(f, c)

( )
dx

=
∑K

k=1

∫

X
log (2p)

*****
|Sk |

√( )
+ 1

2
a′k

∑−1

k

ak

( )( )

dx

+ log
**********
(2p)n|U |

√( )
+ 1

2
c′U−1c

(14)

X represents all the possible locations in the shape domain
[Note that the level-set shape domain coincides with the
image domain.]. EA(φ, c) considers both shape and
appearance information and is evaluated with variations

Fig. 3 LV shape sequences recovered by varying the first two
parameters of c
From top, the first parameter set to −15σ, 0, +1.5σ (rows 1–3), and the
second parameter set to −15σ, 0, +1.5σ (rows 4–6)

Table 1 Gaussian and spatiotemporal priors

Gaussian priors
!f = {!fk : k [ [1, K ]} prior shape

!I = {!Ik : k [ [1, K ]} prior image
!sf = {!sfk

: k [ [1, K ]} shape standard deviation
!sI = {!sIk : k [ [1, K ]} image standard deviation
!r = {!rk : k [ [1, K ]} correlation between image and shape

spatiotemporal priors
{Qk : k [ [1, K ]} mean of transformation parameters
{Pk: k∈ [1, K ]} first-level eigenmodes
{Q =Qk: k∈ [1, K ]} second-level eigenmodes
U covariance of spatiotemporal parameters
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between the priors !I , !f
( )

and the input terms (I, φ) taken into
account. In particular, only spatiotemporally plausible
variations are accounted for owing to regularisation that
biases the transformation parameters towards their most
probable values. This keeps the model within plausible
shapes and motions. The level sets evolve towards the
maximum of the posterior to give the best probabilistic
estimate over the shape in the input image.

4.4 Level-set evolution of CCACE

Combining the constraint component with CACE, the motion
equations for CCACE are given in (15) and (16), through
which φ and c update iteratively and simultaneously until
equilibrium

∂fk

∂t
= lc lkgk|∇fk |− (1− lk)J · ∇fk︸:::::::::::::::::︷︷:::::::::::::::::︸

CACE









+ (1− lc)
sk

1− !r2k (T )
−(1− lI )

skfk − !fk (T )
!s2
fk
(T )

︸::::::::::::::︷︷::::::::::::::︸
Shape





− lI!rk(T )
Ik − !Ik(T )

!sfk
(T )!sIk

(T )
︸::::::::::::︷︷::::::::::::︸

Appearance



 (15)

∂c
∂t

= − ∂EA(f, c)
∂Q

( )′
Q′

1P
′
1 . . . Q ′

KP
′
K

[ ]
− U−1c (16)

whereΘ =Θk: k∈ [1, K ]. In (15), the first term represents the
data-driven evolution of CACE, whereas the second is the
constraint force, derived based on (13), with λκ balancing
the contributions from the two. The constraint force consists
of a shape and an appearance term. c also updates
according to (16) at each iteration of φ′s evolution to keep
the prior image and shape aligned with the input image and
shape.
To compute the partial derivatives ((∂EA(φ, c))/∂Θ), we

denote the transformation parameter as Θk = θk, j: j∈[1, Nθ],
where Nθ is the length of Θk, so that θk,j refers to the jth
component of Θk. Thus, ((∂EA(φ, c))/∂Θ) can be formulated
as in (17).

∂EA(f,c)
∂uk,j

=
∫

X

1
|Sk |

∂|Sk |
∂uk,j

+1
2
ak ′

∂S−1
k

∂uk,j
ak+ak ′S

−1
k

∂a
∂uk,j

[ ]

dx

=
∫

X

∂afk

∂uk,j

afk
!sIk

(T )−!rk(T )aIk !sfk
(T )

(1−!r2k(T ))!s
2
fk
(T )!sIk

(T )

( )[

+
∂aIk
∂uk,j

aIk !sfk
(T )−!rk(T )afk

!sIk
(T )

(1−!r2k(T ))!s
2
Ik
(T )!sfk

(T )

( )

+
∂!sfk

(T )

∂uk,j

1
!s2
Ik
(T )!s3

fk
(T )

(!s2
fk
(T )!s2

Ik
(T )

+ afk
aIk!rk(T )!sfk

(T )!sIk
(T )−!s2

Ik
(T )a2fk

)

+
∂!sIk

(T )

∂uk,j

1
!s2
fk
(T )!s3

Ik
(T )

(!s2
Ik
(T )!s2

fk
(T )

+ aIk afk
!rk(T )!sIk

(T )!sfk
(T )−!s2

fk
(T )a2Ik )

+ ∂!rk(T )
∂uk,j

(a′kS
−1
k ak )!rk(T )!sfk

(T )!sIk
(T )

!s2
fk
(T )!s2

Ik
(T )(1−!r2k (T ))

(

−
afk

aIk !sfk
(T )!sIk

(T )(1−!r2k(T ))−!rk (T )!s
2
fk
(T )!s2

Ik
(T )

!s2
fk
(T )!s2

Ik
(T )(1−!r2k (T ))

)]

dx

(17)

where
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Note that because of the presence of scaling factor in front of
the level sets in (14), the partial derivatives of afk

w.r.t sk in
(18) take a different form from other global and local
transformation parameters in (19).
According to (15), the level sets evolve under the

confluence of the force field in CACE and the proposed
constraint force. The shape term drives the level sets
towards the aligned prior shapes. In the denominator, the
squared deviation allows shape variability, hence the shape
driving force is applied in a soft-to-hard manner.
Meanwhile, the appearance term penalises or strengthens
the constraint force depending on the correlation between
image and shape. The more distant the input image from
the aligned prior image, the stronger the term is, where
image variability is also taken into account. It plays the role
of an extra criterion for constraining the level sets and
brings further flexibility to the constraint.

4.5 Initial conditions

Although CCACE (or CACE) is less sensitive to initial
placement, it is still not entirely independent from the initial
conditions. Hence, we devise an automated initialisation
method for CCACE for higher efficiency, reliability and
practicality of the model.
Given the fact that the closer the initial shape to the final

shape to be recovered, the more efficient the segmentation
process is, we aim to find a rough shape estimate over the
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input image as an initial shape for CCACE to start with.
Towards this end, we set λI = 1 in (14), so that the objective
function EA(f, c)|lI=1 takes information of greylevel
intensities only (with shape information ignored), and
measures the probability of the input image to occur. Note
that the correlation coefficients !rk can be assumed 0 and φ
can be ignored for EA(f, c)|lI=1. We then find the
minimum of EA(f, c)|lI=1, by updating the spatiotemporal
parameters c, starting from 0, according to a motion
equation taking the same form as (16), except that the
partial derivatives in it are rewritten as

∂EA(f, c)
∂uk,j

∣∣∣∣∣
lI=1

=
∫

X

∂!sIk
(T )

∂uk,j

1
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−
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Ik
(T )

( )[

+
∂aIk
∂uk,j

aIk
!s2
Ik
(T ))

]

dx (24)

With the recovered spatiotemporal parameters, denoted as c,́
and subsequently the recovered transformation parameters
Q́k , a probabilistic image estimate for input image Ik can be
obtained and denoted as !Ik (T (Q́k ; x)). Its corresponding
shape estimate is therefore !fk (T (Q̀k ; x)). We set
fk = !fk(T (Q́k ; x)) and c = c ́ as the initial conditions for
the coupled evolution task in (15) and (16). λI is then set to
0.5 so that both shape and appearance are considered
equally during the evolution.

5 Experimental results

We used 15 sets of gated cardiac SPECT sequences of healthy
LVs with normal perfusion for training, and applied CCACE
to another 14 sequences for performance evaluation, two of
which are pathological cases and present perfusion defects.
All patient studies were clinical studies acquired following
standard protocols. The resolution of the data was 64 ×
64 × α × 8 where α varied between 25 and 58. Throughout

Fig. 4 CACE and other models on mid-slices containing perfusion defects and artefacts (marked by white arrows)
From left, each column: input slice, results of CPM, geodesic snake, GVF geodesic snake, CACE and ground truth

Fig. 5 Iterations of SCMS (rows 1–3), SCGAR (rows 4–6) and
CCACE (rows 7–9) on gated cardiac SPECT with artefacts and
severe perfusion defects
Final row of each model shows the results overlaid on the ground truth
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the experiments, we set λc = 0.4 and λI = 0.5 which were
determined empirically. For each Pk and Q, the 10 most
significant modes were chosen to explain 95% of the
variations, that is, mk = 10 for k∈ [1, K ] and n = 10.
For comparison, we also implemented the SCMS and

SCGAR models based on [23] and [27], respectively. Since
no particular initialisations are specified for these two
models, we initially set them as the prior shapes for each
example. Note, unlike the 4D nature of SCMS and CCACE,
SCGAR deals with each timeframe individually.
We use the following colour scheme in the results that

follow: model results in red, ground truth in yellow and
localised defect regions in cyan.

5.1 Subjective assessment

To illustrate the necessity of the use of priors, in Fig. 4 we
show typical results from a number of data driven methods,
including charged particle model (CPM) [36], geodesic
active contour [37], GVF geodesic [38] and our base
model, CACE. Although CACE has successfully recovered
the shapes of the perfusion, it has not outlined the true LV
borders according to the ground truth, as the perfusion state
does not reflect the true shape of the LV in the presence of
defects or artefacts. This is because CACE evolves towards
any image gradients it can capture, without considering the
anatomical features of the object it is dealing with. Any

Fig. 6 SCMS (rows 1–4), SCGAR (rows 5–8) and CCACE (rows 9–12) on slices selected from the sequence
From top (each group): four slices at different locations within middle region of the LV
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other general data-driven method that only considers image
features is likely to suffer the same problem, as
demonstrated in the examples. Hence, the rest of the
comparative analysis is focused on methods that are using
prior-based segmentation.
Fig. 5 shows iterations of SCMS (rows 1–3), SCGAR

(rows 4–6) and CCACE (rows 7–9) for an LV with severe
myocardial infarction in the inferior wall (consistent
perfusion defects present throughout the sequence as well
as perfusion artefacts because of uptake in the liver). For
each model snapshots are shown in the first two rows,
whereas final results against ground truth are shown in the
third row. For visual assessment, clearly the less yellow (or
red) is seen in the third row for each case better the results.
Fig. 6 shows the results in selected 2D slices.
Large deviations between the SCMS results arise because

SCMS only allows global scaling and translation and local
variations that have occurred among the training sets, thus
is strictly restricted to only a pre-defined range of
variations. Meanwhile, SCGAR is more flexible than
SCMS, as it takes into account rotation in addition to
scaling and translation, and allows the model to locally
deform based on region forces. It can therefore cope with
more variations than SCMS and achieves higher accuracy in
many areas. However, the SCGAR model tends to merge

over the defect areas as marked by white arrows in Fig. 6
(1st column of SCGAR results), because of its data-driven
forces, whereas CCACE sustains a plausible shape and
successfully differentiates the epicardial from the
endocardial borders in these areas. SCGAR has large
deviations from the borders in the lateral segments as
marked by green arrows (3rd column of SCGAR results),
whereas CCACE converges more closely around them. This
shows CCACE has more flexibility as its constraint is more
alert to defect regions and less sensitive to lateral segments.
The limitation of SCGAR is due to the fact that the model

only removes global variations between the prior and the
input shape which means there remain large deviations
between them in areas containing local variations such as
the defect region and lateral segments. Hence, the ratio
between the deviations over plausible variations (e.g. in
lateral segments) and implausible variations (e.g. in defect
areas), and the resulting constraint forces which are
proportional to these deviations, tend to be small. In
contrast, as plausible variations between the joint priors and
the input shape and image are accounted for through the
regularised global-to-local transformations in CCACE, the
deviations between them are diminished over plausible
variations and kept large over implausible ones. As a result,
the magnitudes of the constraint forces over the defects are

Fig. 7 SCMS (rows 1–2), SCGAR (rows 3–4) and CCACE (rows 5–6) on a large LV with long apical region
Black arrows indicate significant areas of mismatch against ground truth
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significantly stronger than the lateral segments and other
normal regions. CCACE can therefore give a good estimate
over the defective borders without much compromiseof its
accuracy in other regions.
In addition, the appearance term in CCACE makes crucial

contributions to the constraint by preventing the model from
merging over the defect regions, because there is significant
difference between the intensities of the defect and the
aligned prior image, leading to a large appearance term.
Meanwhile, in normal perfusion areas the appearance term
exerts little influence because of small intensity differences.
Hence, this term plays the role of a meaningful criterion
that brings more flexibility than shape-based constraints only.

Figs. 7 and 8 show the models’ results on an example of a
large LV with a long apical region in particular. SCMS and
SCGAR fail to produce accurate estimates especially in the
apical regions as marked by black arrows, whereas CCACE
has achieved much better results.

5.2 Quantitative evaluation

The Jaccard coefficient is a commonly used statistic for
similarity (or diversity) measure between two sets. It is the
ratio between the size of the intersection and the size of
the union of two sets, A and B, under comparison: |A ∩ B|/|
A ∪ B|. We compute the Jaccard coefficient between the

Fig. 8 SCMS (rows 1–4), SCGAR (rows 5–8) and CCACE (rows 9–12) on slices selected from the sequence
From top (each group): four slices at different locations within the apical region of the LV
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model results and the ground truth as the accuracy measure
for the SCMS, SCGAR and CCACE models, as given in
Table 2. The results for the examples shown above are
also labelled in the table. The datasets marked with stars
in the ‘D’ column are pathological cases with perfusion
defects. The average accuracy of CCACE across the whole
dataset is 88.0%, with σ = 4.9%, and that of SCMS and
SCGAR is 58.0% with σ = 6.5% and 59.8% with σ =
9.5%, respectively.
From Table 2 it can be seen that CCACE has achieved

higher accuracy than SCMS and SCGAR on every dataset.
It also exhibits more consistent performance along the
time dimension than the other two models, attributed to its
spatiotemporal regularisation. The best performance of
CCACE is 94.2% on a normal perfusion sequence with
mild attenuation. In this example, the CCACE model has
converged closely onto the LV borders in overall, with
minor errors mainly resulting in the apical and basal areas.
The worst result of CCACE is 80.9% on a normal
sequence with artefacts, attenuation and large local
variations across the whole LV, where CCACE has
managed to outline the LV shapes, but errors occur not

only in the apical and basal but also in middle regions
with large local variations.

5.3 Computation time

Using a 2.8 GHz Linux PC running uncompiled Matlab
code, the computational times for the SCMS, SCGAR
and CCACE models are given in Table 3. The training
stage of CCACE takes significantly longer than the other
two models, because of the extra local transformations
involved and the fact that the global-to-local
transformations are applied to each dataset twice (the first
one for alignment and the second one for spatiotemporal

Table 2 Evaluation of model results on cardiac SPECT datasets

D M Jaccard coefficient

O Timeframes

1 A 53.1 47.3 58.7 53.2 52.2 47.6 42.9 46.7 49.4
B 55.6 47.8 59.3 55.0 51.4 47.8 44.7 50.3 52.2
C 94.2 92.9 93.6 94.6 95.3 95.1 94.2 93.1 94.5

2 A 59.2 64.9 66.3 64.5 59.7 53.4 50.0 54.4 60.3
B 63.2 63.0 67.3 69.3 59.1 55.0 54.7 61.2 64.6
C 93.5 92.8 93.4 94.0 94.4 94.3 93.8 93.2 92.0

3 A 63.8 65.4 74.9 68.2 62.7 57.0 52.7 61.8 67.5
B 62.1 62.6 73.6 65.5 57.5 52.9 53.3 63.9 67.3
C 93.5 92.0 94.3 93.8 94.4 94.5 93.7 92.7 92.5

4 A 61.2 63.0 68.4 62.9 64.6 57.9 53.3 55.7 64.1
B 65.2 63.9 69.6 66.0 66.1 61.1 60.0 63.2 69.8
C 93.3 92.2 93.2 94.3 95.0 94.5 93.7 93.2 90.6

5 A 58.4 64.3 68.5 62.3 55.5 48.4 51.9 57.5 58.5
B 57.7 53.8 66.1 63.1 54.6 50.1 51.1 60.0 59.3
C 93.2 93.9 93.0 94.2 95.1 94.5 93.7 91.3 90.3

6 (Fig. 7) A 48.3 41.7 48.3 51.1 42.7 43.8 48.4 49.5 41.2
B 48.9 41.8 48.5 51.1 42.5 44.0 48.8 50.4 41.8
C 90.6 88.0 89.3 90.1 93.0 92.0 91.3 90.1 90.7

7* A 63.0 73.7 67.0 58.8 53.4 60.0 58.4 62.1 70.9
B 62.5 57.9 57.8 58.4 50.9 61.0 72.4 73.2 68.6
C 87.3 85.4 89.0 90.2 91.0 85.0 85.4 85.6 85.6

8* (Fig. 5) A 63.1 71.7 67.2 63.1 62.7 60.4 60.5 55.8 63.4
B 62.3 62.4 63.1 66.3 58.8 55.0 65.3 64.6 63.0
C 85.8 83.6 85.6 86.7 86.4 83.5 84.4 87.9 88.6

9 A 59.8 66.0 63.7 60.8 55.2 56.1 55.4 59.7 61.6
B 63.2 62.2 64.1 65.9 57.3 62.0 64.1 67.3 62.5
C 85.4 86.7 81.8 88.5 85.8 83.6 87.0 85.1 84.8

10 A 55.2 54.7 60.1 54.3 59.7 54.4 48.3 47.8 52.9
B 68.4 66.9 70.4 64.1 66.0 65.3 65.7 64.9 69.9
C 84.7 85.6 88.4 81.5 89.8 85.5 80.0 83.7 83.4

11 A 57.0 57.3 58.8 53.1 56.1 55.1 51.8 49.8 59.1
B 61.5 58.9 61.1 55.1 56.4 56.7 58.6 54.4 61.6
C 84.6 79.6 84.4 89.7 85.3 85.1 87.3 85.0 80.4

12 A 70.9 74.2 79.9 76.0 72.1 66.8 63.3 64.2 70.5
B 78.8 81.9 85.1 81.9 72.9 71.4 75.3 80.6 81.3
C 82.6 81.5 81.8 82.4 85.4 84.3 83.1 82.7 79.9

13 A 49.8 43.2 51.7 54.2 47.1 46.7 50.2 53.8 51.8
B 40.8 31.0 41.1 44.6 42.5 40.7 40.5 42.2 39.3
C 82.3 68.8 83.7 83.2 89.2 84.8 85.8 83.5 79.6

14 A 48.8 48.5 55.0 55.3 49.5 43.1 41.3 47.5 50.4
B 47.1 41.5 51.5 54.4 47.9 42.7 41.6 47.4 47.8
C 80.9 76.1 75.5 84.6 85.8 82.5 82.6 77.5 82.6

Column ‘D’: dataset indices. Column ‘M’: model names, where ‘A’, ‘B’ and ‘C’ represent SCMS, SCGAR and CCACE, respectively, and
CCACE results are highlighted in bold. Column ‘O’: the overall accuracy for each sequence

Table 3 Computational times for the models

Models SCMS SCGAR CCACE

time training 51 min 53 min 223 min
segmentation 56 s 95 s 149 s
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analysis). Each global-to-local transformation in CCACE
training requires 54s on average, whereas the global
transformation during SCMS and SCGAR training needs
25 s. The segmentation stage of CCACE takes more time
than the other two models also because of the extra local
transformations as well as the more complex computation
of energy minimisation. In summary, CCACE clearly
pays a price for greater accuracy.

5.4 Defect detection

In this section, we present a brief defect detection study to
illustrate the potential of the proposed method. One of the
ultimate goals of LV segmentation is to assist diagnosis of
heart disease, e.g. finding myocardial infarction by
localising perfusion defect. With the image correctly

segmented, defect detection is fairly simple since the scope
of detection is within the myocardium and the defects
present much lower brightness than normal perfusion. We
accomplish this detection task on the two example image
sequences with defects) by running CACE on the
segmented images obtained from CCACE’s results. Other
active contours with robust handling of weak gradients
could also have been used.
We first define the segmented image as H f̃k

( )
Ik where f̃k

is the level-set LV shape recovered by CCACE and H(.) is a
Heaviside function. The joint electrostatic force field is then
derived for the segmented image according to (1) to guide
CACE evolution towards defect boundaries. To automate
the detection, we use the divergence-based initialisation
method proposed in [39], by finding divergent points of the
initial force field and selecting those in the dark areas

Fig. 9 Automated defect detection by applying CACE to the segmented image based on the CCACE result

Fig. 10 Results of defect detection in 2D slices

Table 4 Evaluation of defect detection

D M Jaccard coefficient

O Timeframes

7* A 74.3 81.1 88.2 80.3 89.4 76.9 47.3 51.4 79.9
B 50.2 22.6 37.2 67.3 51.9 37.3 47.5 44.0 35.8
C 78.2 78.6 83.0 82.6 81.4 71.4 77.2 70.2 81.0

8* (Fig. 9) A 53.8 63.9 44.2 45.3 45.4 47.5 10.0 51.6 46.4
B 38.8 41.0 39.6 38.7 39.9 36.9 40.7 34.2 29.7
C 63.0 75.7 73.4 67.5 67.9 54.5 58.5 44.3 54.8
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(potential defects) where the intensities are lower than 25%
(determined empirically) of the maximum. Initial CACE
snakes are then automatically placed around the selected
divergent points to expand under the vector forces towards
the boundaries of the defect regions.
Figs. 9 and 10 show our preliminary results of defect

detection by applying CACE based on the segmentation
results of CCACE, from which it can be seen that the
defects are successfully localised. The same detection
procedure was also applied to the segmentation results of
SCMS and SCGAR for comparison. The Jaccard
coefficients for the defect regions (as measured against the
manually labelled ground truth) on the two defective
datasets are given in Table 4.

6 Conclusions

In this paper we have proposed the CCACE model which
recovers LV on gated cardiac SPECT by probabilistically
determining its boundaries based on image gradients under
a shape and appearance-based spatiotemporal constraint
within a MAP framework. CCACE a) makes use of
global-to-local rather than global registration to account for
larger range of variability, b) applies appearance
information in addition to shape information and c) has
MAP spatiotemporal regularisation that takes the temporal
domain into consideration. The first two aspects allow more
flexibility in the constraint, whereas the third brings more
robustness to irregularities in temporal variations of the
input images.
The model has shown promising results on gated cardiac

SPECT even on data with artefacts or severe perfusion
defects. Further improvements may be achieved, for
example, by utilising the kernel density estimator as
suggested in [26] towards better evaluation of prior
distribution of spatiotemporal parameters, and by applying a
more robust optimisation scheme such as the trust region
method.
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8 Appendix 1

The global-to-local registration method proposed for CCACE
combines rigid transformation and incremental free form
deformation (IFFD) [40] and applies a sum of squared
differences (SSD) criterion with a smoothness constraint,
defined as

ET (C; x) = (1− ls)
∫

X
sfD − fS(T (C; x))
( )2
︸:::::::::::::︷︷:::::::::::::︸

SSD

+ ls
∂dTl
∂x

∥∥∥∥

∥∥∥∥
2

+ ∂dTl
∂y

∥∥∥∥

∥∥∥∥
2

+ ∂dTl
∂z

∥∥∥∥

∥∥∥∥
2

( )

︸::::::::::::::::::︷︷::::::::::::::::::︸
Smoothness

dx (25)

where fS is the source shape, which is to be registered onto
the target shape fD. The constant λs balances between the
SSD measure and the smoothness constraint. The
transformation model T(Ψ; x) is defined as

T (C; x) = sAR x+ dTl
( )

+
hx
hy
hz







 (26)

where

AR =
1 0 0

0 cosvx sinvx

0 −sinvx cosvx








cosvy 0 −sinvy

0 1 0

sinvy 0 cosvy









cosvz sinvz 0

−sinvz cosvz 0

0 0 1









(27)

dTl =
∑3

u=0

∑3

v=0

∑3

w=0

Bi(a)Bj(b)Bk(g)
dPx

i+u,j+v,k+w
dPy

i+u,j+v,k+w
dPz

i+u,j+v,k+w







 (28)

Ψ is the global-to-local transformation parameters defined as
s, ωx, ωy, ωz, hx, hy, hz, δP. The rigid transformation is
constituted of scaling s, rotation (ωx, ωy, ωz) and translation
(hx, hy, hz). δP is the displacement of an Lp ×Mp ×Np mesh
grid of control points overlaid on the domain with uniform
spacings δx, δy and δz, and dP = {(dPx

l,m,n, dP
y
l,m,n,

dPz
l,m,n):(l, m, n) [ [1, Lp]× [1, Mp]× [1, Np]}. The indices

i, j, k denote the position of the control point at the top left
corner of the cell that contains x, and α, β, γ are the relative
positions of x, y, z within the cell, that is, i = ⌊x/δx⌋ − 1, j
= ⌊y/δy⌋ − 1, k = ⌊z/δz⌋ − 1 and α = x/δx− ⌊x/δx⌋, β = y/δy
− ⌊y/δy⌋, γ = z/δz− ⌊z/δz⌋. Bi(α) is the ith basis function of
the cubic B-spline

B0(a) = (1− a)3/6 (29)

B1(a) = (3a3 − 6a2 + 4)/6 (30)

B2(a) = (−3a3 + 3a2 + 3a+ 1)/6 (31)

B3(a) = a3/6 (32)

Bj(β) and Bk(γ) are similarly defined.
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