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Abstract Motion estimation is usually based on the bright-
ness constancy assumption. This assumption holds well for
rigid objects with a Lambertian surface, but it is less appro-
priate for fluid and gaseous materials. For these materials
an alternative assumption is required. This work examines
three possible alternatives: gradient constancy, color con-
stancy and brightness conservation (under this assumption
the brightness of an object can diffuse to its neighborhood).
Brightness conservation and color constancy are found to be
adequate models. We propose a method for detecting regions
of dynamic texture in image sequences. Accurate segmenta-
tion into regions of static and dynamic texture is achieved
using a level set scheme. The level set function separates
each image into regions that obey brightness constancy and
regions that obey the alternative assumption. We show that
the method can be simplified to obtain a less robust but fast
algorithm, capable of real-time performance. Experimental
results demonstrate accurate segmentation by the full level
set scheme, as well as by the simplified method. The experi-
ments included challenging image sequences, in which color
or geometry cues by themselves would be insufficient.
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1 Introduction

Visual patterns such as fire and smoke, flowing water, or fo-
liage blown by the wind are common in real-world scenes.
These so called dynamic textures, which are time-varying
with certain spatial and temporal stationarity, are easily ob-
served by the human eye but are difficult to discern us-
ing computer vision methods (Nelson and Polana 1992;
Doretto et al. 2003a). The importance of analysing dynamic
textures lies in their relevance to a wide set of complex video
processing tasks and scenarios, ranging from motion detec-
tion and recognition to content based multimedia indexing.

Recognition and classification of dynamic textures usu-
ally rely on both frame texture and motion (Nelson and
Polana 1992; Szummer and Picard 1996; Fazekas and
Chetverikov 2007). However, the spatial extent of dynamic
textures (e.g. smoke, shallow water) can vary over time and
they can also be partially transparent. Due to these problems,
separating dynamic textures from a complex (cluttered, tex-
tured, moving) background is in many cases difficult, and
single frame features in particular can be misleading. Mo-
tion analysis, on the other hand, as will be demonstrated in
this paper, can be successfully employed to detect and accu-
rately segment dynamic textures even in challenging cases.

Segmentation is one of the classical problems of com-
puter vision. When an image sequence is available it is a
well-known practice to use motion features—either alone
or combined with other image cues (Murray and Buxton
1987; Shi and Malik 1998). Recently, Cremers and Soatto
(2004) have suggested a variational level set method for mo-
tion based segmentation. Schoenemann and Cremers (2006)
used graph cuts for the same purpose. Doretto et al. (2003b)
developed a method for separating regions of different dy-
namics based on statistical characteristics.
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Geometric, model-based, statistical and motion based
techniques are used for dynamic texture analysis (Chetveri-
kov and Péteri 2005). Motion is inferred from optical flow
methods, which are usually based on the brightness con-
stancy assumption. Under this assumption, the brightness of
an object is constant from frame to frame. This holds well
for rigid objects with a Lambertian surface, but fails for flu-
ids and gaseous materials, that are common in dynamic tex-
tures. Therefore, optical flow based on brightness constancy
cannot fully describe such visual patterns.

Several alternatives have been suggested in the past for
cases in which brightness constancy does not hold: Gradient
constancy provides a good solution for illumination changes
and automatic adaptation of the camera to light (Uras et
al. 1988; Schnörr 1984; Papenberg et al. 2006). Color con-
stancy can adapt to multiplicative changes in illumina-
tion (Ohta 1989; Golland and Bruckstein 1997; Mileva et al.
2007). Finally, brightness conservation (also known as ex-
tended optical flow constraint) assumes the brightness of an
image point can propagate to its neighborhood in the next
frame, being carried by the flow (Song and Leahy 1991;
Béréziat et al. 2000; Corpetti et al. 2000; Cuzol and Mémin
2005) (the idea was first proposed to deal with non-linear
motion Schunck 1984).

Dynamic textures are usually defined by extending
the concept of self-similarity—well-established for static
textures—to the spatiotemporal domain. This definition en-
compasses two different types of textures: Weak and strong
dynamic textures. Weak dynamic textures are the trivial case
of moving textures. For such dynamic textures, there exists
a local moving coordinate system in which the texture be-
comes fixed. Relying on the brightness constancy assump-
tion, the appropriate motion compensation can be easily
computed using standard optical flow algorithms (Horn and
Schunck 1981; Lucas and Kanade 1981). However, a strong
dynamic texture, possessing intrinsic dynamics, cannot be
captured by this approach because of self-occlusion, mate-
rial diffusion, and other physical processes not obeying the
brightness constancy assumption.

The objective of this paper is to find a motion model
which captures the intrinsic dynamics of dynamic textures,
and use that model to segment video sequences between sta-
tic/weak dynamic regions and strong dynamic texture re-
gions. This is achieved by comparing the accuracy of four
models on strong dynamic textures: brightness constancy,
gradient constancy, color constancy and brightness conser-
vation (this is essentially a model selection method Burn-
ham and Anderson 1998). Brightness conservation and color
constancy prove to be the best models of the four for strong
dynamic textures.

Based on the above observations, we propose a segmen-
tation scheme for detecting strong dynamic textures. The
method is formulated as a general variational scheme with

different possible implementations. We present two major
variants: (i) a level set method, (ii) a real-time thresholding
technique. The first variant is the most elaborate, the most
accurate, and the most robust. The second method is simple
and fast: While being fairly accurate, it can run in real-time
on typical computers available at the time of writing.

We test the proposed segmentation schemes on more than
30 video sequences (Fazekas et al. 2007) (most of them
taken from the DynTex database Péteri et al. 2006) showing
flowing water, steam, smoke, and fire—all in a natural con-
text. Many of these sequences were recorded with a moving
camera. The experimental results show the adequacy of our
approach for detecting dynamic textures in challenging situ-
ations, in which methods based on geometric, color, or low
level motion information would fail.

Preliminary results appeared in Amiaz et al. (2007). The
current paper expands on the previous paper by examin-
ing the gradient constant and color constant alternatives to
brightness conservation, replacing the first-order brightness
conservation regularization previously used by second-order
div-curl regularization, formulating a real time version, and
adding results on more sequences.

2 Background

2.1 Motion Based Segmentation

Motion can be a useful cue for segmentation and has been
used either alone (Cremers and Soatto 2004; Paragios and
Deriche 2005) or to enhance other visual cues (Zheng and
Blostein 1995; Galun et al. 2005). Motion based segmen-
tation can proceed in two different ways: In the first, mo-
tion is estimated and then a segmentation algorithm is ap-
plied on the result (Wang and Adelson 1994). In the sec-
ond, the motion and the segmentation are computed simul-
taneously (Cremers and Soatto 2004; Paragios and Deriche
2005). Usually, motion estimation relies on optical flow al-
gorithms (Horn 1986).

For simultaneous segmentation and motion estimation,
Cremers and Soatto (2004) describe a variational scheme
based on a level set method. They use an evolving indi-
cator function φ, which classifies every point according to
whether its value is positive or negative. This approach was
pioneered by Osher and Sethian (1988) (a similar technique
was suggested by Dervieux and Thomasset 1979).

A simple variational level set segmentation scheme for
grayscale images is formulated by Chan and Vese (2001),
Vese and Chan (2002). It uses the Lagrangian

LCV (I+, I−, φ) = (I − I+)2H(φ)

+ (I − I−)2H(−φ) + ν|∇H(φ)|, (1)
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where I denotes the brightness of the image to be seg-
mented, I+ and I− are the average brightness values of the
regions corresponding to the positive and negative values of
φ, H is the Heaviside function, |∇H(φ)| is the norm of the
gradient of H(φ), and ν is a parameter.

In a similar way, Cremers and Soatto (2004) partition a
video sequence into regions characterized by different types
of affine motion. The Lagrangian associated with this seg-
mentation is

LCS(p1,p2, φ) = pt
1Tp1

|p1|2 H(φ)

+ pt
2Tp2

|p2|2 H(−φ) + ν|∇H(φ)|, (2)

where pt
iTpi/|pi |2 measures the quality of the fit character-

ized by the affine motion vector pi (i = 1,2).
Extending the work presented in Cremers and Soatto

(2004), Schoenemann and Cremers (2006) develop a graph
cut method to partition frames in a video stream based on
the locally characteristic affine motion. Graph cut meth-
ods (Shi and Malik 2000; Boykov and Jolly 2001) are based
on creating a graph representation of the image with each
pixel being a node. Termination nodes are added to represent
the segmentation classes. In the method of Schoenemann
and Cremers (2006), the links between pixel nodes encode
smoothness constraints, while the links between pixel and
termination nodes encode the fitness of the apparent mo-
tion compared to the parametric affine motion models corre-
sponding to the termination nodes. An optimal graph cut is
computed and the motion models are updated to those best
fitting the segmented regions. This is repeated until a stable
solution is reached.

Doretto et al. (2003b) proposed a method for segmenting
a sequence of images into regions characterized by constant
spatiotemporal statistics. They assume that the regions with
different spatio-temporal statistics have boundaries that ei-
ther do not change or change slowly. The local spatiotem-
poral dynamics in each region is modeled as a stationary
Markov process. The model parameters are inferred using
statistics based on simple linear-Gaussian models and a vari-
ational optimization framework. The method was success-
fully tested on videos combining visual patterns such as fire,
smoke and water.

2.2 Dynamic Textures

The extension of texture analysis from the purely spatial do-
main to the spatiotemporal domain is motivated by the well-
known importance of motion sensing in biological cognitive
processes. For example, studies of visual perception in hu-
mans (Bruce et al. 1996) revealed that motion is used di-
rectly in recognizing aspects of the environment. Also, in-
sects are essentially blind to anything that is standing still

and the camouflage strategies of some animals are effective
only as long as they are not moving.

Many different visual patterns can be classified as dy-
namic texture (see Fig. 1). These include physical processes
such as surface waves, fire and smoke, flags, trees, bushes
waving in the wind, underwater vegetation moved by cur-
rents, or the collective motion of different distinct ele-
ments such as a group of animals (e.g. ants or birds), a
walking crowd, or cars in heavy traffic. All these exam-
ples exhibit spatiotemporal regularity with an indeterminate
spatial and/or temporal extent (Nelson and Polana 1992;
Soatto et al. 2001; Doretto et al. 2003a). Such visual pat-
terns are encountered in several applications including mo-
tion detection and recognition in video surveillance as well
as multimedia database queries. Dynamic textures can be
used for several tasks, e.g. automated annotation, complex
background modeling and video indexing, to mention just a
few.

Currently the most popular methods of analysing dy-
namic textures (for a recent review see Chetverikov and Pé-
teri 2005) are based on optical flow calculation (Nelson and
Polana 1992; Bouthemy and Fablet 1998; Peh and Cheong
2002; Fablet and Bouthemy 2003; Lu et al. 2005; Péteri and
Chetverikov 2005; Fazekas and Chetverikov 2005). Alter-
native approaches compute geometric properties in the spa-
tiotemporal domain (Otsuka et al. 1998; Zhong and Scar-
laroff 2002) or use local and global spatiotemporal filter-
ing (Wildes and Bergen 2000) as well as different spatiotem-
poral transforms (Smith et al. 2002; Wu et al. 2001). There
are also several model-based methods (Szummer and Pi-
card 1996; Doretto et al. 2003a, 2004; Saisan et al. 2001;
Fujita and Nayar 2003; Yuan et al. 2004), using estimated
model parameters as features. The methods based on opti-
cal flow characterize the local dynamics of spatiotemporal
textures through the computed velocity field describing the
apparent motion of small image regions. In this approach,
a dynamic texture can be viewed as a sequence of instan-
taneous motion patterns. When necessary, geometrical and
color information can be also added to form a complete set
of features for both motion and appearance based detection,
segmentation and recognition.

Local optical flow calculation has an inherent difficulty
in the fact that—independent of the imaging modality—a
sensor “looking” at the world through a small hole cannot
distinguish between different motion directions (Todorovic
1996). This so called aperture problem affects both human
visual perception (Hildreth 1987) and computer vision al-
gorithms (Horn 1986). Only the normal flow (orthogonal to
edges and antiparallel to the local spatial image gradients)
can be computed without ambiguity. The problem persists
unless the motion estimation is extended to a larger region
assuming correlated behavior of adjacent image elements.
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Fig. 1 Examples of dynamic
texture (DynTex Péteri et al.
2006)

Adding a smoothnsess constraint is the standard way to in-
troduce correlated behavior (Horn and Schunck 1981), re-
sulting in the removal of the aperture problem, the reduc-
tion of noise, but also the extension of motion over discon-
tinuities. The alternative, local method, of dealing with the
aperture problem, is to use only the normal flow, which is
directly calculated from the three partial derivatives of the
spatiotemporal intensity function. The normal flow, due to
its locality, does not extend motion over discontinuities but
tends to be very noise-prone.

Most of the work done so far in studying dynamic tex-
tures has used the normal flow, partly due to the influence of
the successful pioneering work of Nelson and Polana (1992)
and partly because its calculation is very easy and fast. Even
though Nelson and Polana (1992) recognized already at the
early state of their studies that the close relation of normal
flow and spatial gradients and hence contours and shapes
implies that the normal flow correlates with appearance fea-
tures and thus it does not characterize the “pure dynamics”,
no solution was proposed. Later, to overcome the problem,
Fablet and Bouthemy (2003) used only the magnitude of the
normal flow and recently Lu et al. (2005) as well as Fazekas
and Chetverikov (2005, 2007) stressed the necessity to ap-
ply a complete flow calculation in extracting characteristics
of dynamic textures.

2.3 Optical Flow Estimation

Among the numerous existing techniques used for motion
estimation, the variational optical flow calculation methods
are currently the most accurate. The Horn-Schunck algo-
rithm (Horn and Schunck 1981) is the root of all these meth-

ods. The basic assumption used is that the brightness of ob-
jects is constant throughout the video sequence. With the
correct displacement field (u, v), this can be written as

I (x + u,y + v, t + 1) = I (x, y, t), (3)

where I is the image brightness. The first-order Taylor ap-
proximation of the above brightness constancy assumption
gives the so called optical flow constraint

It + uIx + vIy = 0, (4)

where It , Ix, Iy are the partial temporal and spatial deriva-
tives of I .

In order to overcome the aperture problem (Todorovic
1996; Horn 1986), Horn and Schunck impose a smoothness
constraint on (u, v), obtaining the Lagrangian

LHS(u, v) = (It +uIx +vIy)
2 +α(u2

x +u2
y +v2

x +v2
y), (5)

where α is a parameter and ux , uy , vx , and vy are the flow
derivatives. The optical flow is calculated by minimizing the
functional

FHS(u, v) =
∫

�

LHS(u, v)dxdy (6)

using the calculus of variations (Horn 1986) (� is the im-
age domain). The accuracy of the method can be enhanced
by applying a multiscale coarse-to-fine scheme (Anandan
1989; Black and Anandan 1996), which makes the omission
of the higher-order terms in the Taylor expansion (4) valid.
Several other improvements were presented (see e.g. Brox
et al. 2004), and recently segmentation has been used to
enhance the optical flow itself (Amiaz and Kiryati 2006;
Brox et al. 2006).
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2.4 Brightness Constancy Alternatives

The brightness constancy assumption, as formulated in (3),
states that for two consecutive frames of a video sequence—
with a suitable displacement field (u, v)—the brightness of
a point (x, y) in one frame is identical to the brightness of
the point (x + u,y + v) in the next frame. In other words,
it states that by warping the image space in an appropriate
way two consecutive images can be brought into point-by-
point equality. There are many situations in which this as-
sumption does not hold: For example, in case of occlusions,
glinting surfaces (e.g. water surface), and complex physical
processes such as smoke and fire, to name just a few. These
situations are typical for dynamic textures.

The extent to which the brightness constancy assumption
holds for an optical flow (u, v) computed with the Horn-
Schunck method (Horn and Schunck 1981) (or more accu-
rate methods, e.g. Brox et al. 2004 and Amiaz and Kiryati
2006) can be measured by calculating the optical flow resid-
ual

(I (x + u,y + v, t + 1) − I (x, y, t))2, (7)

where I (x + u,y + v, t + 1) is computed with sub-pixel ac-
curacy using bilinear interpolation.

Calculating the above residual for several dynamic tex-
tures available in the DynTex database (Péteri et al. 2006),
we found that in certain image regions it is large and com-
parable to the null flow residual

(I (x, y, t + 1) − I (x, y, t))2, (8)

even for the most accurate optical flow calculation methods
(see Brox et al. 2004; Amiaz and Kiryati 2006) tested. The
large residual is not a consequence of numerical errors or
inaccuracy of the flow, but is due to the fact that the clas-
sical brightness constancy assumption simply does not hold
in certain conditions.

Many alternatives to brightness constancy have been pro-
posed. Most were introduced to compensate for changes in
illumination. When the change in illumination is additive,
the intuitive choice is to assume constancy of the image gra-
dients. Papenberg et al. (2006) have studied the inclusion
of gradient constancy in variational optical flow. They sug-
gest many options: gradient, gradient magnitude, Laplacian,
Hessian, and Hessian magnitude. Of these, we choose to use
the Laplacian as it proves to be very accurate in their work,
and is also rotationally invariant. The resulting constancy as-
sumption is:

�I (x + u,y + v, t + 1) = �I (x, y, t). (9)

The equivalent to the optical flow constraint in this case is:

Ixxt + Iyyt + u(Ixxx + Iyyx) + v(Ixxy + Iyyy) = 0. (10)

Color constancy has also been suggested to compensate
for illumination changes. Its main advantage is that it holds
even when the changes in illumination are not additive, but
on the other hand the spatial resolution of the color com-
ponents in most cameras is lower than that of the intensity
component. The basic question in using color, is the choice
of color coordinates. Mileva et al. (2007) formulated a non-
linear variational optical flow estimation algorithm based on
spherical coordinates in the RGB volume, with excellent re-
sults. The color constancy assumption is:

I r (x + u,y + v, t + 1) = I r (x, y, t), (11)

Iφ(x + u,y + v, t + 1) = Iφ(x, y, t), (12)

I θ (x + u,y + v, t + 1) = I θ (x, y, t), (13)

where r,φ, and θ mark the spherical coordinates compo-
nents. Linearizing these assumption we obtain:

I r
t + uI r

x + vI r
y = 0, (14)

I
φ
t + uIφ

x + vIφ
y = 0, (15)

I θ
t + uIθ

x + vI θ
y = 0. (16)

A different approach is to relax the constancy assump-
tion into a conservation assumption, meaning that the flow
“carries” the brightness as a “physical quantity” and thus
brightness changes are encoded in the divergence of the
flow. Under certain conditions, such as for smoke (exclud-
ing the source), this is a physically correct model, where
image brightness is related to material density (for exam-
ple in cardiac images Song and Leahy 1991 or meteoro-
logical images Béréziat et al. 2000; Corpetti et al. 2000;
Cuzol et al. 2007). However, the model can be justified
even when the brightness is not directly related to a physi-
cal density. A glinting water surface is an example of such a
process: Waves result in contraction and expansion of reflec-
tion spots, which also obey (when not saturated) the bright-
ness conservation assumption.

Considering an arbitrary region � of an image I , bright-
ness conservation can be defined as the equilibrium of the
total brightness change on � and the brightness moving in
and out through its boundary. With mathematical notations
usual in physics, this can be written as
∫

�

∂t I dA +
∫

∂�

I �f · �ndL = 0, (17)

where ∂t I is the time derivative of I , �f = (u, v) is the flow,
∂� denotes the boundary of �, �n is the external normal of
∂�, dA is a volume element, and dL is a surface element.

The above equation is the integral form of the so called
continuity equation used in physics for describing conser-
vation of material quantities (e.g. mass or charge). Through
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mathematical transformations and the divergence theorem,
one can derive an equivalent differential equation

∂t I + �f · ∇I + I div( �f ) = 0. (18)

Writing this in the form of (4) we obtain

It + uIx + vIy + Iux + Ivy = 0, (19)

where ux and vy denote partial derivatives of the flow. It can
be observed that this is the first order Taylor approximation
of

I (x + u,y + v, t + 1) = I (x, y, t)(1 − ux − vy), (20)

which we call the brightness conservation assumption.
Let us compare this result to the brightness constancy

assumption (3). It can be observed that (20) allows not
only translational motion of objects with constant intensity,
but also brightness diffusion expressed in the divergence of
the flow (ux + vy ). In other words, a flow satisfying equa-
tion (20) can describe more than a warp of the image space:
It can also account for changes in brightness, and hence it
can provide a more general motion model than optical flow
based on brightness constancy.

The proper smoothness term for brightness conserva-
tion has been studied extensively (Corpetti et al. 2000;
Cuzol et al. 2007). The standard first order smoothness term
used in the Horn-Schunck Lagrangian (5) does not achieve
numerical stability. A second order regularizer known as the
div-curl regularizer is used in this work. Adding to the con-
tinuity equation (19), obtains

LBC(u, v, ξ, ζ ) = (It + uIx + vIy + Iux + Ivy)
2

+ α((ux + vy − ξ)2 + (uy − vx − ζ )2)

+ β(ξ2
x + ξ2

y + ζ 2
x + ζ 2

y ), (21)

where ξ and ζ are scalar fields added to provide the smooth-
ness at the div and curl values of the optical flow field. We
found that a non-robust regularizer of the scalar fields was
sufficient in this case. The Lagrangian is integrated to obtain
the functional

FBC(u, v) =
∫

LBC(u, v)dxdy, (22)

which is minimized using variational calculus.

3 Dynamic Texture Segmentation

The proposed dynamic texture segmentation scheme ex-
tends the currently available motion based segmentation
methods (Sect. 2.1) to dynamic textures (Sect. 2.2), based on
the usual optical flow estimation techniques (Sect. 2.3) and
the alternatives to brightness constancy (Sect. 2.4). Video

frames are partitioned into two regions satisfying different
motion models: a static or weak dynamic texture region
�1 obeying the brightness constancy assumption (3) and a
strong dynamic texture region �2 obeying one of the alter-
native assumptions (9), (11–13), and (20).

Denoting by C the contour separating the two regions, the
segmentation problem can be formulated as minimizing the
Dynamic Texture Segmentation functional

FDT S(u, v, ũ, ṽ, C) =
∫

�1

L1(u, v)dxdy

+
∫

�2

L2(ũ, ṽ)dxdy

+
∫

S(u, v, ũ, ṽ)dxdy + ν|C|, (23)

where (u, v) is a brightness constancy optical flow field, and
(ũ, ṽ) is a flow field based on an alternative assumption. The
first term of the functional represents the quality of bright-
ness constancy modeling in �1, the second term the quality
of the alternative model in �2, the third term enforces the
smoothness of (u, v) and (ũ, ṽ) over the whole image do-
main, and the last term ensures that the length of the sepa-
rating contour C is small (ν being a scaling parameter).

The first two terms of FDT S represent the adequacy of the
two motion models. One option would be to directly impose
the brightness constancy assumption (3) and the alternative
assumptions (9), (11–13), and (20). This would result in
non-linear Euler-Lagrange equations. Linear equations are
obtained when minimizing the energies

E(u,v) = R2(u, v), (24)

ẼGC(ũ, ṽ) = λR2(ũ, ṽ) + R̃2
GC(ũ, ṽ), (25)

ẼCC(ũ, ṽ) = λR̃2
CCr(ũ, ṽ) + R̃2

CCφ(ũ, ṽ) + R̃2
CCθ (ũ, ṽ),

(26)

ẼBC(ũ, ṽ) = R̃2
BC(ũ, ṽ) (27)

where λ is a weight between brightness constancy and gra-
dient or color constancy, and R and R̃∗ are the residuals ob-
tained from the optical flow constraint and the linear ver-
sions of the alternative assumptions, respectively:

R(u, v) = It + uIx + vIy, (28)

R̃GC(ũ, ṽ) = Ixxt + Iyyt + u(Ixxx + Iyyx)

+ v(Ixxy + Iyyy), (29)

R̃CCr(ũ, ṽ) = I r
t + uI r

x + vI r
y , (30)

R̃CCφ(ũ, ṽ) = I
φ
t + uI r

x + vIφ
y , (31)

R̃CCθ (ũ, ṽ) = I θ
t + uI r

x + vI θ
y , (32)

R̃BC(ũ, ṽ) = It + ũIx + ṽIy + I ũx + I ṽy. (33)
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The third term of FDT S is used to enforce smoothness by
penalizing large optical flow gradients. Our choice for the
smoothness term is

SCC(u, v, ũ, ṽ)

= SGC(u, v, ũ, ṽ)

= α(u2
x + u2

y + v2
x + v2

y) + α̃(ũ2
x + ũ2

y + ṽ2
x + ṽ2

y), (34)

SBC(u, v, ũ, ṽ, ξ, ζ )

= α(u2
x + u2

y + v2
x + v2

y)

+ α̃((ux + vy − ξ)2 + (uy − vx − ζ )2)

+ β̃(ξ2
x + ξ2

y + ζ 2
x + ζ 2

y ), (35)

which sums the smoothness terms of (5) and (21). The para-
meters α, α̃, and β̃ specify the relative weight of the classic
optical flow gradients, the conservation flow gradients, and
the smoothness of the auxiliary scalar fields, respectively.

The functional described above is similar to the Mumford-
Shah functional (Mumford and Shah 1989). Its direct min-
imization is difficult due to the unknown discontinuity set
in the integration domain. One way to deal with the unspec-
ified discontinuity in (23) is the level set approach. In this
method the disjoint regions are separated by the sign of an
indicator function φ. In our case the two regions are

�1 = {(x, y) |φ(x, y) > 0} and (36)

�2 = {(x, y) |φ(x, y) < 0} , (37)

representing the weak and strong dynamic texture regions.
The length of the separating contour is calculated as

|C| =
∫

|∇H(φ)|dxdy, (38)

where H denotes the Heaviside function.
Following the general framework outlined above, we de-

fine the Level Set Dynamic Texture Segmentation functional

FLSDT S(u, v, ũ, ṽ, φ)

=
∫ [

E(u,v)H(φ) + (γ Ẽ∗(ũ, ṽ) + ρ)H(−φ)

+ S∗(u, v, ũ, ṽ) + ν|∇H(φ)|]dxdy. (39)

γ is a weight parameter between the two types of flow. The
parameter ρ penalizes the size of region �2, which is nec-
essary because the alternative assumptions are more gen-
eral than brightness constancy. Otherwise, the minimization
of FLSDT S would tend to suppress the weak dynamic tex-
ture region �1 in favor of �2. The smoothness of the sep-
arating boundary can be adjusted with ν. The asterisk (∗)
denotes the specific alternative assumption: GC—gradient

constancy, CC—color constancy, and BC—brightness con-
servation. Simultaneous motion detection and segmentation
is achieved by minimizing the objective functional.

FLSDT S is minimized by deriving, discretizing, and solv-
ing the Euler-Lagrange equations for u, v, ũ, ṽ, and φ. The
equations for u and v are

IxR(u, v)H(φ) − α(uxx + uyy) = 0, (40)

IyR(u, v)H(φ) − α(vxx + vyy) = 0. (41)

For ũ and ṽ, we have in the gradient constancy case:

γ [λIxR(ũ, ṽ) + (Ixxx + Iyyx)R̃GC(ũ, ṽ)]H(−φ)

− α̃(ũxx + ũyy) = 0, (42)

γ [λIyR(ũ, ṽ) + (Ixxy + Iyyy)R̃GC(ũ, ṽ)]H(−φ)

− α̃(ṽxx + ṽyy) = 0. (43)

In the color constancy case:

γ [λI r
x R̃CCr(ũ, ṽ) + Iφ

x R̃CCφ(ũ, ṽ) + I θ
x R̃CCθ (ũ, ṽ)]H(−φ)

− α̃(ũxx + ũyy) = 0, (44)

γ [λI r
y R̃CCr(ũ, ṽ) + Iφ

y R̃CCφ(ũ, ṽ) + I θ
y R̃CCθ (ũ, ṽ)]H(−φ)

− α̃(ṽxx + ṽyy) = 0. (45)

Finally, for the brightness conservation case:

γ IR̃BCx(ũ, ṽ)H(−φ) + α̃(ũxx + ũyy − ξx − ζy) = 0, (46)

−γ IR̃BCy(ũ, ṽ)H(−φ) − α̃(ṽxx + ṽyy + ζx − ξy) = 0,(47)

α̃(ũx + ṽy − ξ) + β̃(ξxx + ξyy) = 0, (48)

α̃(ũy − ṽx − ζ ) + β̃(ζxx + ζyy) = 0. (49)

Here, R̃BCx and R̃BCy denote partial derivatives of R̃BC

with respect to x and y. Finally, the indicator function φ

must satisfy

δ(φ)

[
E(u,v) − γE∗(ũ, ṽ) − ρ − ν div

( ∇φ

|∇φ|
)]

= 0,

(50)

where δ is the Dirac function—the derivative of the Heavi-
side function.

We discretize (50) according to the method presented in
Vese and Chan (2002) (see details in the Appendix). Equa-
tions (40) and (41) are discretized and solved as described in
Horn and Schunck (1981) (and the discretization and solu-
tion of (42–45) is a trivial extension of this method). Below,
we describe the details of discretizing equations (46) and
(47) following the same method.
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After discretization (using central difference), we obtain

−γ I
(
Itx + Ix(2ũx + ṽy) + ũIxx + ṽxIy

+ ṽIxy + I ( ¯̃ux − 2ũ + ṽxy)
)
H(−φ)

−α̃( ¯̃ux + ¯̃uy − 4ũ − ξx − ζy) = 0, (51)

−γ I
(
Ity + Iy(2ṽy + ũx) + ṽIyy + ũyIx

+ ũIxy + I ( ¯̃vy − 2ṽ + ũxy)
)
H(−φ)

− α̃( ¯̃vx + ¯̃vy − 4ṽ + ζx − ξy) = 0. (52)

Here, we used the notations

¯̃ux = ũ(x − 1, y) + ũ(x + 1, y), (53)

¯̃uy = ũ(x, y − 1) + ũ(x, y + 1). (54)

The definitions of ¯̃vx and ¯̃vy are analogous.
Equations (51) and (52) of ũ, ṽ can be represented in ma-

trix form:
(

Ã C̃

C̃ B̃

)(
ũ

ṽ

)
=

(
D̃

Ẽ

)
, (55)

where

Ã = γ I (2I − Ixx)H(−φ) + 4α̃, (56)

B̃ = γ I (2I − Iyy)H(−φ) + 4α̃, (57)

C̃ = −γ IIxyH(−φ), (58)

D̃ = γ I [Itx + Ix(2ũx + ṽy) + Iyṽx + I (ṽxy + ¯̃ux)]H(−φ)

+ α̃( ¯̃ux + ¯̃uy − ξx − ζy), (59)

Ẽ = γ I [Ity + Iy(2ṽy + ũx) + Ixũy + I (ũxy + ¯̃vy)]H(−φ)

+ α̃( ¯̃vx + ¯̃vy + ζx − ξy). (60)

Iterations are carried out on u,v, ũ, ṽ, ξ , ζ and φ in al-
ternation. Because a continuous limit and a first order Tay-
lor approximation are assumed in the flow field equations,
(u, v) and (ũ, ṽ) need to be small. This is achieved by using
a coarse-to-fine scheme: The images are warped according
to the flow calculated at a coarse scale and small corrections
are added repeatedly at finer scales.

Both flow fields (u, v) and (ũ, ṽ), the scalar fields ξ , ζ

and the indicator function φ are initialized to zero. Based on
our experience, there is no significant dependence on the ini-
tialization of φ. To break the ambiguous case φ = 0, during
the calculations, random noise—close to the estimated level
of numerical errors—can be added to φ. The results are not
significantly affected by the random seed used.

It is expected that the regions �1 and �2 will change
slowly with time. However, this expectation was not formu-
lated within the functional (39). A post-processing step per-
formed on the indicator function φ was the method chosen

to apply this assumption. For each frame, the binary mask
φ < 0 (i.e., strong dynamic texture) was summed with that
of the previous frame, then a median filter was applied to the
result.

4 Real-Time Segmentation

The method described in the previous section is accurate and
robust, but not fast. In this section we consider the reduction
of computational cost, with the goal of reaching real-time
performance. The first step is to drop the dependence of
the functional on the brightness conservation flow and com-
pare the Horn-Schunck residual to a threshold. However,
this means that wherever optical flow estimation is problem-
atic (for any reason, such as fast motion), the algorithm will
detect strong dynamic texture. When γ = α̃ = β̃ = 0, the
functional (39) loses its dependence on (ũ, ṽ) and becomes

FLSDT S′(u, v,φ)

=
∫

[(It + uIx + vIy)
2H(φ) + ρH(−φ)

+ α(u2
x + u2

y + v2
x + v2

y) + ν|∇H(φ)|]dxdy. (61)

The Euler-Lagrange equations of (u, v) remain the same,
while the new descent equation of φ is

δ(φ)

[
(It + uIx + vIy)

2 − ρ − ν div

( ∇φ

|∇φ|
)]

= 0. (62)

This simplification significantly lowers the computational
load, as the iterations on ũ and ṽ are avoided.

Pushing further the simplifications formulated in (61), an
even faster algorithm can be obtained: Instead of simulta-
neous motion estimation and segmentation, we calculate the
Horn-Schunck flow first (based on equations (40) and (41)
with fixed φ = +∞) and then compute the optical flow
residual defined in (7). Thresholding this residual, a rough
segmentation is achieved. The same post-processing method
is applied as for the level set method (Sect. 3).

This variant is fast enough for real-time computation.
However, it requires the setting of a threshold value, which
generally depends on the specific video sequence (but note
that the experimental results shown in Fig. 6 have all been
obtained with the same threshold). The choice of threshold
for the algorithm can be performed either interactively by
a human, or automatically by the algorithm. An automatic
method, based on Otsu’s threshold selection technique (Otsu
1979), performed reasonably well in our tests, provided that
a sufficient number of frames, either fixed or a sliding win-
dow, was used. This simple method had difficulties with ex-
tensive changes in the dynamics of the processed scenes (for
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Fig. 2 Motion compensation with classical optical flow methods and
the proposed brightness conservation flow: Original frame (a), Horn-
Schunck flow (b), Brox et al. (2004) flow (c), color constancy based
flow (d) and brightness conservation flow (e), details of the images are

provided in (f–j). Significant distortion of the warped image is evident
in brightness constancy and gradient based methods and little distor-
tion in the color constancy method, while the best reconstruction is
achieved by brightness conservation

example significant changes in camera motion, or when peo-
ple move into a scene previously dominated by moving fo-
liage).

We have also designed and implemented a more sophisti-
cated method, which relied on setting the threshold based on
pixels suspected to be dynamic texture. The first stage of this
method, was to compare for each pixel the Horn-Schunck
residual (7) with the null flow residual (8). The average m

and standard deviation σ of the motion compensation resid-
ual was computed for the pixels in which the motion com-
pensation residual was smaller than half the null flow resid-
ual. The threshold was set to m + 2σ . This threshold was
more robust than a fixed threshold, because it followed the
changes in the video dynamics. However, it failed when the
analyzed frames were either dominated by a strong dynamic
texture or there was no strong dynamic texture at all.

5 Experimental Results

5.1 Motion Compensation

We have tested the proposed brightness conservation flow
on several video sequences taken from the DynTex data-
base (Péteri et al. 2006). We present the result on the
flapping flag (6483c10) sequence. We compare motion
compensation results obtained with the color constancy
flow (26), brightness conservation flow (21), the classical
Horn-Schunck flow (5) and the high-accuracy optical flow
algorithm of Brox et al. (2004). Figure 2 demonstrates that
the brightness conservation flow can reproduce the origi-
nal image almost perfectly, while the brightness constancy

flows produce visible errors originating from the fact that
they cannot accommodate changes in brightness. The color
constancy flow is better than the brightness based flows, but
fails in the color-less white areas.

The flows are computed between the first two frames of
each video sequence. Motion compensation is calculated by
warping the second frame according to the optical flow in
order to be comparable to the first one. Motion compensa-
tion with the brightness conservation is calculated using the
formula

I (x, y, t) = I (x + u,y + v, t + 1)

1 − ux − vy

. (63)

The input images were pre-blurred with a Gaussian fil-
ter (σ = 0.4). Coarse-to-fine iterations were run over a
Gaussian pyramid with scale factor 0.5. The brightness con-
servation flow was calculated with α = 10−3, β = 10−2,
4 level pyramid and 150 iterations on each level. The Horn-
Schunck flow was calculated with α = 5 × 10−3, 4 level
pyramid and 150 iterations. The color constancy flow was
calculated with λ = 0, α = 5 × 10−3, 3 level pyramid and
1000 iterations. The parameters used for the Brox et al. algo-
rithm were those described in their paper (Brox et al. 2004).

5.2 Segmentation Results

We have tested the proposed segmentation methods on more
than 30 video sequences (Fazekas et al. 2007). Table 1
describes the nine sequences we show in this paper. The
videos used comprise of dynamic textures in a natural con-
text (flowing water, smoke and fire), shot with a moving or
stationary camera. In the tests, the segmentation is based
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Table 1 Short description of
the video sequences used for
demonstration in this paper (see
the results presented in
Figs. 3, 4 and 6)

Code Description Camera

a 6482910 Wide stream with water rippling over underwater pebbles Panning

b 6483c10 Narrow creek winding between larger pebbles Panning

c 6481i10 Water falling over round pebbles and gathering into a pool Panning

d 73v195t Fire, smoke, and steam (while cooking goulash) Panning

e 73v1985 Fire and smoke (closeup of (d)) Panning

f 648ea10 Steam (or smoke) coming from a ventilation system Fixed

g 64adg10 Rain drops falling over a small lake Panning

h 647bc10 Shipcanal and shoreline in Amsterdam Panning

i 644ce10 Duck floating on water Fixed

on the motion only. The videos were processed in grayscale
for the brightness conservation, gradient constancy and real-
time algorithms and in color for the color constancy algo-
rithm. The frame size was at resolution 360 × 288 and the
pixel values were scaled to [0,1].

The parameters used in testing the brightness conserva-
tion segmentation method (Sect. 3) were the same for all
videos: α = 5 × 10−3, α̃ = 0.5 × 10−3, β̃ = 1, γ = 0.5,
ρ = 10−4, and ν = 10−3. The parameters used for the
color constancy case were the same, together with λ = 0.
The Heaviside function was implemented as H(φ) = 0.5 +
arctan(φ/φ0)/π with φ0 = 10−3. The parameters were not
fine tuned, setting their order of magnitude was enough to
handle a large number of examples. The frames were pre-
smoothed with a Gaussian kernel (σ = 0.8). A Gaussian
pyramid with 4 levels and scaling factor 0.5 was built and
150 iterations were executed at each level. The indicator
function φ was not calculated on the image border (12 pixel
width). The post-processing used a median filter with a 7×7
pixels window.

Figures 3 and 4 present segmentation results in very good
agreement with the actual position of flowing water, steam,
smoke, and fire. In particular, notice the correct segmenta-
tion of the rock protruding from the water in (a), and the
differentiation between the duck and the duck’s reflection in
(i). Only small regions were falsely detected as weak dy-
namic texture. These are typically regions where there is
not too much activity and—because all these materials are
transparent—they could not be distinguished from the back-
ground. There are also small non-dynamic areas (e.g. edges
of the pebbles protruding from the water) being misdetected,
probably due to over-smoothing of the level set function φ.
Another source of errors is due to motion blur caused by the
limitations of the video recording system (in high velocity
motion of either the camera or objects in the scene). Tuning
the parameters to each sequence could improve the accu-
racy of the segmentation, however the sensitivity is low, for
example Fig. 5 demonstrates that the sensitivity of the algo-
rithm to the value of ρ is very low. The processing time for

a single frame in this method was around one minute on a
computer with a 2 GHz dual core CPU.

Results for the gradient constancy based segmentation
method are not shown because they did not produce any
meaningful segmentation. It seems that the gradient con-
stancy flow is generally more accurate than the brightness
constancy flow, but this benefit is independent of the type of
dynamic texture on which it is calculated.

For the real-time method described in Sect. 4, the
OpenCV implementation of the Horn-Schunck algorithm
was used (http://opencvlibrary.sourceforge.net/CvReference).
We tested the method on the same sequences (see Table 1).
We ran the method on a three level Gaussian pyramid exe-
cuting 100 iterations on each level and using the smoothness
parameter λ = 10−3. The segmentation threshold was set to
3 for optical flow residual values in [0,255]. The size of the
median filter window used in the post-processing stage was
15 × 15 pixels. The method reached a processing speed of
20 video frames per second on a computer with a 2 GHz
dual core CPU (in the optimized version we employed mul-
tiple cores by using OpenMP compiler directives). Figure 6
demonstrates that the results are still pretty good. However,
the method is not as robust as the level set scheme, because
the threshold may need specific tuning for each sequence
(and sometimes even for changes within a sequence). The
sensitivity of the method to variation in the value of the
threshold is demonstrated in Fig. 7.

Figure 8 shows three sequences as segmented by the three
methods. The color constancy algorithm is a little better for
the cases of fire and smoke, while the brightness conserva-
tion algorithm seems to be better in the sequences with wa-
ter. The real time segmentation is usually noisier (with the
noise subdued by using a 15 × 15 median filter).

6 Conclusions and Discussion

Analysing dynamic textures is important for a wide set
of applications, spanning from motion detection to activ-
ity recognition, from background modeling to video in-

http://opencvlibrary.sourceforge.net/CvReference
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Fig. 3 Dynamic texture
detection results obtained with
the brightness conservation
method. The segmentation is
marked with a white curve. The
samples are taken from the
DynTex database (Péteri et al.
2006). Most sequences were
shot with a moving camera, for
a short description see Table 1.
For more results see Fazekas et
al. (2007). The segmentation of
dynamic textures is very
accurate

Fig. 4 Dynamic texture
detection result obtained with
color constancy method. The
segmentation is marked with a
white curve. The samples are
taken from the DynTex
database (Péteri et al. 2006).
Most sequences were shot with
a moving camera, for a short
description see Table 1. The
segmentation of dynamic
textures is very accurate

dexing, and from video surveillance to multimedia data-
bases. Certain video regions—identified as strong dynamic
texture—possess inherent dynamics which cannot be com-
pletely modeled by motion estimation based on brightness
constancy. This indicates that a more general description is
needed. In this paper, three optical flow estimation meth-
ods based on alternative assumptions (gradient constancy,

color constancy and brightness conservation) are evaluated.
Experimental tests demonstrate that the methods best suited
for strong dynamic textures is the one based on the bright-
ness conservation assumption. Gradient constancy is usually
better at estimating flow than brightness constancy, but the
improvement in estimation is not more pronounced in strong
dynamic texture regions.
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Fig. 5 Sensitivity of the brightness conservation segmentation to the parameter ρ. The parameters are fixed in all runs, except for ρ whose values
are 0, 10−5, 5 × 10−5 and 10−4 from left to right

Fig. 6 Dynamic texture
detection results obtained with
the real time method. The
segmentation is marked with a
white curve. Most sequences
were shot with a moving
camera, for a short description
see Table 1. The results are
reasonable, although some small
regions are misclassified

Based on the observation that the residual of brightness
conservation based flow is significantly smaller than the
residual of classical optical flow in regions of strong dy-
namic texture, a segmentation method was presented. The
proposed approach is based solely on motion analysis and
on separating regions obeying different motion assumptions.

The only restriction placed on the boundary between re-
gions is that its length will be minimal. The segmentation
method can be applied in challenging cases when other vi-
sual cues (color and geometry) are misleading or simply use-
less. Such situations arise, for example, in case of smoke
and shallow water, which are usually transparent, and tex-
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Fig. 7 Sensitivity of the
real-time segmentation to the
threshold parameter. The
parameters are fixed in all runs,
except for the threshold
parameter whose values are 1, 2,
3, 4 and 5 from top to bottom

tured patterns behind them spoil the detection and recogni-

tion efforts. Tests of the segmentation scheme were carried

on several video sequences recorded with a moving cam-

era showing water, steam, smoke, and fire in a large variety

of natural scenes (Fazekas et al. 2007). The methods based

on the brightness conservation and color constancy assump-

tion proved to be effective in detecting and segmenting such

complex visual patterns.

In its complete form, the algorithm was implemented

as a variational level set method. Real-time performance,

with reasonable accuracy, was obtained by a simplified algo-

rithm, using thresholding of the motion-compensated resid-

ual of the Horn-Schunck flow. Even though the reliance on a

threshold value limits the robustness of this method, it could

be successfully used in applications which require a very
short response time.

The functional (21) used to calculate the brightness con-
servation flow includes explicitly the brightness values of
the processed images. Optical flow methods usually include
only derivatives of the image brightness and are, therefore,
invariant to the numerical value of black and white. The
brightness conservation assumption as stated in (20) violates
this principle. Future work is needed to unveil the conse-
quences of this property. Another issue that deserves further
study is the incorporation of sources and sinks of brightness,
for example, the point from which smoke is originating.

In the methods presented, a post-processing operator was
used to provide temporal smoothness of the segmentation
result. The level set methods could be improved by formu-
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Fig. 8 Comparison of the
segmentation methods on three
sequences

lating the segmentation functional with a three-dimensional
spatio-temporal smoothness term, thus accounting for tem-
poral correlations. The results can be further refined by us-
ing statistical data taking into consideration characteristics
of specific dynamic textures. The statistics of the calculated
flows could be useful in such a scheme.

The linear approximation of the flow functional (21) neg-
atively affects the accuracy of the method (see e.g. Papen-
berg et al. 2006). Reformulating the flow estimation as a
non-linear method could significantly improve the results.
The method can be further enhanced by using Sobolev ac-
tive contours (Sundaramoorthi et al. 2007) and additional
features such as image intensity data (Caselles et al. 1997).
The concept of segmenting video based on the applicabil-
ity of different motion models to different regions can be
expanded to other motion models. For example, the para-
metric models presented by Nir et al. (2008) could be used
in a similar manner and one could, for example, separate
background motion and foreground activities.
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Appendix: Level Set Discretization

This appendix provides details on the numerical approxima-
tion and discretization methods used in the implementation
of our algorithm. We denote

h
�= �x = �y.

Discrete spatial indices are denoted by subscripts, and the
temporal index (iteration count) by a superscript, as in

φn
i,j

�= φ(n�t, i�x, j�y).

The numerical approximations of the Heaviside function
and its derivative are

Hφ0(φ) = 1

2

[
1 + 2

π
arctan

(
φ

φ0

)]
,

δφ0(x) = H ′
φ0

(x) = 1

π

φ0

φ2
0 + x2

.

Given the warping of an image by an optical flow field, the
image values on the resampling grid are obtained by bilinear
interpolation.

We wish to numerically solve (50):

∂φ

∂t
= νδ(φ)∇ ·

( ∇φ

|∇φ|
)

−δ(φ)[R2(u, v)−γ R̃2(ũ, ṽ)−ρ].
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We adopt the notations (Vese and Chan 2002)

C1 = 1√
(
φn

i+1,j −φn
i,j

h
)2 + (

φn
i,j+1−φn

i,j−1
2h

)2
,

C2 = 1√
(
φn

i,j −φn
i−1,j

h
)2 + (

φn
i−1,j+1−φn

i−1,j−1
2h

)2
,

C3 = 1√
(
φn

i+1,j −φn
i−1,j

2h
)2 + (

φn
i,j+1−φn

i,j

h
)2

,

C4 = 1√
(
φn

i+1,j−1−φn
i−1,j−1

2h
)2 + (

φn
i,j −φn

i,j−1
h

)2
,

and

m = �t

h2
δφ0(φi,j )ν,

C = 1 + m(C1 + C2 + C3 + C4).

The discretized residual terms are denoted by

Rn
i,j = In

t i,j + un
i,j I

n
x i,j + vn

i,j I
n
y i,j ,

R̃n
i,j = In

t i,j + ũn
i,j I

n
x i,j + ṽn

i,j I
n
y i,j

+ Ii,j

ũn
i+1,j − ũn

i−1,j

2h
+ Ii,j

ṽn
i,j+1 − ṽn

i,j−1

2h
.

The discrete evolution equation for φ finally takes the form

φn+1
i,j = 1

C
[φn

i,j + m(C1φ
n
i+1,j + C2φ

n
i−1,j

+ C3φ
n
i,j+1 + C4φ

n
i,j−1)

− �t δφ0(φ
n
i,j ) · (Rn 2

i,j − γ R̃n 2
i,j − ρ)].
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