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SUMMARY

In this paper, a robust and semi-automatic modelling pipeline for blood flow through subject-specific arte-
rial geometries is presented. The framework developed consists of image segmentation, domain discretiza-
tion (meshing) and fluid dynamics. All the three subtopics of the pipeline are explained using an example
of flow through a severely stenosed human carotid artery. In the Introduction, the state-of-the-art of both
image segmentation and meshing is presented in some detail, and wherever possible the advantages and
disadvantages of the existing methods are analysed. Followed by this, the deformable model used for
image segmentation is presented. This model is based upon a geometrical potential force (GPF), which is
a function of the image. Both the GPF calculation and level set determination are explained. Following
the image segmentation method, a semi-automatic meshing method used in the present study is explained
in full detail. All the relevant techniques required to generate a valid domain discretization are presented.
These techniques include generating a valid surface mesh, skeletonization, mesh cropping, boundary layer
mesh construction and various mesh cosmetic methods that are essential for generating a high-quality
domain discretization. After presenting the mesh generation procedure, how to generate flow boundary
conditions for both the inlets and outlets of a geometry is explained in detail. This is followed by a brief
note on the flow solver, before studying the blood flow through the carotid artery with a severe stenosis.
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1. INTRODUCTION

The human circulatory system consists of vessels that transport blood throughout the body,
providing the tissues with oxygen and nutrients. It is known that vascular diseases, such as stenosis
and aneurysms, are often associated with changes in blood flow patterns and the distribution of wall
shear stress (WSS). Modelling and analysis of the hemodynamics in the human vascular system
improve our understanding of vascular disease, and provide valuable insights, which can help in
the development of efficient treatment methods. In recent years, computational methods have been
widely used for patient-specific modelling of blood flow in vascular structures [1–11]. Despite the
involvement of numerous groups working in this field, and rapid advancement in efficient compu-
tational methods, there has been limited applications of computational hemodynamics in clinical
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practice. This is largely due to the challenges involved in the design of an integrated framework
which can robustly and accurately automate the interdisciplinary computational modelling process,
which includes image segmentation, mesh generation, and computational fluid dynamics (see
Appendix A for a flow chart). In this paper, we describe a semi-automatic framework for image-
based computationalmodelling of blood flow dynamics in arteries, in addition to providing a review.

The general structure of any subject-specific blood flow modelling framework consists of mainly
image segmentation, meshing and solution stages. The image segmentation stage depends heavily
on the type of image available and its resolution. The image processing is normally followed by a
meshing stage in which a domain discretization is carried out. The connection between the image
processing and meshing is established via a geometry definition step. Majority of the efforts during
the mesh generation process go towards establishing a valid and high-quality surface mesh that is a
close representation of the geometry. The surface meshing in general is followed by the boundary
layer mesh construction and artery wall meshing (when applicable). The boundary layer and arterial
wall volume discretizations are followed by automatic volume meshing of the central flow domain
of the artery with unstructured meshes. The flow solver is then used along with appropriately
generated boundary conditions to complete the pipeline. The solver may include rigid geometry,
flow and structure coupling, Newtonian or non-Newtonian approximation, and may also include
multiscale mechanics or turbulence. In this study, our focus is on all the three stages of a pipeline
with special emphasis on the first two stages.

One of the main challenges in the computational modelling of hemodynamics is the accurate
reconstruction of a blood vessel geometry. Anatomically accurate geometric models of the lumens
are essential for realistic flow simulations and analysis. The anatomical information used to recon-
struct the geometries are usually provided in the form of medical image data sets (scans) from
imaging modalities such as computed tomography (CT) and magnetic resonance (MR) imaging.
Manual reconstruction of the geometries can be tedious and time consuming. There is also the issue
of variability between the geometries extracted manually by different individuals, and variability
of geometries extracted by the same individual on different occasions. In order to allow computa-
tional flow modelling to be efficiently applied as a diagnostic or predictive tool, the amount of user
intervention required in the process should be reasonably small. Therefore, a robust and efficient
method that can be used to accurately segment the geometry from medical image data sets can
be very useful and advantageous in the modelling process. The current state-of-the art of medical
segmentation methods is explained in Section 1.1.

Assuming that a reasonably accurate reconstruction of the geometry is possible, the next stage of
the pipeline would be to generate a surface mesh or meshes to accurately discretize the surface or
surfaces of the geometry. Unlike well-defined standard engineering geometries, the reconstructed
subject-specific, arterial geometries are often defined by binaries. Thus, an alternative approach
is required to that of the standard engineering applications. In Section 1.2, we provide a brief
summary on the current methods used for patient-specific surface and volume mesh generation.

Since the fluid dynamics part of the pipeline is one of the widely studied areas, only a very brief
account of the method is given in Section 1.3. In Section 1.4, the proposed modelling pipeline is
explained in a general sense. Section 2 provides a deformable model-based segmentation method
(first part of the pipeline) for blood vessel reconstruction and the meshing methods and cosmetics
used in this study are explained in detail in Sections 3 and 4 (second part of the pipeline). In
Section 5, the flow modelling steps, including the correct boundary condition generation, boundary
condition cosmetics, governing flow equations and their solution method are provided (third and
final part of the pipeline). An example flow result obtained for a carotid artery using the proposed
modelling pipeline is given in Section 6 and finally, Section 7 draws some conclusions and discusses
the challenges and unresolved problems.

1.1. Image segmentation

Although several techniques exist for the segmentation of blood vessels from medical images,
it remains an intricate process due to factors such as image noise, partial volume effects, image
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artefacts, intensity inhomogeneity, and changes in topology. In [12], the coordinate points for the
center line of an aortic arch were extracted from volume-rendered MR images. A cubic spline was
then used to represent the aortic centerline, and cross-sectional grids were generated on normal
planes at equidistant points along the curve. This generated a curved tube with circular cross-section
of uniform radius, which is not representative of the geometry of an aorta. In [13], the centerline
and diameter information of the vessels were extracted from the image data set, and the vascular
model was reconstructed using non-uniform rational B-splines (NURBS). Such techniques may
often smooth out geometric information that can be important to the computation of accurate flow
dynamics, such as those at bifurcations.

The 3D models of the vascular structures in [14] were reconstructed by extracting the 2D
contours of the vessels from the image slices of the MR image data set, and then lofting through
the contours to create the surface models of the vessels. The different vessels were then merged
using boolean operations in solid modelling. The cross-sections of a particular vessel may however
intersect with cross-sections of branching vessels, and the geometry at these positions has to be
approximated. Other works [15–19] also reconstructed 3D surface models of the vessels from 2D
contours extracted from image slices. This sometimes requires positioning and orienting the 2D
contours according to the medial axis of the vessels, and then curve and surface interpolations are
used to approximate and reconstruct the surface models. Such 2D contour extraction techniques
do not provide control over 3D smoothness.

A simple thresholding technique was used in [20] to extract the binary image of the vessels, and
the vascular model was reconstructed using an iso-surface algorithm. The thresholding technique
however does not consider the spatial characteristics of the image, and it is sensitive to image noise
and inhomogeneous intensity. In [21, 22], region growing algorithms were applied to segment the
vascular structures from CT and MR angiography data. The region growing techniques are, in
general, sensitive to noise, and can often lead to non-contiguous regions and over-segmentation. In
addition, thin structures are often not extracted due to variations in image intensities. The watershed
transform was used in [23, 24] to extract the geometry of the carotid arteries. In this approach, the
image is interpreted as a landscape or topographic surface, with the pixel intensity representing
the elevation of the topographic surface. The regions of local minima on a topographic surface
are partitioned by considering water flow towards such regions. The watersheds are the lines that
partition these regions. In this way, the image is partitioned into homogeneous regions with the
watersheds defining the boundaries of these regions. The watershed transform tends to be sensitive
to noise and often produces over-segmentation. It is also difficult for the watershed techniques to
extract thin structures and weak object edges.

In [25, 26], a 3D dynamic surface model was used to delineate the boundary of carotid arteries.
An initially triangulated model was placed within the interior of the carotid vessels, and an inflation
force was applied to deform the model towards the vessel wall. In this method, the inflation force
is applied only when the vertices of the model are within the lumen, i.e. at locations with image
intensity below a user-specified threshold. An image-based force is further applied to the surface
model to better localize the boundary. It may, however, be difficult to select an appropriate threshold
value that delineates the vessel wall closely due to inhomogeneous image intensity. This approach
is sensitive to noise, and manual editing is often required to move the vertices towards the vessel
wall. In [27], a 2D discrete dynamic contour was first used to extract the vessel contours and a
dynamic surface model was then inflated to reconstruct the surface model using the binary images
of the extracted contours. This however does not consider the 3D geometric information from the
image data set. In [28–30], the surface models for each of the vessel branches of the carotid artery
were reconstructed independently using a tubular deformable model. Thus, such a method requires
a surface merging algorithm to reconstruct the surface model from the triangulated surfaces of the
vessel branches. This particular approach requires the axis of each of the vessel branch, which
can be established manually by selecting a number of points from image slices to represent the
curves of the structure. Owing to the inherent smoothing effect of this technique, high curvature
regions such as bifurcations or stenosis may not be modelled accurately. These explicit deformable
models represent contours and surfaces parameterically, which requires the tracking of points on
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the curves and surfaces during deformation. It is therefore difficult for explicit deformable models
to deal with topological variations and complex shapes.

Implicit deformable models have been applied in the segmentation of vascular structures in
[31–35]. However, many of these techniques use an attraction force field which acts on contours
or surfaces only when they are close to the object boundaries. As such, initial contours have to
be placed close to the object boundaries, which can be tedious in complex geometries. A constant
pressure term such as the one in [36] is often used to monotonically expand or shrink the deformable
model towards the image object boundaries, which can easily overwhelm weak object boundaries.
In addition, the external force fields used are unidirectional, thus requiring the initial contours to
be placed either inside or outside object boundaries, which can be difficult for compact and narrow
structures. Many of these techniques are also sensitive to image noise, and have difficulties in
extracting deep boundary concavities.

The implicit deformable model [37–39], based on the dynamic interactions between geometries,
used in this work can eliminate many of the drawbacks of the existing methods. In particular,
the external force field is based on hypothesized geometrically induced interactions between the
deformable model and image object boundaries, and is referred to as the geometric potential force
(GPF) field [37, 38]. The dynamic geometric interaction force changes according to the relative
position and orientation between the geometries of the deformable model and image object. This
greatly improves the performance of the deformable model in handling image noise, complex
geometries and extreme boundary concavities such as those found in vascular structures. The
dynamic vector force proposed in [38] also allows the deformable model to have a strong invariance
to initial configurations. In addition, this deformable model can easily deal with arbitrary cross-
boundary initializations and weak edges due to the bidirectionality of the external force field. The
GPF method is briefly presented in Section 2 along with an example.

1.2. Domain discretization

Despite a significant effort in developing robust patient-specific meshing methods, generation of
a valid mesh automatically and rapidly, even today, is a challenge. A valid mesh for cardiovas-
cular flows should be sufficiently fine to capture WSS with minimal error associated with point
distribution. Using a coarse and purely unstructured mesh can produce a WSS distribution that is
far from a converged solution [40]. Although mesh convergence is not always straightforward to
carry out, designing a mesh by taking into account all the necessary factors, including boundary
layer [40, 41], is essential to obtain results with high level of confidence.

In a subject-specific modelling pipeline, such as the one proposed here, it is essential to have
the smooth transfer of image segmentation results to the meshing stage. In the majority of works
reported, this link is often not well defined with some exceptions [29, 35]. Subject-specific meshing
is a growing area of research, and currently, there is no universal way of satisfying all the meshing
requirements via a single algorithm. Thus, the area is filled with a diverse number of approaches
[32, 35, 42–45]. From the available literature, it is clear that the unstructured volume generation
currently poses little or no challenge. It is apparent, however, that the interface between the
image processing and a valid surface generation, and boundary layer meshing are not satisfactorily
addressed. Thus, these two areas are given attention in this work.

Many existing mesh generation methods developed for subject-specific modelling are generally
an extension of methods developed for standard engineering applications. In engineering appli-
cations, the object boundary can be rigorously defined and described analytically or piecewise
analytically, to ensure a pre-defined size and quality of the surface elements. The NURBS patches
method is one of the frequently used approaches for complex shapes. A well-defined boundary
allows such a method to simplify the construction of a surface mesh and the corresponding
cosmetics. This is due to the fact that points can be easily created or moved along the surface
in order to improve element quality. However, in patient-specific medical objects, the surface is
not well-defined and it may not be easily described analytically without compromising important
surface features. Hence, alternative approaches have been used and often essential to approximate
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the surface of a medical object. The meshing approaches used for constructing surface meshes
of medical objects are summarized into four categories below. The first category needs no initial
mesh. The remaining three methods require generation of an initial mesh to approximately define
the object boundary. The easiest way to build such an initial mesh from a binary object is via the
Marching Cubes (MC) method [46]. The MC method produces a consistent surface mesh but such
a surface may not be smooth. This mesh may have a significant number of bad quality triangles,
which are unlikely to be of the required size. The four categories of the surface meshing methods
are described as:

Category (1): Standard NURBS patches may be used [44, 47] as in engineering applications. In
such a method, the surface is divided into curvilinear quadrilateral patches. The parameters of the
patches (control points) can be tuned to minimize the distances between the initial mesh nodes
and the surface. Since the surface is described by NURBS patches, all advantages of the surface
mesh generation methods, developed for standard engineering applications, can be employed to the
medical geometries. Hence, the challenge here is to develop simple, robust and accurate methods
for finding the NURBS parameters for geometries constructed from scans. The surface mesh can
then be generated using, for example, an advancing front technique (AFT). Although this method
is robust for standard engineering applications, the risk of losing geometrical features is very high
and the method can be tedious.

Category (2): In regridding methods [48], the surface mesh with proper element size distribution
is built by the AFT. Here, the surface nodes are placed directly on faces of the initial mesh. After
a constituent mesh has been generated, the node can be repositioned in order to meet surface
smoothness, for example, by the second and higher order interpolation of the surface defined by
the initial grid. The challenge here is to develop method that is robust at geometrical abnormalities,
such as high curvature parts of the mesh. A set of improvements are proposed in [48] to enhance
the robustness of the method.

Category (3): In mapping methods [49], a harmonic mapping of the surface onto a plane domain
is performed. The initial mesh is used to compute the local metric of the mapping. The plane
domain is triangulated by a high-quality 2D mesh satisfying local sizing criteria defined by the
metric. The 2D mesh is then mapped back to the medical object boundary. In elongated objects,
such as blood vessels, the element sizing of the plane mesh can vary by many orders. Then the
accuracy can be lost because of computation errors. In such cases, the object boundary must be
divided into smaller patches to perform the mapping correctly. A simple method of this kind is
described in [50]. The mapping of 2D patches comes with additional approximations and it can
be time consuming.

Category (4): The fourth type of methods are based on the fact that an initial mesh is already
a consistent one and approximately represents the surface. Thus, only mesh-cosmetic operations
are required to convert it into a valid mesh for computation. Basic surface mesh cosmetic methods
are: edge swapping, edge splitting, or contraction, in combination with smoothing of the nodal
distribution [51, 52]. The main difficulty here is to keep the point positions on the surfaces that
are not analytically defined. For example, Laplace smoothing [53], a good method for 2D meshes,
results in reduced object volume if applied to a 3D surface mesh. Therefore, the Taubing smoothing
is preferred [54], which is known to preserve the object volume for spherical shapes. Nevertheless,
for cylindrical objects (such as blood vessels), its repeated application may change the surface
definition. However, a constrained Taubing smoothing, such as the one proposed in this work,
preserves the accuracy of the original surface definition within a prescribed error tolerance.

As seen, the fourth meshing option is also not fully foolproof, but it lends itself to universality
with minimal inter user variability. This is especially important for really complex passages such
as human nasal cavities [55]. The surface mesh construction method is explained in full detail in
Section 3.

Before a fully unstructured volume mesh is generated to fill the inner parts of an artery, it is
essential to determine the need for the so-called boundary layer mesh in the form of semi-structured
layers close to the boundaries. It is increasingly apparent from the available clinical and modelling
studies that the link between WSS, oscillatory shear index (OSI) and atherogenesis are very strong
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[56–60]. Thus, to understand placque initiation and progression, accurate estimation of WSS is
essential. One of the major uncertainties in the WSS calculations is associated with the mesh.
Converging the time-dependent WSS is not trivial and all efforts should be undertaken to make
sure that the WSS calculated has little or no error from the domain discretization. Our previous
studies [40] clearly show that the boundary layer mesh, even at low Reynolds numbers, is often
essential. Thus, an accurate and fast way of constructing a boundary layer mesh is essential in
arterial fluid dynamics.

A small number of attempts have been made in the past to generate boundary layer meshes
[32, 61–63]. In [32], a medial axis-based approach was employed to fill a boundary layer with
18 node quadratic wedges. In [63], a boundary layer mesh was generated by a layer-by-layer loop.
This may be expensive due to the number of checks carried out when generating every layer. An
adaptive method used in [62] may be computationally more expensive than a preassigned boundary
layer mesh. In the majority of the studies reported, the inward normal in some form or other was
employed. We also employ the surface inward normals for generating prisms in the first instance,
and then, the prisms are divided into smaller prisms using a geometrical progression approach,
before they are split into tetrahedrons. As explained later in Section 4, the prism size are defined
based on the surface mesh and the local diameter or feature size.

Once the boundary layer construction is completed, the remaining unstructured volume meshing
is easily carried out by Delaunay mesh generation (see Section 4). The fastest method is the
Delaunay point insertion-based method (e.g. [64]) with subsequent 3D mesh cosmetics based on
3D swapping and Laplace smoothing [65]. The centroidal Voronoi tessellation (CVT) method
based on Lloyds [66] iteration may also be used for 3D mesh cosmetics [67].

All different aspects associated with the mesh generation are described in detail in Sections 3
and 4. The subtopics of these sections include a valid surface mesh generation, determining the
central axis of the artery using a voxel thinning algorithm, cutting the vessels orthogonal to the
axes, boundary layer and inner volume construction and different methods of cosmetics required
to produce a high-quality mesh.

1.3. Flow solver

The analysis of blood flow through subject-specific arterial geometries is one of the widely
researched topics of patient-specific modelling. Fluid flow modelling through static geometries is
more or less well established except for large-scale simulations and extremely complex geometries.
However, correct application of flow boundary conditions is still an issue. In Section 5, we devote
a significant part to discuss the flow boundary conditions. Since any established incompressible
flow solver is sufficient to carry out the flow calculations in a static geometry, a review of the
methods is not provided here. We employ a matrix-free dual time stepping method in an optimized
parallel environment to carry out the calculations [55, 68–72]. The flow equations and the flow
solver used here are briefly presented in Section 5.

On the other hand, topics such as fluid–structure interaction has also been studied widely but
with marginal success [73–84]. The main problem in fluid–structure interaction studies is the
lack of availability of subject-specific, in vivo material properties and difficulties associated with
imaging and segmentation of arterial walls. One way of overcoming the material property issue
is via transiently registering the image and imposing the wall motion as a boundary condition.
However, if accurate wall stress distribution is of interest, imposing wall motion may not be the
solution.

1.4. Proposed pipeline

While recognizing the fact that intensive research is being carried out in the area of subject-
specific modelling, the procedure developed by various groups on individual components may not
be easily amalgamated. The routine procedure of segmentation and meshing currently involves
intensive user interaction. Although automation of the pipeline heavily depends on the quality of
clinical data available, we can at least attempt to produce robust methods that can lead to full
automation in the near-future. With this in mind, we have applied a new 3D segmentation method
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to reconstruct the vascular geometries here [37, 38]. This method is suitable for both MR and CT
scanning modalities and uses the level set method [85, 86], which allows topological changes to
be handled automatically (Section 2). Once the image reconstruction is completed, an automatic
voxel thinning procedure is employed to obtain the axes of the vessel and vessel branches (see
Section 3.1). This allows us to automatically truncate the vessels perpendicular to their axes.
Special attention is paid in developing a procedure for valid surface mesh generation, using the
level set functions, obtained from the image segmentation method (see Section 3.2). An algorithm
for cropping the surface mesh is discussed in Section 3.3. All the smoothing methods and the pros
and cons of using MC and improvements are discussed in Section 3.4. The surface mesh generation
is followed by an automatic procedure to construct the boundary layer mesh on the inner surface
of the vessel walls (see Section 4.1). The volume mesh, based on the Delaunay method, is then
used to complete the mesh generation step (Section 4.2). Once the mesh is finalized, the flow
boundary conditions are decided based on either available flow measurements or assumed flow
rate. An accurate reflection of realistic flow values are essential and the method of extracting such
conditions from measurements is discussed in detail in Sections 5.1–5.5. The method used for flow
solution is given in Section 5.6. The example problem studied is the blood flow through a carotid
bifurcation with a severe stenosis (Section 6). The inlet and exit flow conditions may be obtained
from ultrasound measurements and in cases where only inlet conditions are available, we have
two choices. The first choice is to assume a flow division between the external and ICAs and the
second is to employ a Windkessel type of element at the exit. Neither of them are a replacement
for an accurate flow measurement. Once the boundary conditions are determined, the flow solver
(a finite element (FE) solver is used in the present study) is used to determine the flow and wall
quantity distributions, both with respect to time and space.

2. BLOOD VESSEL GEOMETRY EXTRACTION

2.1. A Deformable Model

Extracting geometry from 3D scan data is a pre-requisite for many computational modelling
applications in cardiovascular fluid dynamics. Ideally, it should be carried out with minimum user
interference and should robustly handle variations and noise interference that exist in the imaging
data. Here, we adopt our recently developed level set-based image segmentation technique [37, 38]
to extract arterial geometries. An overview of this method and implementation details are given
below. Let I (x) denote the 3D grey image, where x= [x, y, z]T is a point in the image domain D.
Let � be an object to be segmented from this image. We employ the level set method in which
the object boundary ��(t) is defined through the level set function �(x, t):

��(t)={
x :�(x, t)=0

}
. (1)

To compute the level set function, we numerically solve the following PDE for �(x, t) [37, 38]:

��

�t
=�g(x)�(x, t)‖∇�‖−(1−�)(F(x)·∇�) (2)

where � is a tuning parameter, g(x)=1/(1+‖∇ I‖) is an edge stopping function, �(x, t)=∇·
(∇�/‖∇�‖) is the mean curvature of the surface �=const, F(x)= [Fx , Fy, Fz]T is the flow
function determined by image I . The flow function, which is derived from the image data, acts as
an external force on the deformable model, and it is the most critical component in this kind of
deformable model formulation.

2.2. Geometrical potential force (GPF)

In our approach, the GPF [37, 38] used is defined as:

F(x)=± ∇�(x)
‖∇�(x)‖ G(x) (3)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2011)
DOI: 10.1002/cnm



I. SAZONOV ET AL.

where the scalar potential G is represented by the convolution of the form

G(x)=P.V.
x

‖x‖�+1
∗∇ I (x)=P.V.

∫ ∫
x′∈D

x−x′

‖x−x′‖�+1
·∇ I (x′)dx′ (4)

Here P.V. denotes the principle value and parameter � depends on the domain dimension: �=3
for a 3D domain and x′ indicates a deformable model. Force, F, acts in the direction of the gradient
of �, i.e. always normal to the active surface �(x, t)=0. It is possible to show that in the 2D case,
with �=2, this force coincides with a magnetic-active force [39], but in contrast to magnetic force
the GPF can be defined and applied to images of any dimension (even to 4D, i.e. time varying 3D
scans).

A discrete analogue of the convolution kernel in Equation (4) takes the form

P.V.
x

‖x‖�+1
=

{
x/‖x‖�+1, x �=0

0, x=0
(5)

The fastest way to evaluate convolution (Equation (4)) and compute the potential Gi jk =
G(xi , y j , zk) is to apply the 3D fast Fourier transform (FFT) method. It can be computed prior to
the level set function calculation.

2.3. Numerical solution, initial and boundary conditions

Equation (2) is solved numerically by the finite difference method. Let xi jk = [xi , y j , zk]T=
[i�x, j�y,k�z]T be the grid point, where �x , �y and �z are the grid sizes along the x , y and
z directions, respectively (i.e. voxel size in every dimension). Let �t be a time step and tn =n�t ,
where n�0. Having defined all the necessary quantities, the level set function �(x, y, z, t) is given
on a time–space grid as:

�n
i jk =�(xi , y j , zk, tn)

The forward Euler method is employed here for advancing in time, i.e.

�n+1
i jk =�n

i jk+�t{�(g�‖∇�‖)ni jk−(1−�)(F ·∇�)ni, j,k} (6)

In the curvature term (g�‖∇�‖), all the derivatives: ��/�x,�I/�x,��/�y, etc. are discretized
using a central difference approximation: (��/�x)i jk ≈ [�i+1, j,k−�i−1, j,k]/(2�x), and so on. In
the vector force term (F ·∇�), the derivatives in computingF by Equation (3) are also discretized by
the central difference approximation, whereas the derivatives in the second multiple in Equation (4)
are approximated using upwind differencing, i.e. backward difference if the corresponding compo-
nent F is positive and forward difference otherwise. This can be expressed as,

(
Fx

��

�x

)n

i, j,k
≈

⎧⎪⎪⎨
⎪⎪⎩
Fn
x

�n
i, j,k−�n

i−1, j,k

�x
if Fn

x >0

Fn
x

�n
i+1, j,k−�n

i, j,k

�x
if Fn

x <0

(
Fy

��

�y

)n

i, j,k
≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fn
y

�n
i, j,k−�n

i, j−1,k

�y
if Fn

y >0

Fn
y

�n
i, j+1,k−�n

i, j,k

�y
if Fn

y <0

etc.
To set the initial condition, we have to define the initial surface S0 somewhere in the vicinity

of the blood vessel being investigated. An initial level set function is defined as a signed distance
D[S0t] from the initial surface S0, i.e.

�(xi , y j , zk,0)=D[S0]
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Figure 1. Segmentation of a carotid artery using GPF-based deformable model: (a) initial surface S0;
(b) after 11; (c) after 81; (d) after 187; and (e) after 241 time-steps.

The signed distance can be computed efficiently using the algorithm described in [87]. At the
boundaries of the image domain, zero Neumann boundary conditions are imposed. The narrow
band approach described in [86] is used to reduce the computational cost in updating the level set
function.

During the calculation, function � may become irregular. Therefore, it is periodically re-
initialized to the signed distance surface set from the current zero level set (surface of the deformable
body), S(t)={x :�(x, t)=0}. Hence, � can be redefined as �(x, t)=D[S(t)], which is a smooth
function with S(t) being the surface with zero level set.

2.4. An example

In this section, a CT scan (DICOM data set) of a human carotid artery is used to demonstrate the
GPF-based segmentation method. The progression of the level set function is depicted in Figure 1.
Note that the initial model is positioned across the object boundaries to illustrate the capability
of the deformable model to handle arbitrary cross-boundary initializations. The final solution is
independent on the initial surface shape (example: sphere, parallelepiped, etc.), which has been
tested for a wide range of different initializations [38]. The position of the centre of the initial
surface S0 is prescribed manually, which is the only manual operation in the segmentation process.
In contrast, our experience with commercial or open-source software showed that substantially
more manual interactions are required for the segmentation of blood vessels from MRI or CT
scans of standard clinical quality.

3. SURFACE MESHING

The surface mesh generation procedure has the following steps. The level set functions calculated
by the image segmentation method are used to determine the skeleton of the given artery first.
This involves determining the approximate axis of the artery and its branches. This is followed by
the procedure of generating a valid surface triangulation using again the final level set functions
generated by the image processor. After carefully applying cosmetics to the surface mesh, it is
clipped at the required length, orthogonal to the vessel axis. Following subsections explain the
surface mesh generation steps in detail.

3.1. Skeletonization

In many blood flow applications, it is useful to determine the position of the blood vessel axes,
i.e. creating a skeleton of the geometry. It helps in the automatic identification of the geometrical
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Figure 2. Voxel thinning process. Initial object voxels (top left) and final skeleton (bottom right).

features of the vessel, e.g. stenosis, aneurysms, bifurcations, kinks, etc. It is also helpful for
determining the best orientation for the inlet/outlet surface. The following paragraphs explain a
systematic way of obtaining a skeleton.

3.1.1. Voxel thinning. Since the image is given in terms of a voxel grid, voxel thinning is the
simplest way for a topology-preserving skeletonization [88] (see Figure 2). A binary image can
be easily created from the level set functions by allocating unity to the voxels in which level
set function is positive (object or foreground points) and by setting the remaining voxels to zero
(background voxels).

In the thinning algorithm used, the so-called simple points are identified and removed from the
image until an image with only one voxel thickness is left along the axis. An object voxel is a
simple point if the object topology does not change when the voxel is removed, i.e. removal of
the point should not lead to disjoint objects (multiple components) and should not create/remove
tunnels, cavities, etc. [89]. Several parallel and sequential thinning algorithms are available [88]
and we choose reliability of the algorithm over speed as explained below.

Before listing the steps of the algorithm employed, some definitions should be mentioned here.
Three main symmetric neighbourhoods for a voxel can be identified, i.e. (1) the set of voxels that
share a face (2) the set of voxels that share an edge (3) the set of voxels that share a vertex.
The voxels in these sets are referred to as 6-adjacent, 18-adjacent and 24-adjacent, respectively.
Now, a 26-adjacent background component is a subset of 26-adjacent foreground voxels that are
connected to each other (they form a sub-object). The thinning procedure can now be described
in two main stages, i.e.

1. Locate all boundary voxels: A voxel is considered to be a boundary voxel if it shares a face
with at least one background voxel. Such a voxel can be slid out from the object without the
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removal of any neighbouring foreground voxels. While marking boundary voxels, we also
compute and store the number of background voxels sharing a vertex with every boundary
voxel (stored as an array, K ). The next step is the removal of boundary voxels in a systematic
fashion as discussed below.

2. Voxel thinning: Start the thinning process by considering the voxel that has the maximum
K value first, and continue in the descending order to the smallest K value. Check whether
a boundary voxel is simple by considering the 3×3×3 image subset around it using the
following steps:

(i) Check whether its removal changes the number of 26-adjacent foreground components
(change from joint to disjoint or disjoint to joint objects).

(ii) If not, check whether its removal changes the number of 6-adjacent background
components.

(iii) If not, check whether its removal forms a tunnel, i.e. changes its genus g (number of
tunnels, Equation (7)).

(iv) If not, the voxel is simple and it is removed from the object and allocated to the
background by setting a zero value.

Steps 1 and 2 are repeated and the process is terminated when all simple voxels are moved to
the background. Note that the number of iterations required is proportional to the voxel thickness
of the object.

The number of tunnels NT=g of an image is calculated from the Euler characteristics � that
are related to the number of components NC and number of cavities NCA as:

�=2(NC+NCA−NT) (7)

Although there are no cavities in the object considered in this study (NCA =0), the number of
components is not zero and it can be computed. Thus, once � is independently computed (see
[90]), the number of tunnels may easily be estimated from Equation (7). A simple procedure
for computing the Euler characteristics of a binary image is described in [90] and a slightly
different approach is proposed in [91]. Both the methods give identical results. In both methods, a
configuration of every 2×2×2 voxel subset in the image is considered, from which the total Euler
number is computed.

Typically, on scans of the blood vessels, the inlets and outlets appear at the boundaries of the
image box, which may result in some difficulties regarding voxel thinning near the boundaries. The
result of a thinning algorithm at the image boundaries depends upon how the neighbours of such
boundary voxels are defined. Since there are no voxels beyond the boundary voxel, an additional
virtual layer of voxels is added beyond the boundary voxel (Figure 3). Now boundary voxels will
have 26 neighbours, of which 9 are virtual voxels.

In the existing studies, the virtual neighbour voxels are often treated as background voxels
(Figure 3, left). Hence, all foreground voxels at the image boundary will be marked as boundary
voxels and deleted after the first step of the thinning process. With further thinning, the subse-
quent voxel layers will be deleted and the vessel axis is shortened at the inlet/exit as shown in
Figure 4(left). In our proposed approach (Figure 3, right), we mark a virtual voxel as a foreground
voxel, if it shares a face with an image boundary voxel at which an inlet/exit exists. However, it
is not deleted unless a real foreground voxel, sharing a face with it is deleted. Though the virtual
voxels are not included in the final axis construction, they ensure that the axis is not shortened as
shown in Figure 4(right).

3.1.2. Axis smoothing. After completing the voxel thinning process, the centres of the remaining
voxels are connected to form a ragged curve. This curve is automatically generated in the main
artery along with the axes of the branches, if applicable. The curve thus generated is tattered and
requires smoothing, i.e. its points pi , which are initially at the centres of the skeleton voxels should
be displaced to form a smoother line. A simple way to smooth the lines is to apply a 1D analogue
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Figure 3. Addition of virtual voxels to the thinning process. Standard
method (left) and proposed method (right).

Figure 4. Shortened centroidal line obtained using the standard thinning method (left). The line is not
shortened in our approach (right). Here projection of the binary image on the {x, z}-plane is shown by

grey (initial image) and by black (after thinning).

of Laplace smoothing (see Equation (11)), i.e.

pnewi =pi (1−�)+ 1
2 (pi−1+pi+1)�, i =1, . . . ,M−1 (8)

where M is the number of points on a curve and � is a weighting parameter. While smoothing, the
first point, i =1, and the last point, i =M , are fixed. Note that, in the case of high curvature axis,
this method systematically shifts the curve towards its curvature centre. Thus, the 1D analogue
of the Taubing smoothing (see Equations (12)–(13)) may be a better option. Even with Taubing
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smoothing, the curve will shift towards the centre of curvature, but at a much slower pace. To
avoid any adverse effect of smoothing, a more robust smoothing method is proposed here based
on the smoothing direction of the segments between two neighbouring points. The steps involved
in the smoothing process are:

1. Compute the normalized tangent vectors of every segment: t̂i = (pi+1−pi )/‖pi+1−pi‖, i =
1, . . . ,M−1.

2. Compute the normalized smoothed tangent vector

tnewi = ti (1−�)+ 1
2 (ti+1+ ti−1)�, t̂

new
i = tnewi /‖tnewi ‖, i =2, . . . ,M−1 (9)

where � is a weighting parameter and it is taken to be 0.5.
3. Compute the endpoint location of the i th segment rotated around its midpoint qi = 1

2 (pi+1+
pi ) until its direction coincides with tnewi (Figure 5). Thus, its endpoints take the positions
pnew1,i =qi −di t̂

new
i , pnew2,i =qi +di t̂

new
i , where di = 1

2‖pi+1−pi‖ are the segment half-lengths.
The first and the last segments of the line are not rotated.

4. The new endpoints for every segment are approximated as pnewi = 1
2 (p

new
2,i−1+pnew1,i ), i =

2, . . . ,M−1 (Figure 5).

Steps 1–4 are repeated typically 4–5 times. The results of smoothing the centroidal lines are
shown in Figure 6.

p
i-2

p
i-1

p
i

p
i+1

p
i+2

p
1,i

p
2, -1i

new

new

p
i
new

Figure 5. On the line smoothing algorithm. The bold solid line indicates the initial centroidal line, its
nodes are shown by closed circles. The bold dashed line indicates the centroidal line after one smoothing
step, its nodes are shown by large open circles. Segments rotated around their midpoints are indicated by

thin solid lines, their endpoints are shown by small open circles.

Figure 6. Axis smoothing: (a) Initial voxel skeleton; (b) the initial centroidal lines, circles indicate
voxel centres; and (c) the centroidal lines after the smoothing. The planes normal to the lines are

shown in yellow. View this figure color online at [10.1002/cnm.1446].
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Figure 7. Surface mesh generated by marching cube methods:
(a) standard method and (b) advanced method [92].

3.2. Obtaining a consistent surface mesh

Representation of the object surface through a continuous level set function gives an opportunity
to employ a advanced MC algorithm as described in [92]. This gives a much smoother surface than
the standard MC method [46], without the ambiguities that appear when the standard method is
applied (e.g. [93]). The advanced MC method used here gives an isosurface �(x)=0 on the voxel
grid points and linearly interpolates between them, i.e. using piecewise linear functions. In contrast,
the standard MC method gives the isosurface of the linearly interpolated non-smooth function
H [�(x)]=0.5, where H (.) is the unit-step Heaviside function. Figure 7 shows the differences
between the standard MC method and the method used in this study. As seen, the advanced MC
method used here shows a much better quality surface mesh.

3.3. Cropping the surface

Once a satisfactory surface representation is established and the geometry skeleton is generated,
the next step is to obtain the valid inlet and exit boundary surfaces. Often clipping is carried out
visually but in this work, we provide an automatic cropping framework which uses the surface
mesh generated in the previous section and the skeleton constructed in Section 3.1.

3.3.1. Determining the position of inlets/outlets. After smoothing the skeleton, the tangent of the
centroidal line varies only slightly from point to point allowing easy determination of cross-sections
normal to the centroidal line.To crop the surface mesh, we should indicate a point on the skeleton
curve first. This can be done manually by mouse or automatically, say, at a certain distance from a
bifurcation point or any other topological change. It is also possible to determine the position that
gives the maximal blood vessel length for a given scan. To determine this, the normal cross-section
of a closest axis point to the image-box boundary that does not intersect the image-box boundary
(Figure 8) should be estimated. The point at which this closest cross-section intersects the axis,
Pk , is determined by going through the axis points one by one from the edge of the image box.

After point Pk (corresponding to the kth inlet/outlet) on the central line is found, we can
compute the tangent tk to the line at this point, for example, using

t̂i = (pi+1−pi−1)/‖pi+1−pi−1‖, i=2, . . . ,M−1. (10)
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Figure 8. Cropping the surface mesh: (a) automatic determination of inlet/outlet position
with different cropping planes and (b) cropped mesh.

The plane �k ={x : (x−Pk)· tk =0} passing through Pk normal to tk is defined for kth inlet/outlet
plane.

3.3.2. Cropping the surface mesh. Once the inlet/exit planes are defined, the surface mesh is
cropped using the following steps.

1. For every kth inlet/outlet, find the mesh points located on the domain side of interest from
the plane defined by �k , satisfying the inequality (p−Pk)· tk�0 (�0 for outlets) and flag
them.

2. Mark the faces sharing both the flagged points and the points outside the domain.
3. Compute the distances from point Pk to the first vertex of the marked triangles and select

the triangle with the smallest distance denoted by f0 to start the splitting process.
4. Split the selected triangle into three subtriangles using the intersection points created by the

cutting plane as new vertices as shown in Figure 9(a)–(b). As seen, the intersection creates
a triangle and a quadrilateral. The triangle is retained and the quadrilateral is split into two
triangles.

Remark: every intersection point will be added to the mesh as two different nodes p4 (filled
half-circle) and p′

4 (open half-circle) located at the same position p4. However, only point
p4 forms the part of the final mesh. The same applies to p5 and p′

5. Thus, if the initial
triangle {p1, p2, p3} has one point on the domain surface, e.g. p1 (Figure 9(a)), then triangle
{p1, p5, p4} is introduced, all vertices of which become the domain surface nodes. The
remaining quadrilateral {p2, p3, p′

4, p
′
5} (all vertices of which are outside the domain) is

split into two triangles. The choice how to draw a new side: {p2, p′
4} or {p3, p′

5} is made
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Figure 9. Truncating a surface mesh. (a)–(b) Splitting faces intersected by plane �k (dashed line). Marked
points are indicated by closed circles, unmarked—by open ones. New sides are indicated by dotted lines.
(c) Mesh intersection with plane �k (bold black). Marked triangles are indicated as colored (every two
neighbouring triangles have different colors). Every triangle is divided into three subtriangles to form a

side exactly lying at the intersection plane. View this figure color online at [10.1002/cnm.1446].

Figure 10. Surface mesh cropping: (a) unclosed mesh after trimming and (b) closed mesh
after the triangulation of the inlet and outlet surfaces.

to minimize the maximal angle of two newly formed triangles. In the example shown in
Figure 9(a), new faces added are {p2, p′

4, p
′
5} and {p2, p3, p′

4}. The triangle with two marked
vertices on the domain side of interest can be split in an analogous manner as shown in
Figure 9(b).

5. Take an edge of the treated triangle in step 4 with a node on the retained surface and another
on the outside surface ({p1, p2} in Figure 9(a) and {p2, p3} in Figure 9(b)) and find the
conjugate triangle containing the same side. If this triangle is f0 then stop, otherwise go to
step 4 and continue.

After this procedure is repeated for every outlet, a mesh is obtained consisting of disjoint
components. The triangular elements belonging to the mesh side of interest (shown in yellow in
Figure 8(b)) can be identified as those that are flagged. After removing the mesh parts that are
outside the surface of interest (shown in grey in Figure 8(b)), an unclosed surface mesh is obtained
with the edges on the unclosed side lying on the same plane for every inlet/outlet (Figure 10(a)).
The inlets/outlets are then triangulated by any 2D triangulation method. We employ the ‘stitching’
method described in [94]. As a result, a closed mesh is created with flat inlet/outlet surfaces as
shown in Figure 10(b).

It is often useful to smooth the contours of the inlets and outlets before the mesh cosmetics
procedure is applied. One of the most effective method that does not cause contour shrinkage is
the same method which is used to smooth the skeleton lines as described above. An example of
such smoothing is shown in Figure 11.
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Figure 11. Smoothed outlet contour after 20 steps of smoothing.

Figure 12. Surface meshes: (a) mid-cut mesh after before mesh cosmetics; (b) after 10 steps of the Taubin
smoothing; and (c) after edge splitting/contraction.

3.4. Surface mesh cosmetics

The mesh obtained by the advanced MC method (shown in Figure 12(a)) always contains a large
number of ill-shaped elements, i.e. with small aspect ratio defined as r=smallest height/longest
side. In addition, the triangular element size can be smaller or larger than the element size required
by the flow solver. Therefore, the mesh needs some mesh cosmetics, which creates a surface mesh
for the same domain with much better element quality (higher rmin) and at a prescribed element
size. It is important to note that there are essentially three procedures used to improve the mesh
quality. They are:

(i) Mesh smoothing (no topological changes)
(ii) Splitting/contraction of edges
(iii) Edge swapping

Note that these are all standard techniques in mesh cosmetics, but the implementations can be
different. Furthermore, these procedures are different for local and global operations or mid-domain
and near-ridge applications. Hence, in the following subsections we explain the procedures chosen
specifically for patient-specific mesh generation.

3.4.1. Surface mesh smoothing. As a first step in cosmetics, we smooth the surface mesh by
moving the nodes along the surface (without changing the mesh topology) in order to increase the
element quality (aspect ratio). Note that the constrained Taubing smoothing is preferred here over
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the more commonly used Laplace smoothing. In standard Laplace smoothing, the position of the
point p is redefined by

pnew= 1

dp

∑
i∈Pp

pi (11)

where Pp is the set of points contiguous to p, dp is the number of points in Pp , p is the node
numbering index in the mesh, and p its co-ordinates. All points are consecutively moved into
their newly computed positions. This iteration may be repeated several times until a specified
element quality is reached. However, it is obvious that Laplace smoothing of a convex mesh will
monotonically shrink it as the new point position always lies inside the domain.

In the Taubing smoothing technique, the new position is computed in two steps within every
iteration, i.e.

pinter = (1−�)p+�
1

dp

∑
i∈Pp

pi (12)

pnew = (1−�)pinter+�
1

dp

∑
i∈Pp

pinteri (13)

where parameters � and � satisfy the equation �−1+�−1=�. We take �=0.6307,�=0.1 then
�=−0.6732 as recommended in [54]. To avoid adverse effects, the following constraint is also
added to the Taubing smoothing. If the new position of a surface point is at a distance greater than
some maximally allowed value, hmax, then the point is displaced by hmax in the direction given
by Equations (12)–(13), i.e.

pnew,constr. =p+hmax
pnew−p

‖pnew−p‖ if ‖pnew−p‖>hmax (14)

In this work the maximal distance hmax was set as half the voxel size. The mesh after 10
steps of smoothing is shown in Figure 12(b). Note that the Taubing smoothing protects the shape
of ball-like objects, but too many iteration steps can disturb cylinder-like objects such as blood
vessels.

3.4.2. Topology-based edge swapping. Improving the mesh topology is very likely to have a
beneficial effect on the quality of the elements in a mesh (if combined with smoothing). To improve
the mesh topology, every edge containing a new point from the splitting/contraction procedure is
considered. Let di indicate the nodal indices of the nodes of the two triangles that share this edge
(4 nodes in total) with i denoting the i th point. The optimal nodal index for a point in a triangular
surface mesh is 6 and the aim of the topology based edge swapping is to reduce the deviation of
di from this number. Hence, for every edge swap, the change of mesh relaxation index, �U , is
evaluated in accordance with

�U = [(m1−1)2+(m2−1)2+(m3+1)2+(m4+1)2]−[m2
1+m2

2+m2
3+m2

4] (15)

where mi =di −6 is the deviation from the ideal nodal index [95]. Here, subscripts 1 and 2 are the
endpoints of the edge before swapping and 3 and 4 are the endpoints of the edge after swapping.
Note that, an edge will only be swapped if �U<0. This procedure is repeated several times and is
terminated when swapping of the edges connected to a new point results in an increase in the mesh
relaxation index. As mentioned, it is essential to perform local Taubing smoothing to optimally
benefit from the topological changes.

3.4.3. Edge splitting/contraction. If the mesh contains a significant number of very short or/and
very long edges and the average edge length is not sufficiently close to some predefined reference
length as required by the flow solver, then edge splitting and contraction [51, 52] are very useful
procedures.
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Figure 13. Meshing terminologies. Outlet faces are shown in grey.

If an edge {p1, p2} is very short, it can be contracted into a single node pnew. The nodal index
dnew (number of contiguous nodes) of the new node pnew is often significantly larger than the
optimal value of 6 (dnew=d1+d2−4 where d1,2 are nodal indexes of endpoints p1, p2 of the
initial edge). In such cases, the local mesh topology is improved by swapping edges attached to
node pnew. This procedure is described in Section 3.4.2.

If the edge is too long, it can be divided by inserting a new node pnew approximately at the
midpoint of the edge. The resulting nodal index is dnew=4, which is less than optimal. In this
procedure the local mesh topology is improved by swapping edges surrounding the node pnew. In
both edge contraction and splitting, the biggest challenge is placing the new point on the domain
surface, due to the fact that the object boundary is not explicitly defined. A simple and effective
formula for placing a new point is described in Appendix B. The following paragraphs explain
the edge splitting and contraction of ridge and near-ridge edges. The meshing terminologies used
here are shown in Figure 13.

The edges that are shared by both a wall face and an inlet/outlet face are ridge edges. Their
endpoints are ridge points. During edge contraction, a newly created point (which is a ridge point)
is positioned in an identical fashion to the procedure described above and in Appendix B. The
only difference is that the normals to the endpoints are computed by averaging the normals to
the wall face containing the given ridge point. This normal is then projected onto the plane of the
inlet/outlet surface when required. The mesh topology improvement is performed separately for
inlet/outlet edges and wall edges containing a new ridge point. For a ridge edge the optimal nodal
index is 2 (2 wall edges, 2 outlet edges and 2 ridge edges, total 6) from the perspective of either
wall or inlet/outlet surface. Thus, swapping must be performed such that at least one wall edge
and one outlet edge are connected to a certain ridge point.

If an edge contains one ridge point and it is not a ridge edge, we call it a near-ridge edge
(Figure 13). When contracting a near-ridge edge, the new point will always be placed at the
position of the ridge endpoint. If both endpoints of an edge are ridge points and both triangles
sharing this edge are wall triangles, the local mesh topology is not good, i.e. there is a ridge point
which is not attached to a wall edge. In such situations, the local topology must be improved by
edge swapping (see above) before edge contraction. The same holds for an inlet/outlet edge with
two ridge endpoints. The edge swapping/splitting/contraction in the near-ridge part of the mesh
needs special care in marking the resulting edges and nodes correctly.

3.4.4. Mesh refinement. If the element size required is smaller than the initial element size (deter-
mined by the voxel size), the edge splitting procedure could become computationally expensive.
It is often more efficient to obtain a coarser mesh first (e.g. double the element size) using the
splitting/contraction method, and then to refine the mesh by splitting every triangle into four. This
can be performed by splitting every edge into two and inserting a new node at the mid-point of
every edge. The method for placing the new points is described in Appendix B and it allows us
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Figure 14. Refining the surface mesh: (a) standard method of point placement at edge midpoints and
(b) new points are placed in accordance with the method described in Appendix B.

to create a much smoother mesh as shown in Figure 14. Figure 14(a) shows the standard point
placement method and Figure 14(b) shows the mesh produced by the new point placement method
proposed in Appendix B. As seen, the new method gives a much smoother surface mesh.

4. VOLUME MESHING

4.1. Boundary layer meshing

To resolve the viscous boundary layer in flow studies, a special structure of the near-wall volumetric
mesh is required. The elements built in the direction of inward normal to the wall should be
essentially smaller than the element size in the inner volume of an artery. The short edge of a
near-boundary tetrahedra should be directed normal to the wall [40]. Such a quasi-structured, near-
boundary mesh consists of N sub-layers with decreasing thickness towards the boundary. The ratio
of the thickness between every neighbouring sub-layer towards the wall can be defined as f <1
(see Equation (17)). The mesh can be generated if we build triangular prisms at every face, divide
every prism into N smaller prisms with height ratio f between two neighbouring prisms. If we
need a tetrahedron mesh, then every triangular prism can be split into three tetrahedra (Figure 15).
Following sections provide some details on the boundary layer meshing procedure.

4.1.1. Thickness of the boundary layer mesh and its sub-layers. The boundary layer mesh should
gradually change the element size from the inner volumetric mesh element size (see below), which
we denote as h, to a much smaller size at the boundary. The minimal sub-layer thickness hmin and
total thickness of the boundary layer mesh hb are defined as:

hmin=h f N , hb=h( f +·· ·+ f N )=h f
1− f N

1− f
(16)

The number of sub-layers N and the thickness ratio f can be chosen experimentally depending
on the problem studied. In [40] we show that N =8–10 seems sufficient to capture the shear
stresses in a carotid artery. We use the following definition for f :

f = (1+N−�)−1 (17)

where � is a tuning parameter. We take �=0.452, then hb/h=2 for N =6 [40].

4.1.2. Adjustment of the boundary layer near rapid variation in lumen area. The local boundary
layer thickness must be decreased in narrow blood vessel branches or near a stenosis. It should
also be decreased near high curvature parts in the surface mesh, especially near convex parts.
Otherwise, self-interaction may occur in the boundary layer mesh. Therefore, three stages of the
boundary-layer thickness correction are used here.

First, the distance from a node p to the opposite side of the surface is determined. This distance
is determined as the distance between the point p and a point within a semi-infinite cylinder of
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Figure 15. Splitting a prism into tetrahedra: (a) invalid case; (b) the prism is divided into three tetrahedra
{1,2,3,3′}, {1,2,3′,1′}, {1′,2′,3′,2}; and (c) dividing a prism into smaller prisms and then into tetrahedra.
The surface triangle is shaded darker, triangles of the sub-layers are shaded lighter. Wall surface points

are indicated by closed circles, inner points—by open circles.

radius h with the axis identical to that of the inward normal, np, built at the node p. The origin
of the cylinder is the point p. To avoid identifying the neighbouring points of a cured wall, we
only search for points beyond a minimum cylinder length of 2h. If no points are found within the
cylinder, the search is carried out within a cylinder of larger radius, and so on, until the point is
found. If distance, l, to this point is less than 4h then the local boundary layer thickness is reduced
to hb= l/4. Note that this option can be switched off if it is known a priori that there are no
narrowing in the domain. Other alternatives such as medial axis or using a cone to identify the
point on the opposite side is possible. However, all the methods have limitations.

Second, the mean dot-product of the unit normal vector n̂p with unit normal vectors of contiguous
surface nodes is computed. The local boundary layer mesh thickness is decreased by this factor, i.e.

h′
b=hb

1

dp

∑
i∈Pp

(n̂p · n̂i ). (18)

Third, to make the method robust, the distances between the ends of the normal vectors p+h ′
bn̂p

and all pi +h′
bn̂i , i ∈Pp are calculated. If any of the distances is less than half the size of the

corresponding edge on the surface mesh, ‖p−pi‖, the thickness is proportionally reduced to obtain
the minimal distance ‖(pp+h′

bn̂p)−(pi +h′
bn̂i )‖.

4.1.3. Arranging the edge directions. When splitting a triangle prism into three tetrahedra, every
quadrilateral face is divided into two triangles by inserting diagonals as shown in Figure 15(a,b),
e.g. in face {2,3,3′,2′}, the dividing diagonal can be either {2′,3} or {2,3′}. If two prisms in the
mesh share the same quadrilateral face then the dividing diagonal should be the same. Otherwise
the 3D mesh will not be consistent.

In addition, the dividing diagonals should lead to three tetrahedrons and can therefore not be
chosen arbitrarily and the procedure used should be well-defined. In the proposed procedure, a
direction is assigned to every edge of the surface mesh, i.e. the endpoints of every edge are
ordered (first and second). Every edge of the surface mesh corresponds to a quadrilateral face
shared by two prisms. If the diagonal of a quadrilateral face starts at the first point of a given
edge on the surface, it ends at the second point of the corresponding edge at the next layer, as
shown in Figure 15(a),(b). Thus, as shown in Figure 15(a) choosing all three edges in the same
clockwise (or counterclockwise) direction will result in difficulties. An algorithm to arrange the
edge directions in a correct manner is described below.

Define a triangle as invalid if all its edges have the same directions and define it as valid
otherwise. Call an edge shared by invalid and valid triangles as ‘unflippable’ if, after flipping its
direction, the valid triangle becomes invalid. The aim of the algorithm is to remove all invalid
triangles by flipping some edge directions. To do this, the following steps are used:

(i) Find and mark all invalid triangles in the mesh.
(ii) Take a marked triangle, find an edge shared with another invalid triangle (if exists) and flip

its direction and unmark both triangles and go to (iv).
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(iii) If no such edge exists, find an ‘unflippable’ edge and flip its direction. If more than one
‘unflippable’ edge is found, then flip the direction of a randomly chosen edge (its number
should be selected by a random number generator). Unmark the triangle under consideration,
and mark the adjacent one.

(iv) If any triangle is still marked, go to (ii) otherwise terminate.

Despite the fact that we cannot provide a rigorous proof that this algorithm works for an arbitrary
mesh, it has not failed for the cases we studied so far.

4.1.4. Defining and combing the normals. The unit normal vector is computed for every surface
point using Equation (B2). For the ridge, the normal is computed by summing the unit normal
vectors of only the wall elements containing this node. The ridge normal vector is then projected
onto the plane of the corresponding inlet/outlet surface and normalized after that.

If the surface mesh is not sufficiently smooth, the normals of the neighbouring points may not be
very close to each other. The following ‘combing’ procedure smooths the variation in the normal
directions. It is similar to the Laplace smoothing (Equation (11)) given by

nnew= n̂(1−�)+ 1

dp

∑
i∈Pp

n̂i�, n̂new= nnew

‖nnew‖ . (19)

where � is a weighting parameter. In this work, it was taken equal to unity, but in geometries with
high curvature values, other values may be optimal. The iterations can be repeated several times,
to obtain a smoothed surface normals.

4.1.5. Boundary-layer mesh generation. To generate the boundary layer part of the volumetric
mesh, we take every node of the surface mesh and build a valid inward normal as explained
previously. An inner triangular face is constructed corresponding to every surface triangle, at a
distance of a given boundary layer thickness. Then, every segment connecting a surface point
and a corresponding inner point is divided into a number of smaller segments using geometric
progression according to f N : f N−1 : · · · : f 2 : f , to build N triangular prisms. Finally, every prism
is divided into three tetrahedra. Figure 15(c) shows the procedure of splitting the prisms into
tetrahedrons. The boundary layer meshing procedure may be summarized as:

1. Remove inlet/outlet parts of the surface mesh.
2. Decide the number of sub-layers, N , in the boundary-layer mesh and the thickness ratio f .

The latter factor can be computed via Equation (17).
3. Compute the total thickness via Equation (16).
4. Compute inward normals to every point in accordance with (B2).
5. ‘Comb’ the normals (see Section 4.1.4).
6. Correct local boundary-layer thickness (shrink or expand) according to the domain cross-

sectional variations (see Section 4.1.2).
7. Find positions of the inner surface points (for both wall and ridge points). Smooth the inner

surface mesh by Taubing smoothing algorithm (Equations (12))–(13).
8. To close the inlets/outlets, the stitching method [94] is used.
9. Generate the quasi-structured, 3D tetrahedral mesh by dividing the prisms into smaller prisms

first and then by dividing a smaller prism into three tetrahedra.

If the mesh without boundary layer has to be generated, the algorithm presented in the following
section for inner volume mesh generation can be applied directly to the surface mesh.

4.2. Inner volume mesh

Once the boundary layer mesh generation is completed, a semi-structured, tetrahedral mesh occupies
a small region along the vessel walls. Thus, in addition to exterior surfaces, an interior surface
at the edge of the boundary layer exists. This interior surface mesh is open at the inlets/outlets.
To close the inlets/outlets, the stitching method [94] is used. After improving the quality of the
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Figure 16. Volume mesh generated for a carotid artery.

new surface mesh at the inlets/outlets using Taubing smoothing, we use an in-house developed
code [64] based on a Delaunay triangulation to insert the points to generate a 3D volume mesh of
tetrahedrons. Subsequently, 3D mesh cosmetics based on 3D swapping, and smoothing is applied.
As mentioned, the quality of the 3D mesh depends on the quality of the surface mesh. In all
the carotid arteries that we have reconstructed so far, the smallest tetrahedral aspect ratio for a
specific geometry lies between 0.01 and 0.1 (with

√
2/3 being the optimal aspect ratio). This result

excludes the boundary layer mesh for obvious reasons. A portion of the volume mesh cut by a
plane passing approximately along the centroidal line is shown in Figure 16. The minimum aspect
ratio of unstructured tetrahedra mesh observed here is 0.08.

5. NUMERICAL MODELLING

In this section, the flow boundary conditions at the inlet and exits of an artery are derived. In
addition to analysing the Womersley and Poiseuille flow profiles, transient numerical calculation
of flow profiles is also explained in detail. In addition to the velocity profiles, flow rate division,
pressure gradient variation and flow cosmetics are also explained in this section. Finally, a brief
summary of the flow solver is also provided.

5.1. Equations for velocity profile

Consider a time varying flow in a pipe of arbitrary cross-section with a rigid wall. Let z be the
coordinate along the pipe axis and x and y the coordinates of the cross-section. The flow velocity
u and pressure p obey the Navier–Stokes and continuity equations:

�
�t
u+(u ·∇)u+ 1

�
∇ p = 	∇2u (20)

∇ ·u= 0 (21)

where � is the density, 	 is the kinematic viscosity. The velocity vanishes at the pipe wall.
If the pipe is straight and its cross-section is constant then it can be shown that the velocity and the

pressure gradient ∇ p have only axial components: u= [0,0,u(x, y, t)]T, ∇ p= [0,0, pz(t)]T. More-
over, the pressure gradient depends on time t only. Thus, Equation (21) is satisfied automatically,
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and from Equation (20) we obtain a single linear parabolic inhomogeneous PDE as a function of
z velocity component u(x, y, t) as:

− �
�t
u+	∇2

⊥u= pz(t)

�
, ∇⊥ = [�x ,�y]T. (22)

Let the flow be periodic with a period T : u(t+T )=u(t), p(t+T )= p(t). By applying the Fourier
transform, we represent the flow as a sum of harmonic components as

u(x, y, t)=
∞∑

n=−∞
ũn(x, y)e

i
n t , pz(t)=
∞∑

n=−∞
( p̃z)n e

i
nt (23)

where 
n =2�n/T , i=√−1. Substituting (23) into (22) gives a set of uncoupled PDEs for every
harmonic component as:

−i
nũn+	∇2
⊥ũn = ( p̃z)n

�
, n= . . . ,−2,−1,0,1,2, . . . .

Thus, for every harmonic component, we have a 2D boundary value problem: the inhomogeneous
Helmholtz equation (the Poisson equation if n=0) in the domain � with the Dirichlet boundary
conditions, i.e.

∇2
⊥ũn+k2nũn = fn, {x, y}∈� (24)

ũn = 0, {x, y}∈�� (25)

Here kn =√−i
n/	=√

n/2	 (1−i) is Stokes’s viscous wave number, fn = ( p̃z)n/(	�) is

the r.h.s.
In the case of a circular pipe of radius a: �={x, y : x2+ y2<a2}, the boundary value problem

(24)–(25) admits an analytical solution

ũn = Ũn
1− J0(knr )/J0(kna)

1−1/J0(kna)
, Ũn = ( p̃z)n

i
n�

[
1− 1

J0(kna)

]
, n �=0 (26)

ũ0 = Ũ0

(
1− r2

a2

)
, Ũ0= ( p̃z)0

	�
, n=0 (27)

which becomes a Womersley profile [96] for n �=0 and Poiseuille’s profile for n=0. Here J0(.) is
the Bessel function of order zero, Ũn is the velocity of the nth harmonic component at the centre
of the circular domain and |kna| is the Womersley number.

If the inlet/outlet is close to a circular shape or if a cylindrical extension is added to the
inlet/outlet then Womersleys solution can be applied directly. In [3] a method is proposed to map
the Womersley profile from a circular to a non-circular cross-section. This is acceptable as long as
the cross-section is close to a circular shape. For an arbitrary inlet/outlet with a non-circular cross-
section, which is often the case (Figure 11), the boundary value problem can be numerically solved.
For example, using a standard FE method and the surface triangulation of the inlet/outlet. The
presence of the boundary layer mesh increases the accuracy of the numerical solution. Comparison
between the analytical and numerical solution in a cylindrical pipe of radius a=1 is presented in
Figure 17 for Womersley numbers of 0 (a,b) and 11.5 (c,d). Here |kna|=11.5 corresponds to the
15th harmonic component in a carotid artery with an inlet of radius a=0.23cm (then �a2 equal to
the inlet area), 	=0.04, T =0.92s. As seen, the difference between the analytical and numerical
solutions is negligible.

5.2. Obtaining a time varying inlet velocity profile

At present, it is not easy to measure the pressure gradient in vivo. Ultrasonic measurements allow
obtaining the velocity waveform U (t) at the axis of a blood vessel where the velocity is maximum
[97]. Assuming that the waveform is a periodic function with period T , i.e.

U (t)=U (t+T )
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Figure 17. Velocity profile ũn/Ũn computed for kna=0 (a,b) and |kna|=11.5 (c,d) for a circular pipe
of radius unity. (a,b)—only the real part of the velocity is shown, (c,d)—real part is indicated by red,
the imaginary part—by blue. Womersley’s profile is shown by cyan lines (a,c) (real part only) and by
dashed lines in (b,d). Sub-layers of the boundary layer mesh are shown by black dotted lines in (b,d).

View this figure color online at [10.1002/cnm.1446].

we can expand it into the Fourier series as

U (t)=
∞∑

n=−∞
Ũn e

i
nt (28)

If the inlet is circular, we can substitute complex amplitudes Ũn directly into the left half of
relations (26)–(27) without computing ( p̃)n . Here, we take the waveform from [97] and the details
are described in Section 5.4. In the case of a non-circular inlet, the procedure of obtaining inlet
velocity profile u(x, y, t) from the inlet velocity waveform U (t)=u(xc, yc, t) (with (xc, yc) the
point where the velocity profile reaches its maximal value) is given below.

1. Compute complex amplitudes by the FFT method, i.e.

Ũn =
∫ T

0
U (t)e−i
nt , 
n = 2�

T
, n=0, . . . ,N (29)

A sufficient number of harmonic components, N+1, should be used to resolve the waveform
accurately. For the velocity profile used in this work, we take N =24. The corresponding
data are listed in Appendix C.

2. Solve N+1 boundary value problems numerically

∇2
⊥ũn+k2nũn = −1, {x, y}∈� (30)

ũn = 0, {x, y}∈�� (31)
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To do this, consider a surface mesh of an inlet/outlet and transform the mesh to the horizontal
plane. This is done by rotating the plane with respect to the barycentre of the inlet/exit. After
rotation, the z co-ordinates of all inlet/outlet nodes will be the same. Now, along with the
x, y co-ordinates of the nodes and the mesh connectivities, we obtain a plane 2D mesh that
is used in the numerical solution. Note that there is no necessity to compute ũn for negative
n, i.e. ũ−n = ũ∗

n as k2−n = (k2n)
∗.

The value on the r.h.s. of Equation (30) is not important since the solution to the problem
will be normalized. The only condition is that the r.h.s must be a non-zero constant. We use
a negative value for the r.h.s. to get a positive solution for the zeroth harmonics (n=0). For
other harmonics, the solution is complex due to the fact that parameter k2n is complex.

3. Find a node pc where ũ0 is maximum: find xc, yc: ũ0(xc, yc)→max. This node’s position is
the point of interaction of the blood vessel axis with the inlet. We refer to this node as an
axial node.

4. Normalize the solutions using the value at the axial node

ṽn(x, y)= ũn(x, y)

ũn(xc, yc)
, n=0, . . . ,N

5. Compute the inlet velocity profile at every instant using

u(x, y, t)=
N∑

n=−N
Ũn ṽn(x, y)e

i
nt =U0ṽ0(x, y)+2
N∑

n=1
Re[Ũn ṽn(x, y)e

i
nt ]

The computed profiles at different instants are shown in Figure 18(a) and the exit velocity
profiles are shown in 18(b). Figure 19 shows the pulse velocity wave form.

Note that the gradient pressure waveform can also be evaluated. Let ũn be the solutions to the
boundary value problem (30)–(31). Then, ũn(− p̃z)n/(	�) is the solution to the boundary value
problem (24)–(25). Thus, we can write

U (t)=
+∞∑

n=−∞
Ũne

i
nt =
+∞∑

n=−∞
−( p̃z)n

�	
ũne

i
nt

From this we derive

( p̃z)n =−�	
Ũn

ũn
and pz(t)=−�	

+∞∑
n=−∞

Ũn

ũn
ei
n t .

The pressure gradient waveform at the inlet is shown in Figure 20.
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Figure 18. (a) Velocity pulse wave form and velocity profile at the inlet (colour of the line
corresponds to the instant indicated by the circle of the same colour) and (b) Outlet velocity vectors.

View this figure color online at [10.1002/cnm.1446].
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Figure 19. Velocity waveforms. Initial pulse at the inlet (K =1 dotted line), pulse formed by 24 harmonics
(solid red (K =1): almost covers the initial pulse), pulses at outlets (K =2 blue, K =3 green). The lines with
twice the mean velocity (maximal velocity in Poiseuille’s flow for an identical flow rate) are also shown.

View this figure color online at [10.1002/cnm.1446].

Figure 20. Pressure gradient waveform: red (inlet), blue, green (outlets).
View this figure color online at [10.1002/cnm.1446].

5.3. The flow rate and outlet velocity wave forms

To compute the flow rate at an inlet or outlet, we can use the following equations:

W (t)=
∫ ∫

�
u(x, y, t)dx dy=

∫ ∫
�

+∞∑
n=−∞

Ũn ṽne
i
nt =

+∞∑
n=−∞

Ũnw̃ne
i
nt (32)

w̃n =
∫ ∫

�
ṽn(x, y)dx dy (33)

Alternatively, it is also possible to expand flow rate W (t) using a Fourier series as:

W (t)=
+∞∑

n=−∞
W̃ne

i
nt , W̃n =
∫ T

0
W (t)e−i
nt , 
n = 2�

T
(34)
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Figure 21. Flow rate wave forms.

Comparing (32) and (34), we obtain the relationship between the axial velocity and the flow
rate harmonic complex amplitudes, i.e.

W̃n = Ũn w̃n (35)

This flow rate variation in time is shown in Figure 21.
Now, we consider the following problem. An axial waveform U inlet(t) is given and the flow

rate is divided into specified proportions beyond the bifurcation. If the flow rate at an outlet is
�outlet(<1) times the flow rate at the inlet, at every instant, find the axial velocity waveform at the
outlet Uoutlet(t). The following steps may be used to compute the outlet velocity:

(1) Compute the inlet axial velocity harmonics (=complex amplitudes)

Ũ inlet
n =

∫ T

0
U inlet(t)e−i
nt

(2) Compute the inlet flow rate harmonics

W̃ inlet
n = w̃inlet

n Ũ inlet
n where w̃inlet

n =
∫
�

ṽinletn (x, y)dx dy, ṽinletn (x, y)= ũinlet(x, y)

ũinlet(x inletc , yinletc )

where ũinlet(x, y) is the solution to the boundary value problem (Equations (30)–(31)) at the
inlet.

(3) Compute the outlet flow rate harmonics

W̃ outlet
n =�outletW̃ inlet

n

(4) Compute the outlet axial velocity harmonics

Ũoutlet
n = W̃ outlet

n

w̃outlet
n

=�outlet
w̃inlet
n Ũ inlet

n

w̃outlet
n

where

w̃outlet
n =

∫
�

ṽoutletn (x, y)dx dy, ṽoutletn (x, y)= ũoutlet(x, y)

ũoutlet(xoutletc , youtletc )

Note that ũoutlet(x, y) is the solution to the boundary value problem (Equations (30)–(31)) at
the outlet. Thus we need ṽinletn , ṽoutletn to compute w̃inlet

n , w̃outlet
n .
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Figure 22. Velocity profile at maximum flow rate, left: inlet, right: outlets.

The outlet velocity waveform at its axis is

Uoutlet(t)=
+∞∑

n=−∞
Ũoutlet
n ei
nt =�outlet

+∞∑
n=−∞

Ũ inlet
n

w̃inlet
n

w̃outlet
n

ei
nt (36)

Once the velocity wave form is computed, the corresponding outlet velocity profile can be
calculated as:

uoutlet(x, y, t)=
+∞∑

n=−∞
Ũoutlet
n ṽoutletn (x, y)ei
nt =�outlet

+∞∑
n=−∞

w̃inlet
n Ũ inlet

n

w̃outlet
n

ṽoutletn (x, y)ei
nt (37)

The calculated velocity profiles at the inlet and outlets are shown in Figure 22.

5.4. The wave form

In [97], more than 3000 recorded waveforms in carotid arteries have been analyzed. Finally,
two wave forms were presented: one as an average of all waveforms and another as a synthetic
waveform obtained by fitting a cubic spline from some selected critical points of the pulse. We
choose not to use them as they are (i) not periodic and (ii) after averaging, the pulse becomes
smoother. Therefore, we take the synthetic waveform and adjust its parameters to the pulse of 5
beats depicted in Figure 3(a) of [97]. As a result, we obtain a realistic maximal acceleration (about
3000cms−2) as shown in Figure 3(b) of [97].

5.5. Computing velocity directions at inlet and outlet

If the blood vessel cross-section varies significantly near an inlet or outlet, the wall element faces
may not be orthogonal to the inlet/outlet faces. Thus, if the velocity vectors on the inlet/outlet
surfaces are placed normal to the plane, some parasitic flow separation may occur near the
inlet/outlet. To avoid this, it may be beneficial to direct the near-wall vectors parallel to the walls
and then progressively make the velocity vectors perpendicular to the inlet/exit plane towards the
barycentre. To do this, we first compute the tangent vectors to the wall in all ridge nodes. To compute
tangents, we need to compute the normal vectors of the wall ridge nodes first (Equation (B2)).
The ridge node normals may be calculated as:

nwp = ∑
f ∈Fw

p

n̂ f , n̂wp = nwp
‖nwp‖ (38)

where Fw
p is a set of wall faces containing ridge point p. Let N̂k be a normal vector to the kth

outlet (which is under consideration). Then, we draw a vector twp orthogonal to n̂wp laying in the
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Figure 23. Velocity directions at an outlet: green—normal unit vectors to the wall, red—tangent unit
vectors along the wall, magenta—‘combed’ outlet velocity directions.

plane formed by span of vectors N̂k and n̂wp , i.e.

twp = N̂k− n̂wp (N̂k · n̂wp ), t̂wp = twp
‖twp‖ (39)

On all non-ridge outlet points, we set t̂p = N̂k initially. We then perform iterations analogous to
Laplace smoothing and identical to the combing of the normal vectors described previously. The
result of combing is presented in Figure 23. To prepare this picture, we made a special cut of the
mesh immediately after the stenosis (in the ICA), where the cross-section rapidly varies.

5.6. Flow solution

The incompressible Navier–Stokes equations governing flow in large arteries are given by Equa-
tions (20) and (21). With appropriate boundary and initial conditions, the system of equations is
closed. These equations can be solved in a variety of fashion. In the present work, we adopted
the explicit characteristic-based split (CBS) method [3, 55, 68–70, 72, 98–100]. The linear FEs are
used in the spatial discretization. In the explicit CBS scheme, the governing equations are solved
in three steps. They are:

Step 1: Intermediate momentum

(
�ũ
�t

+un .∇un
)

=	∇2un+�1 + �t

2
u·DRn (40)

where �ũ= ũ−un , ũ is an intermediate velocity field and Rn =un .∇un is the stabilizing charac-
teristic Galerkin term [101].

Step 2: Pressure calculation

(1−�2)

(
1

�2

)n �p

�t
−�t∇2 pn+�2 =−∇· ũ (41)

Step 3: Momentum correction

un+1− ũ
�t

=−�pn+�2 (42)

In the above equations �1 and �2 vary between 0 and 1 depending on whether equations are
treated explicitly, implicitly or semi-implicitly. All the results given in this work are generated by
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assuming �=�1=�2=0. The semi-discrete form of flow field equations (Equations (40)–(42)) is
integrated in space using the standard Galerkin FE method. For further details on the discretization
and solution methodology, refer to [68, 99].

6. FLOW RESULTS

In this section, analysis of flow in a severely stenosed carotid artery is presented. The geometry
used here is generated using the image segmentation method presented in Section 2, the surface
mesh used is obtained by employing all the techniques discussed in Section 3, the boundary
layer and the inner, unstructured volume meshes are generated using the approaches discussed
in Section 4. The transient flow boundary conditions are generated using the methods outlined
in Section 5. Finally, the fluid flow calculations are carried out using the algorithm presented in
Section 5.6. The accuracy of the transient fluid dynamics code employed in this work has been
previously verified on a number of problems, including biomedical cases [3, 40, 41, 70, 72, 100].
Therefore, demonstration of the accuracy of the scheme is not repeated here.

The carotid artery geometry used here was obtained from the Heart and Lung Centre, at Wolver-
hampton Hospital. The carotid artery contains a severe stenosis within the ICA immediately
downstream of the bifurcation. For the numerical simulation, the mesh is clipped at the mid-
height of the common carotid artery (CCA) and maximal lengths of both internal and external
carotid arteries (ECAs) are retained (Figure 8(a)). The final mesh is depicted in Figure 24. This
mesh consists of 4 126 777 linear tetrahedral elements and 708 191 nodes with 10 structured
boundary layers. The stenosis occludes approximately 65% of the ICA. The CCA and the ECA,
however, are typical healthy arteries. A flow division of 50–50% between ECA and ICA is
assumed. In normal circumstances, a flow division of 40–60% between ECA and ICA may be
used. Since the ICA is partially occluded in the geometry used here, we assumed a 50–50% flow
division.

To examine the complex flow patterns within the stenosed artery and bifurcation in greater
detail, the flow is visualized through a number of slices in Figure 25. Here, the velocity vectors
for the representative phases of the cardiac cycle (mid acceleration, peak flow, mid deceleration,
dicrotic notch) are shown. From the figure, it is clear that the stenosis has a strong influence on the
downstream flow. This is shown by the flow separation and recirculation between the bifurcation
and at least up to slice J. As a result, low WSS would be expected downstream of the stenosis,
marking a potential region of further plaque formation. This is in good agreement with Smedby
[102], who found that plaque was more likely to grow downstream of a stenosis. Within the CCA
and ICA, the flow at mid acceleration and peak flow is typically well distributed within the slice,

Figure 24. Mesh used for the computation.
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Figure 25. 3d velocity distribution within 13 slices (cm/s): (a) mid accl;
(b) peak; (c) mid decel; and (d) dicrotic notch.

Figure 26. Streamline velocity magnitude at eight cross sections within the ICA at mid acceleration
(cm/s): (a) slice F; (b) slice G; (c) slice H; (d) slice I; (e) slice J; (f) slice K; (g) slice L; and (h) slice M.

although in the ECA the flow is skewed towards the inner wall. It is during deceleration that the
skewed nature becomes more obvious, with larger velocity values found closer to the inner wall in
the ECA. To further establish the flow conditions within the ICA, the slices are now presented for
three time instances. The mid acceleration time instance in Figure 26, peak flow in Figure 27, and
during deceleration in Figure 28. From the three figures, it is possible to see the evolution of the
flow during systole. During the mid-acceleration stage, flow maintains a strong jet from slice F to
slice J, before it begins to diffuse and by slice M reattachment has occurred. In contrast, during
peak flow the length of the jet has extended such that it impacts the posterior wall and flow is
skewed towards this wall even in slice M. During peak flow, the predicted overall peak velocity
is 266cm/s within slice G and even in slice M, the velocity readily exceeds 200cm/s. Within
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Figure 27. Streamline velocity magnitude at eight cross sections within the ICA at peak flow (cm/s):
(a) slice F; (b) slice G; (c) slice H; (d) slice I; (e) slice J; (f) slice K; (g) slice L; and (h) slice M.

Figure 28. Streamline velocity magnitude at eight cross sections within the
ICA at mid deceleration (cm/s). (a) slice F; (b) slice G; (c) slice H; (d) slice I;

(e) slice J; (f) slice K; (g) slice L; and (h) slice M.

the deceleration phase, the influence of the jet is still strong, although secondary flow is observed
downstream of the stenosis.

Low WSS is one of the indicators of the location of atherogenesis [56, 60, 103–108]. The work
[109] defines the low shear stress as any value less than 5dyne/cm2 and this work also defines an
athero-protective region as the region where the WSS exceeds 25dyne/cm2. While instantaneous
WSS values can provide individual snapshots of potential atherogenesis and athero-protective
regions, the time-averaged WSS is employed to provide information over the full cardiac cycle.
The time-averaged WSS can be determined using

abs= 1

T

∫ T

0
‖ts‖dt . (43)
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Figure 29. Haemodynamic wall parameter distributions. (a) and (b) Time-averaged WSS (dyne/cm2);
(c) and (d) OSI. (a and c) Anterior and (b and d) posterior.

where ts= t−(t·n)n is the surface traction vector and the traction vector t is calculated from
the Cauchy stress tensor r and the surface normal vector n using t=r·n. The OSI, originally
introduced in [56] and adapted for general three dimensional use in [110], is also used in this
work to quantify the transient shear stress dynamics experienced by the endothelial cells. The OSI
is a ratio of the absolute WSS and the mean WSS. The mean WSS is calculated as the magni-
tude of the time-averaged surface traction vector mean=‖(1/T )∫ T

0 ts dt‖ and the OSI is defined
by as [110]:

OSI= 1

2

(
1− mean

abs

)
(44)

The logarithmic time-averaged WSS distribution is given in Figure 29 along with the OSI
distribution. As expected, the peak time-averaged WSS occurs within the ICA in the vicinity of
the flow divider. The predicted peak WSS of 805dyne/cm2 is exceptionally high and damaging.
Upstream of the stenosis apex lies a band of high time-averaged WSS, across the ICA (400–
500dyne/cm2). This is also greater than the threshold value of 315dyne/cm2 that according to
Holme et al. [111] was sufficient to induce platelet activation and enhanced platelet thrombus
formation. Immediately downstream of the stenosis lies a small region experiencing time-averaged
WSS of less than 5dyne/cm2 and a bigger region experiencing less than 10dyne/cm2. This
region is indicative of a potential location for further plaque formation and it corresponds to
the region experiencing flow separation. Away from the stenosis, majority of the ICA experi-
ences a WSS value less than 40dyne/cm2, although some regions experience values exceeding
100dyne/cm2 along the posterior wall. In the ECA, the time-averaged WSS values range between
20 and 50dyne/cm2. In contrast, approximately 20% of the CCA is predicted to experience
a time-averaged WSS of less than 5dyne/cm2 with the vast majority experiencing less than
25dyne/cm2.
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The OSI distribution indicates that the regions experiencing low time-averaged WSS in the CCA
are coincident with the elevated OSI values. In the ICA, the regions of elevated or high OSI are
extensive. A region extends from above the stenosis down the entire length of the inner wall to the
ICA outlet. Another region of elevated OSI extends from near the stenosis apex along the outer
wall of the ICA. In the ECA, only a small region experiences elevated OSI although this is located
distal to the flow divider along the outer wall which is reminiscent of the regions experiencing
low time-averaged WSS in 3 out of 4 of the carotids studied by Kaazempur-Mofrad et al. [105].
This region experiences time-averaged WSS of between 5 and 7dyne/cm2.

From the OSI distribution, it is clear that the disturbed flow is found within the ICA. With
the flow separation inducing a low time-averaged WSS region immediately downstream of the
stenosis, the potential for the stenosis to grow further in the downstream direction is high.
Several small regions within the CCA experience low time-averaged WSS and elevated OSI
making this a potential region of atheroma. The high time-averaged WSS values are also a poten-
tial issue, either through inducing further platelet deposition, thrombus formation or possible
rupture.

7. CONCLUSION

A patient-specific modelling framework was presented in detail and all the aspects of this framework
were thoroughly analysed. The major objective of the work was to present different aspects of the
modelling pipeline that need little user interaction. The image processing method presented is not
restricted by initialization invariance, and thus, easy to automate and need only an initial input
from the user. Since the image segmentation is an implicit deformable model, topology changes in
the blood vessel are automatically handled. As expected, generating a valid mesh for an accurate
flow calculation involves a large number of stages. Since the image processor outputs level set
functions, it was straightforward to use a advanced MC method to generate an initial surface mesh.
However, cosmetics and refinement/derefinement of the surface mesh should be carried out with
care to avoid any significant changes to the initial surface. The constrained Taubing smoothing
was a good example of the care the meshing requires. Every aspect of the meshing and related
techniques such as skeletonization, cropping, boundary layer meshing and general volume meshing
were carried out with great care. Although the meshing procedure presented was lengthy in nature,
it may be automated provided that there is a sufficient number of checks in the code. The flow
solution discussed captured all essential flow physics normally expected for such a geometry. Since
the solution was obtained on a static geometry the effects of wall motion on the mesh and flow
solution are unknown.

The authors are not underestimating the challenge of constructing a valid geometry and mesh
from a standard, clinical quality scan. For scans with poor quality and/or with aftereffects, the
deformable model-based image processing may need additional support from emerging statistical
methods such as ‘prior’ driven segmentation or graph-cuts. It is also important to investigate the
procedures for merging both image segmentation and meshing together into a single step. This
may be possible by evolving a surface mesh or collection of surface points, along with the evolving
deformable model. The flow solution needs to include the wall dynamics if the impact of the
wall motion is to be studied. To do this, establishing a solution pipeline from dynamic images
is essential. Such a pipeline would include image registration to determine the wall motion. The
registered motion should then be translated to a moving mesh and to a solution algorithm that can
deal with moving boundaries. This idea is not new but it has not been systematically investigated
in the literature.

APPENDIX A: FLOW CHART FOR THE PIPELINE

Figure A1 shows the proposed semi-automatic modelling pipeline for blood flow through arteries.
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Figure A1. Flow chart of the pipeline.

APPENDIX B: POINT PLACEMENT

An edge e={p1, p2} of a mesh is given and point p� is an arbitrary point on the edge. Here p1
and p2 are two contiguous nodes (Figure B1) of the mesh with coordinates p1,p2. Now, p� may
be expressed as (a similar method is proposed in [112]):

p� =p1(1−�)+p2�, 0���1. (B1)

In order to find the position of the point pS(�) on the mesh surface S, following steps are adopted
in this study.

1. Determine the normal direction to surface S at points p1,p2. We approximate it by averaging
unit normal vectors n̂ f to all faces containing this point (denote set of such faces as Fp).

np = ∑
f ∈Fp

n̂ f , n̂p = np

‖np‖ (B2)
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Figure B1. To the placing a new point onto the surface S.

Compute unit normal vectors n̂1 and n̂2 to the edge endpoints p1 and p2, respectively, by
Equation (B2). Thus, we have

n1 = ∑
f ∈Fp1

n̂ f , n̂1= n1
‖n1‖ (B3)

n2 = ∑
f ∈Fp2

n̂ f , n̂2= n2
‖n2‖ (B4)

2. Find the normal vector to the surface at the edge e. This can be calculated using

n= n̂1+ n̂2 (B5)

Vectors e=p2−p1 and n form a plane (the {e-n} plane) with the unit normal

b̂e= e×n
‖e×n‖ (B6)

3. Note that in general case n·e �=0. Therefore, we compute an unit vector n̂e lying in the {e−n}
plane orthogonally to the edge e as

n̂e= b̂e× t̂e (B7)

where t̂e=e/‖e‖ is a unit vector along the edge (Figure B1).
4. Compute projection of n̂1 and n̂2 onto the {e−n} plane, i.e.

n1 j = n̂1−(n̂1 · b̂e)b̂e, n̂2 j =n2−(n̂2 · b̂e)b̂e (B8)

5. Find equation for the curve in the {e−n} plane passing through points p1,p2 normal to
n1 j ,n2 j using,

pS(�)=p�+ n̂e Z(�). (B9)

The function Z(�) in the above equation is approximated by a cubic polynomial,

Z(�)= z0+z1�+z2�
2+z3�

3. (B10)

The equations for determination of z0, . . . , z3 can be obtained using the following procedure.
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The curve passes through p1,p2 at �=0 and �=1, respectively, and hence we have

z0=0 and z0+z1+z2+z3=0 (B11)

Compute the tangent vector to this curve (prime denotes derivative with respect to �) as:

t(�)=p′(�)=e+ n̂e z′(�) (B12)

Conditions of orthogonality at �=0 and �=1 are, respectively,

t(0)·n1 j =0 and t(1)·n2 j =0

which gives

(e ·n1 j )+(n̂e ·n1 j ) Z ′(0)= 0⇒ Z ′(0)=− e·n1 j
n̂e ·n1 j (B13)

(e ·n2 j )+(n̂e ·n2 j ) Z ′(1)= 0⇒ Z ′(1)=− e·n2 j
n̂e ·n2 j . (B14)

As soon as Z ′(0)= z1 and Z ′(1)= z1+2z2+3z3, we obtain a system of linear algebraic equations

z0 = 0

z0+z1+z2+z3 = 0

z1 = −Y1

z1+2z2+3z3 = −Y2

(B15)

where

Y1 = e n1 j
n̂e n1 j

(B16)

Y2 = e n2 j
n̂e n2 j

(B17)

The solution to (B15) is

z0=0, z1=−Y1, z2=2Y1+Y2, z3=−Y1−Y2 (B18)

Finally,

pS(�)= [p1(1−�)+p2�]+ n̂e[−Y1�+(2Y1+Y2)�
2−(Y1+Y2)�

3] (B19)

In the case of mid-point �=0.5, this formula turns into

pS(0.5)=p1/2+ n̂e[ 18Y2− 1
8Y1] (B20)

where p1/2= 1
2 (p1+p2) is the mid-point of the edge e.

APPENDIX C: TABLE OF WAVE FORM HARMONICS

The data listed here in Table CI are from [97]. Here, n is the number of harmonic components,

n is the circular frequency (in Hz) for every component (for T =0.92s), complex amplitudes Ũn
are given in polar form Ũn =|Ũn|exp{i arg(Ũn)}.
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Table CI. Flow harmonics.

n 
n/2� |Ũn | argŨn

0 0.00000 46.92637 0.00000
1 1.08755 21.52413 −1.17575
2 2.17510 17.61459 −1.63996
3 3.26264 12.14771 −2.41262
4 4.35019 6.76785 −2.59232
5 5.43774 9.01330 −2.86544
6 6.52529 8.01553 2.57922
7 7.61283 4.42009 2.02713
8 8.70038 3.57114 1.92789
9 9.78793 3.43206 1.38781

10 10.87548 2.32722 0.77936
11 11.96302 1.42878 0.62628
12 13.05057 1.58177 0.35280
13 14.13812 1.29647 −0.36075
14 15.22567 0.71691 −0.75220
15 16.31321 0.64928 −0.87985
16 17.40076 0.55891 −1.45062
17 18.48831 0.35657 −1.87787
18 19.57586 0.27657 −2.05181
19 20.66340 0.25372 −2.46117
20 21.75095 0.18541 −2.99914
21 22.83850 0.11847 3.00617
22 23.92605 0.10273 2.74036
23 25.01359 0.07701 2.23015
24 26.10114 0.04913 1.92394
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