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Abstract This chapter presents an image gradient based approach to perform 2D
and 3D deformable model segmentation using level set. The 2D method uses an
external force field that is based on magnetostatics and hypothesized magnetic
interactions between the active contour and object boundaries. The major contri-
bution of the method is that the interaction of its forces can greatly improve the
active contour in capturing complex geometries and dealing with difficult initial-
izations, weak edges and broken boundaries. This method is then generalized to
3D by reformulating its external force based on geometrical interactions between
the relative geometries of the deformable model and the object boundary charac-
terized by image gradient. The evolution of the deformable model is solved using
the level set method so that topological changes are handled automatically. The
relative geometrical configurations between the deformable model and the object
boundaries contribute to a dynamic vector force field that changes accordingly as
the deformable model evolves. The geometrically induced dynamic interaction force
has been shown to greatly improve the deformable model performance in acquir-
ing complex geometries and highly concave boundaries, and it gives the deformable
model a high invariancy in initialization configurations. The voxel interactions across
the whole image domain provide a global view of the object boundary representation,
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giving the external force a long attraction range. The bidirectionality of the external
force field allows the new deformable model to deal with arbitrary cross-boundary
initializations, and facilitates the handling of weak edges and broken boundaries.

1 Introduction

Depending on the assumption of how object boundary is described, active contours
can be classified into edge based [3, 14, 17, 25], region based [5, 7, 16], and hybrid
approaches [4, 9, 23]. For edge based methods, it is assumed that object boundaries
collocate with image intensity discontinuities which is widely adopted, for example,
in depth estimation from stereo [2]. Region based techniques, on the other hand,
assume that object boundaries collocate with discontinuities in regional character-
istics, such as color and texture. In other words, each object has its own distinctive
and continuous regional features.

Region based techniques have some obvious advantages over edge based methods
in that object boundary description based on image gradient can often be compro-
mised by noise and weak edges. They are also less sensitive to initialization, while
edge based active contours are prone to local minima. Thus, it is often desirable
for edge based techniques to carefully place the initial contour. This assumes that
the prior knowledge of the object location is available, which is not always true in
reality. Existing techniques can only reduce this initialization dependency to a very
limited extent. The balloon force [3] can only expand or shrink the contours. The
bidirectionality of GVF can sometimes cause the contours to collapse on approach
to the same boundary. Moreover, it has convergence issues caused by critical points.
[8, 17, 24]. It is evidently clear that initialization invariance is particularly difficult
to achieve for edge based methods. More recent attempts, such as [8, 12, 14, 17],
showed promising but limited success.

In this chapter, we present an image gradient based approach to perform 2D
and 3D deformable model segmentation using level set. Section 2 presents the 2D
method which uses an external force field that is based on magnetostatics and hypoth-
esized magnetic interactions between the active contour and object boundaries. The
major contribution of the method is that the interaction of its forces can greatly
improve the active contour in capturing complex geometries and dealing with dif-
ficult initializations, weak edges and broken boundaries. This method is then gen-
eralized to 3D in Sect. 3 by reformulating its external force based on geometrical
interactions between the relative geometries of the deformable model and the object
boundary characterized by image gradient. The relative geometrical configurations
between the deformable model and the object boundaries contribute to a dynamic
vector force field that changes accordingly as the deformable model evolves. Experi-
mental results are shown in Sect. 4. The proposed dynamic interaction force has been
shown to greatly improve the deformable model performance in acquiring complex
geometries and highly concave boundaries, and it gives the deformable model a high
invariancy in initialization configurations. The voxel interactions across the whole
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image domain provide a global view of the object boundary representation, giving
the external force a long attraction range. The bidirectionality of the external force
field allows the new deformable model to deal with arbitrary cross-boundary initial-
izations, and facilitates the handling of weak edges and broken boundaries.

2 MAC Model: A 2D Approach

Fittings based on local intensity discontinuity can often lead to undesired local min-
ima. The CPM [12] assigns opposite charges to edges and free particles so that the
particles are pulled towards edges while repelling each other. This global interaction
provides much freedom of initialization. However, particles on weak edge can be
gradually pulled towards neighboring strong edges, resulting in broken boundaries.
Particle addition and deletion and contour reconstruction can also be difficult in
practice.

Instead of assigning fixed charges, we allow the charges flow through the edges.
These flows of charges will then generate a magnetic field. The active contour, car-
rying similar flow of charges, will be attracted towards the edges under this magnetic
influence. Without losing generality, let us consider the image plane as a 2D plane
in a 3D space whose origin coincides with the origin of the image coordinates.
Additionally, the third dimension of this 3D space is considered perpendicular to the
image plane.

The direction of the currents, flows of charges, running through object boundary
can be estimated based on edge orientation, which can be conveniently obtained by a
90◦ rotation in the image plane of the normalized gradient vectors ( Î x , Î y), where I
denotes an image. Let x denote a point in the image domain. Thus, the object boundary
current direction, O(x), can be estimated as: O(x) = (−1)λ(− Î y(x), Î x (x), 0),
where λ = 1 gives an anti-clockwise rotation in the image coordinates, and λ = 2
provides a clockwise rotation. However, we show later by using the proposed level set
updating scheme different λ values lead to the same result. Since the active contour
is embedded in a signed distance function, the direction of current for the contour,
denoted as υ, can be similarly obtained by rotating the gradient vector ∇Φ of the
level set function. Similar to O, υ is also three dimensional and lies in the image
domain, i.e. υ(x) = (−Φ̂y(x), Φ̂x (x), 0).

Let f (x) be the magnitude of edge pixel and the magnitude of boundary current
be proportional to edge strength, that is, the electric current on object boundary is
defined as f (x)O(x). The magnetic flux B(x) generated by gradient vectors at each
pixel position x can then be computed as:

B(x) ∝
∑

s∈S,s �=x

f (s)O(s) × R̂xs

R2
xs

, (1)
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where s denotes an edge pixel position, S is the set containing all the edge pixel
positions across the image, R̂xs denotes a 3D unit vector from x to s in the image
plane, and Rxs is the distance between them. Thresholding can be applied to remove
some erroneous edge pixels with very small gradient magnitude [12, 24]. The active
contour is assigned with unit magnitude of electric current. The force imposed on it
can be derived as:

F(x) ∝ υ(x) × B(x). (2)

From (1) and (2), we can see that B intersects the image plane perpendicularly and F
is always perpendicular to both υ and B. Thus, F also lies in the image domain and
its third element equals to zero. For simplicity, from now on, we shall ignore its third
dimensional component and denote F(x) as a 2D vector field in the image domain.
The basic model can then be formulated as:

dC

dt
= αg(x)κn̂ + (1 − α)(F(x) · n̂)n̂, (3)

where g(x) = 1/(1 + f (x)), κ denotes the curvature, and n̂ is inward unit normal.
Its level set representation then takes this form:

∂Φ

∂t
= αg(x)∇ ·

( ∇Φ

|∇Φ|
)

|∇Φ| − (1 − α)F(x) · ∇Φ. (4)

We can see from (1) and (2) that the image force is derived from global inter-
actions among rotated gradient vectors, i.e. f (x)O(x). Thus, it is more robust than
fittings based on local gradient towards weak edges (where f (x) is small) and noise
(where O(x) is locally inconsistent). It is worth noting, however, that general contrast
consistency along the object boundaries is important to the model. Large contrast
variation can disrupt the force field, e.g. half of the object appears brighter than
background and the other half appears to be darker. However, this does not mean that
the entire object has to be brighter or darker than background. Those regions away
from object boundary can be continuously varying in intensity. The model also can
tolerate a fair amount of local contrast inconsistency, in the same way as to image
noise and weak/broken edges.

As aforementioned, due to cross product computation the external force, F,
is always perpendicular to υ which is tangent to the contour, i.e. the external force is
imposed along the normal direction. Note the internal force due to curvature flow is
enforced in the inward normal direction. Thus, the total force is always perpendicular
to active contour. In other words, it dynamically updates itself according to contour
evolution to push and pull the contours along the normal direction until they reach
object boundaries where forces from both sides are in balance. As a result, the prop-
agating contour will not suffer from those convergence issues related to static force
fields, such as GVF, in which evolving contours may become tangent to underly-
ing force vectors resulting in false convergence. This force field is also significantly
different from others used in edge based methods. For example, in CPM, the force
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Fig. 1 Preventing contour collapsing. a Two contours, C1 and C2, are placed on each side of an
object boundary with current directions indicated by arrows. Contour C1 is attracted by the object
boundary and expands itself in the outward normal direction. It eventually will wrap around and
capture the object boundary. Contour C2 however is repelled and forced to shrink in the inward
normal direction. Thus, two contours will not collapse to each other. b Similar to (a), however
contour C1 is placed across the object boundary. Those contour segments of C1 that are inside
object boundary will be pulled towards object boundary and the rest of contour C1 will expand
and wrap around the object boundary. The segments inside object boundary and outside will not
collapse to each other. c The object in this case contains an internal boundary. The behavior of C1
and C2 is similar to that in (a). Contour C3 will expand itself to capture the internal boundary. Three
contours will not collapse to each other, while capturing both boundaries. d Contours C1 and C2 are
now initialized across external and internal boundaries, respectively. The behavior of C1 is similar
to that in (b). The contour segments of C2 that are inside the object (gray area) will be attracted to
the object internal boundary that is initially inside contour C2. The other contour segments of C2
will expand to capture the rest internal boundaries. No contour collapsing will occur, either. GVF
contours, as an example, will collapse to each other in all above scenarios

between an edge pixel s and an infinitesimal contour segment c lies in a straight line
between these two, regardless the orientation of the contour segment. In our model,
the orientation of the edge pixel and the contour segment also have influence on the
resulting force interaction. This ability to adapt is very important since it ensures the
active contour, once initialized, overcome deep concavities and narrow regions to
reach object boundaries (Fig. 1).

By incorporating (2), Eq. (3) can be re-written as:

dC

dt
= αg(x)κn̂ + (1 − α)

(
υ(x) × B(x) · (n̂, 0)

)
n̂ (5)

= αg(x)κn̂ + (1 − α)
(
B(x) · ((n̂, 0) × υ(x))

)
n̂.

The external force in the second term is in fact a projection of the magnetic flux
onto a binormal unit vector which is computed from a cross product of the contour
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inward normal and its tangent vector. A positive projection will force the contour
to expand and a negative projection will shrink the contour, which acts in a similar
way as what a region indication function does in a region based approach, however,
this is derived from the edge based assumption. Thus, an edge can attract or push
a contour which may lie either side of the edge. However, this bidirectionality is
fundamentally different from that in, for example, GVF. In GVF, the force imposed
on the contour is independent of the contour itself, which can cause the contours to
collapse to each other when reaching to the same object boundary. For the proposed
method, the force is related to both the image gradient and the contour (which can
be clearly seen from Eq. (5)). It has the ability to prevent the contour from reaching
to the same boundary and disappearing after merging together.

In [24], we proposed to perform nonlinear diffusion of the magnetic field in order
to overcome noise interference when necessary. An edge saliency measure can be
added to the weighting function in order to better preserve the edges [22]. Let B(x)

denote the signed magnitude of B(x). The diffused field B̂(x) is obtained by solving:

dB

dt
(x) = p(B(x))∇2B(x) − q(B(x))(B(x) − B(x)), (6)

where p(B(x)) = e− |B(x)|S (x)
K , q(.) = 1 − p(.), and S (.) is a n edge saliency

measure which is measured based on edge strength and orientation coherency, i.e.
S (x) = f (x)v(x) where v(.) is the variance of orientation in a local neighborhood,
e.g. 9 × 9 as used here. More sophisticated saliency measures, e.g. [11], can be
used. Weighting the flux magnitude with S (.) further ensures as little diffusion as
possible at object boundaries, while areas lack of consistent support from edges result
in substantial diffusion.

3 Extension to 3D

Shape segmentation from volumetric data has an important role in applications
such as medical image analysis. Volumetric image segmentation remains an intri-
cate process, due to the complexity and variability of image data and shapes (i.e.
anatomical structures). There have been applications of simple techniques such as
thresholding and region growing in the extraction of 3D objects from volumetric
images [20, 21]. However, these techniques are very sensitive to noise and inten-
sity inhomogeneities which exist in real images, and often produce leakages and
regions which are not contiguous. Statistical approaches [10, 19] are also used to
identify different tissue structures from medical images. It usually involves manual
interaction to segment images in order to obtain a sufficiently large set of training
samples. Such strategies are often restricted to problems where there is sufficient
prior knowledge about the shape or appearance variations of the relevant structures.
Also, the use of the same training set for a large number of image scans may lead
to biased results that do not take sufficient consideration of the variability within
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Fig. 2 Relative position and orientation between geometries in 2D and 3D

individuals. Atlas based approaches perform segmentation based on image registra-
tion techniques [15], whereby an image can be segmented by finding a transformation
that maps a template image to the target image. It is however generally difficult for
atlas based techniques to accurately extract complex geometries such as those from
volumetric medical images due to the variability of anatomical structures.

The external force field presented previously is based on the hypothesized mag-
netic force between the active contour and object boundaries. This formulation can be
applied directly in the magnetostatic active contour to compute the magnetic field and
force required to draw the active contour towards object boundaries in 2D images.
This image gradient based method showed significant improvements on conver-
gence issues, e.g. reaching deep concavities, and in handling weak edges and broken
boundaries. When applying the analogy directly to deformable modeling, it requires
estimation of tangent vectors for the deformable contours, which is convenient in 2D
case, however, not possible in 3D. Our approach is to define a novel external force
field that is based on hypothesized geometrically induced interactions between the
relative geometries of the deformable model and the object boundaries (characterized
by image gradients). In other words, the magnitude and direction of the interaction
forces are based on the relative position and orientation between the geometries of the
deformable model and image object boundaries, and hence, it is called the geometric
potential force (GPF) field [27]. The bidirectionality of the new external force field
can facilitate arbitrary cross-boundary initialization, which is a very useful feature to
have, especially in the segmentation of complex geometries in 3D. It also improves
the performance of the deformable model in handling weak edges. In addition, the
proposed external force field is dynamic in nature as it changes according to the
relative position and orientation between the evolving deformable model and object
boundary. This GPF force however is in fact a 3D extension of the 2D MAC model.

3.1 Geometric Potential Force

First, consider a deformable contour C and an ideal object boundary C ′ in the image
plane (see Fig. 2). Let dl and dl ′ denote the infinitesimal elements of contour C
and object boundary C ′, respectively. In the existing force field based models such
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as [13, 26], the interaction between dl and dl ′ is inversely proportional to the distance
separating these two elements and the derived force lies in a straight line between
them. They do not take into account the local geometry of the deformable contour C
or object boundary C ′. We propose to incorporate the mutual location and orientation
of these elements.

Let x and x′ denote the positions of elements dl and dl ′, respectively. Thus,
rxx′ = x − x′ is their mutual location of those two elements, rxx′ = |x − x′| is the
distance between them, and r̂xx′ = (x−x′)/rxx′ is the unit vector pointing dl from dl ′.
The directions of these elements can be represented by their unit tangent vectors t̂ and
t̂′. However, a unique tangent vector is no longer available for infinitesimal surface
elements in 3D. Thus, we use unit outward normal vectors n̂ and n̂′ to characterize
the orientations of these elements instead (see Fig. 2). In 2D, they are simply 90◦
rotated tangent vectors.

We are now ready to introduce the hypothesized interaction force dF dl which
acts on element dl by virtue of the hypothesized force field induced by element
dl ′. It is desirable to combine the element orientation vectors and distance vector
in deriving the force. We propose a simple but effective combination of these three
vectors as n̂ (r̂xx′ · n̂′), unlike CPM [12] as an example where only the distance
vector r̂xx′ is used. The multiplication of contour normal n̂ ensures that the force is
always imposed in the normal direction so that the deformable model does not suffer
from convergence issues (i.e. stationary points, saddle points and extreme boundary
concavities), which are often associated with other vector force field based methods
such as GVF [25]. The dot product of the object boundary element normal with the
distance vector allows the force on the contour in the normal direction to diminish as
the contour reaches the object boundary. Similar to other physics-inspired force field,
it is also desirable to decay the force interaction with the increase of distance between
the elements, i.e. the force is designed proportional to n̂ (r̂xx′ · n̂′)/rλ

xx′ where λ > 0.
Thus, the contribution of element dl ′ of object boundary C ′ to the total force acting
on dl in accordance with their distance and mutual orientation can be formulated as

dF dl = n̂ dG dl, dG =
(

r̂xx′

rλ
xx′

· n̂′
)

dl ′ (7)

where F is defined as force per unit length, dG is the contribution of element dl ′
of object boundary C ′ into the scalar field G(x), which can be considered as an
intermediate potential field, and λ is a positive constant that affects the magnitude
of the interaction force based on the distance between the elements. In our study,
we obtained the best results when λ coincides with the dimension of the image
data, i.e. λ = 2 in the 2D case. Furthermore, we show later that when λ coincides
with data dimension in 2D, the proposed force interaction has an explicit link to the
magnetostatics theory and thus the spatial decay of the magnitude of the interaction
force is analogous to that of the magnetic field.

As shown in (7), the computation of the new force field only requires unit normal
vectors and relative position of the two elements, which is convenient to acquire.
Thus, this new force field can be easily extended to higher dimensions, e.g. 3D. Let dA
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belong to the deformable surface S whereas dA′ belongs to the object boundary S′
(see Fig. 2). The generalized 3D version of force dF dA acting between these two
area elements can be readily given as

dF dA = n̂ dG dA, dG =
(

r̂xx′

rλ
xx′

· n̂′
)

dA′ (8)

where F is defined as force per unit area, G is the corresponding 3D potential field,
n̂ and n′ are unit surface normals of the deformable model and object boundary,
respectively, and λ = 3. Again, the magnitude and direction of the induced force F is
handled intrinsically by the relative position and orientation between the geometries
of the deformable model determined by the evolving surface S and object boundary
determined by S′. Since the force is derived geometrically and its interaction is a
function of inverse distance, we name it geometric potential force (GPF).

3.2 GPF Deformable Model

The GPF force in (8) is derived using geometrical information from ideal object
boundaries. Next, we extend this to deal with real image data and formulate it in
3D deformable modelling. In this work, we adopt an edge based approach, that is
using image intensity discontinuity to estimate the presence and strength of object
boundaries.

Let I (x) denote the 3D image, where x is a voxel location in the image domain.
Temporarily, we consider x as a continuously varying point. One may treat this as
an interpolation between voxel grid points to obtain a continuous image I (x). To
compute the force acting on dA, we first compute the total potential field for an
arbitrary point x:

G(x) = P.V .
�

�

�

�

∫∫

S′
W (x′)

(
r̂xx′

rλ
xx′

· n̂′(x′)
)

dA′. (9)

where W (·) is a weighting function that is defined later, and P.V . means ‘Principal
Value’: the contribution of infinitesimal circular vicinity of singular point x′ = x into
the integral is disregarded, which occurs when surfaces S and S′ intersect.

First, we consider the case, in which S′ can be defined rigorously on an ideal
object O , i.e. S′ = ∂O . The object O can be specified by a binary image:

I (x) =
{

I0 x ∈ O
0 x /∈ O,

(10)

where I0 is a nonzero constant. For such an image, ∇I is infinite on S′ and can be
represented through the 3D Dirac’s delta as
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∇I (x) = ΔI δ(x − x′) n̂′(x′) (11)

where ΔI is the jump in function I (x) at the boundary of O; x′ ∈ S′ and n̂′(x′)
is the unit normal vector to the surface S′. Setting W equal to the jump of I at the
boundary, i.e. W = ΔI , we can re-write (9) as a volume integral

G(x) = P.V .

∫∫∫

Ω

W (x′)
(

r̂xx′′

rλ
xx′′

· n̂′(x′)
)

δ(x′′ − x′) dV ′′ (12)

Here, x′′ is the integration variable and dV ′′ denotes a volume element. The
Dirac’s delta is used to obtain the area element from the volume element, i.e.
d A′ → δ(x′′ − x′) dV ′′.

Taking into account (11) and W = ΔI , we can replace the product W (x′) n̂′(x′)
δ(x′′ − x′) in the integral of (12) by ∇I (x′′). Thus, (12) can be re-formulated as

G(x) = P.V .

∫∫∫

Ω

(
r̂xx′′

rλ
xx′′

· ∇I (x′′)
)

dV ′′. (13)

It is now readily generalizable to real 3D data.
In real images, ∇ I is a smooth function reaching maximum magnitude in the

vicinity of the object boundary. The natural generalization of (13) is to substitute
Dirac’s delta by this smoothed function analog into (13), i.e. W (x′) n̂′(x′) δ(x′′ −x′)
→ ∇ I (x′′), where I denotes a real image. The geometric potential field in a contin-
uous form can then be formulated as

G(x) = P.V .

∫∫∫

Ω

(
r̂xx′

rλ
xx′

· ∇ I (x′)
)

dV ′. (14)

Note, due to the substitution of W (x′) n̂′(x′) δ(x′′ − x′) by ∇ I (x′′), the x′ defined on
the ideal surface S′ is no longer needed. Hence, the notation is simplified by replacing
the integral variable x′′ with x′. Finally, its discrete form can be written as

G(x) =
∑

x′∈Ω,x′ �=x

(
r̂xx′

rλ
xx′

· ∇ I (x′)
)

. (15)

This can be considered as a convolution of the image gradient with the vector kernel
Kλ(x) ⎧

⎪⎪⎨

⎪⎪⎩

Kλ(x) = P.V . x̂
|x|λ = P.V . x

|x|λ+1

G = Kλ ∗ ∇ I = ∫∫∫

Ω

(
Kλ(x−x′) · ∇ I (x′)

)
dV ′ (16)
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which can be computed efficiently using the fast Fourier transform (FFT). Note that
the potential field G is computed as a convolution of two vector functions.

The total force acting on the unit area element of the deformable surface S is
thus given as F = n̂ G(x). where n̂ is the outward unit normal of level set surface.
Note, an inward normal can also be used, i.e. F = −n̂ G(x), which will result in
opposite deformable model propagation since the force field is exactly in the opposite
direction. Hence, the force can be re-written in a generalized form:

F = J n̂ G(x). (17)

where J is a constant taking values of ±1. Note this is different from the constant
force in the geodesic model, where the force is monotonically expanding or shrinking.
The sign convention ± is merely used to determine whether outward and inward
normals of the deformable surface are considered.

The general contrast consistency along the object boundaries however is important
to the model. Large contrast variation can disrupt the force field, e.g. half of the object
appears brighter than background and the other half appears to be darker. However,
this does not mean that the entire object has to be brighter or darker than background.
Those regions away from object boundary can be continuously varying in intensity.

Once the force field F(x) is derived from the hypothesized interactions based on
the relative geometries of the deformable model and object boundary is determined,
the evolution of the deformable model S(x, t) under this GPF field can be given as

dS

dt
= (F · n̂)n̂. (18)

Since surface smoothing is usually desirable, the mean curvature flow can be incor-
porated and the complete GPF deformable model evolution can be formulated as

dS

dt
= α g κ n̂ + (1 − α)(F · n̂)n̂ (19)

where g(x) = 1/(1 + |∇ I |) is the edge stopping function. Note that in our case,
the flow of F is directed by definition normal to surface S, therefore (F · n̂)n̂ = F.
Notation (F · n̂)n̂ is inherited from the traditional methods, e.g. GGVF. The level set
representation of the proposed deformable model based on GPF can then be written as

∂Φ

∂t
= α g κ |∇Φ| − (1 − α)(F · ∇Φ) (20)

where Φ(t, x) is the level set function, such that the deformable surface S is defined
as Φ(t, x) = 0. Note, the GPF force field is defined on the deformable surface, which
is implicitly embedded in the level set function, i.e. the force field computed at the
propagating front needs to be extended across the computational domain so that the
full level set function can be continuously evolved. Although direct force extension
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method such as [1] can be used, we can conveniently compute the GPF forces for
each level set so that this external force is extended to the entire level set function.

The GPF deformable model differs from conventional edge based models by
utilizing edge voxel interactions across the whole image, thus providing a more
global view of the object boundary. The magnitude of the potential field strength
at each image location x is based on the relative position of x with all other voxels
in the image. Therefore, voxels at homogeneous regions will also have a non-zero
potential field strength. In this way, surfaces which are initialized far away from
object boundaries can propagate towards the image edges and converge.

As shown in (8), the dot product r̂xx′ · n̂′ can be both positive and negative,
depending on the relative configurations of the geometries between the deformable
model and the image boundaries, thus giving a bidirectional vector force field. This
useful bidirectionality facilitates arbitrary cross boundary initializations, as its force
vectors point towards the object boundary from both ways. This also allows the model
to stabilize the deformable surfaces at weak edges, thus preventing leakage.

The physics-based deformable models described in [12, 13, 18, 26, 28] all use a
kernel based function to compute the external force field with kernels being decreas-
ing functions of distance from the origin. They are in effect equivalent to the external
force derived in [13] based on convolving a vector field with the edge map. For
example, the external force in [12] can be represented as a convolution with the same
kernel Kλ (16) with λ = 2:

Fa(x) = q

4πε

(
Kλ ∗ |∇ I |), Fr (x) = q2

4πε

(
Kλ ∗ 1Ω

)
(21)

where 1Ω(x) is a function equal to 1 when x ∈ Ω and 0 otherwise. The repelling
force is largely imposed in the tangential direction, which has very limited effect on
changing the shape or topology of the deformable model. Thus, it is not necessary in
our model. In order to compare with the dominant attraction force Fa , we combine
(16) and (17) and rewrite the GPF force as

FGPF = J n̂
(
Kλ ∗ ∇ I

)
(22)

It is clear that the GPF force is directed by the normal of the deformable model, i.e.
it does not contain the tangential ‘parasitic’ component in contrast to the Fa force.
Moreover, the proposed GPF takes into account edge orientations, as well as edge
strength (the convolution in (21) is based on a convolution of a vector function on a
scalar field; whereas in (22) it is carried out on a vector field).

4 Experimental Results

In this section, we present experimental results on both synthetic and real world image
data. The comparative analysis is performed using several classical and state-of-the-
art methods, which consists of image gradient based and region based methods.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3 Comparing shape recovery on synthetic images (by columns)—a initial snakes, b recovered
shape using DVF, c geodesic, d GGVF, e GeoGGVF, f CVF, and g proposed MAC snakes

In particular, the geodesic model is included as a representative of conventional local
edge fitting based method which is based on monotonically expanding or shrinking
force. The various vector field based models, such as [12, 13, 18, 28], have very
similar convergence and initialization dependence behavior to the GVF or GGVF,
since their dominant external forces are static as discussed earlier.

Figure 3 shows comparative results of 2D segmentation on synthetic data. Even
though these images have clear (ideal) boundary and the active contour models are all
using level set representation, convergence issues still arise. The solution becomes
particularly challenging under certain initialization conditions. The first two rows
in Fig. 3 show comparative recovered shapes for the DVF [6], geodesic, GGVF,
GeoGGVF, CVF, and MAC models in columns (b) to (g) respectively. When the initial
contour was placed outside the four discs (first row), only the geodesic snake and
MAC could accurately recover them. However, in a more arbitrary cross-boundary
initialization case (second row), only MAC was successful. Next, we consider the
recovery of an acute concavity as shown in the third and fourth rows in Fig. 3, again
with different initialization conditions. For the DVF, GGVF, and GeoGGVF snakes,
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Fig. 4 Comparative study—results by row: a DVF, b geodesic, c GGVF, d GeoGGVF, e CPM,
f MAC

their stationary vector force fields exhibit stationary and saddle points, e.g. the saddle
point at the entrance of the concave shape which prevents the snake converging to
the object boundaries. Again, given an arbitrary cross-boundary initialization, the
geodesic snake suffers severe problems and the constriction on the left side of the
concave shape causes difficulties for the CVF active contour. MAC was the only
active contour model that could successfully recover the shape in both initializations.
When dealing with complex geometries, such as the swirl shape and the text “PAMI”
shown in the last two rows in Fig. 3, MAC was the only model that managed to fully
recover the shapes. The latter example further illustrates MAC’s ability in dealing
with multiple objects with complex topology.
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Fig. 5 GPF: first row from left to right—input image and initial deformable model, corresponding
edge map and computed geometric potential field, second row—initial and evolving deformable
models, and the third row—associated GPF vector field

Figure 4 shows a brain MRI image and its comparative segmentation results.
For the active contour models, the snake was initialized across the left and right
hemispheres, while for the particle model a grid of charges was used. The static
vector force based methods (DVF, GGVF, and GeoGGVF) failed to evolve through
the tortuous structures and collapsed to nearby edges as shown in rows (a), (c), and
(d). The geodesic snake, in row (b), stepped across the weak edges but also failed
to localize the boundaries. The free charges of CPM initially reached most of the
object boundaries, but later failed to stabilize at weaker edges resulting in incomplete
boundary description (row (e)). The MAC contours succeeded in evolving through
the narrow and twisted structures as shown in row (f). Multiple regions were captured
simultaneously.

Next, we demonstrate the results of the 3D model. The first row of Fig. 5
shows a substantially blurred image with linearly varying intensity, and the cor-
responding edge map and computed geometric potential field. In addition, as the
deformable model evolves, the unit vector r̂xx′ changes accordingly based on the
relative geometries. This contributes to a vector force field that changes dynamically
as the deformable model evolves, as depicted in the second row of Fig. 5. Therefore,
the proposed model has much better invariance to its initial position and can deal
with complex geometries and extreme boundary concavities.
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Fig. 6 Shape recovery from synthetic images: a isosurfaces of various shapes to be recovered from
synthetic images (128×128×128), b initial deformable models (yellow) with input shapes (blue,
semi-transparent), c recovered shape using geodesic, d GGVF, e proposed GPF

Figure 6 shows comparative results of extracting 3D shapes. The first column
shows the shape extraction results for the six-ellipsoids problem. Given an arbitrary
initialization across all the ellipsoids, only GPF could accurately recover the shapes.
The geodesic model, given the same initialization configuration, simply expanded
outwards and reached the image borders. This is due to the fact that the geodesic
model cannot handle cross-boundary initialization as the constant pressure term can
only monotonically shrink or expand the contour. Although the bidirectionality of
the GGVF model enables it to handle cross-boundary initialization, the saddle and
stationary points in this example prevented GGVF from extracting the ellipsoids. The
second and third columns show the geometrical object to be recovered consists of two
flattened ellipsoids connected by a narrowing tube with a constriction in the middle.
With the deformable models initialized inside one of the ellipsoid, only GPF could
propagate through the narrowing tube to accurately extract the shape. Also, with a
more arbitrary cross-boundary initialization, GPF was the only successful model to
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Fig. 7 Segmentation of cerebral arterial structure using different deformable models—first row
geodesic, second row GGVF, third row Chan-Vese, fourth row proposed GPF

extract the exact shape. The fourth and fifth columns in Fig. 6 compares the shape
extraction results on a complex geometry with different initialization configurations.
When the initial surface is placed inside one of the sphere of the molecular structure,
GPF is the only model that managed to extract the geometry successfully. These
examples demonstrate the superior performance of the GPF deformable model in
resolving deep concavities and handling complex geometries and topologies. This
is mainly due to the dynamic nature of the vector force field. In addition, we show
that the bidirectionality of the new force field gives GPF the flexibility to deal with
arbitrary cross-initializations.
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Fig. 8 More examples of the proposed method on real 3D medical data

Figure 7 shows comparative results on the segmentation of cerebral arterial struc-
ture from magnetic resonance (MR) imaging. Two initial surfaces are placed inside
the object of interest for the geodesic model, and across the object boundaries for
GGVF, Chan-Vese and GPF. The geodesic model cannot propagate through the nar-
row tubular structures, and leaks out at weak object boundaries during the evolution.
The GGVF model collapsed to the nearby object edges due to the saddle or sta-
tionary points inside the narrow image structures. In contrast, the Chan-Vese and
GPF models are able to propagate through the long tubular structures to extract
the cerebral arterial geometry. Further examples of the 3D method on real data are
given in Fig. 8. The examples above have shown that the GPF deformable model can
efficiently segment thin and complex structures, and can handle inhomogeneity in
image intensities, noises and weak edges, which are often present in real images.
The improvements achieved by the proposed method, as demonstrated extensively
in various examples, are significant and consistent.

5 Conclusions

We have presented two image gradient based deformable models that are both based
on global image gradient vector integrations, instead of conventional local edge
fitting. The 2D MAC model can attract the contour into deep concave regions and
does not suffer from saddle point and stationary point problems. Our comparative
study showed significant improvement in initialization invariancy and convergence
capability on existing state-of-the-art techniques. Its extension to 3D, known as
the geometric potential force (GPF) model, utilizes pixel or voxel interactions across
the whole image. The derived geometric potential field is thus more informative
and exhibits spatial and structural characteristics of image objects which are more
coherent than image cues that are based solely on local edge or regional information.
This makes the model more robust towards image noise and weak object edges. The
relativity between geometries gives the proposed deformable model its distinctive
bidirectionality, which facilitates the handling of arbitrary cross-boundary initializa-
tions. The straightforward generalization of the proposed model to higher dimensions
allows the framework to be applied on N-dimensional images, and opens up to a wide
range of potential applications.
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