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Abstract— Cross-resolution person re-identification (CRReID)
is a challenging and practical problem that involves matching
low-resolution (LR) query identity images against high-resolution
(HR) gallery images. Query images often suffer from resolution
degradation due to the different capturing conditions from real-
world cameras. State-of-the-art solutions for CRReID either learn
a resolution-invariant representation or adopt a super-resolution
(SR) module to recover the missing information from the LR
query. In this paper, we propose an alternative SR-free paradigm
to directly compare HR and LR images via a dynamic metric
that is adaptive to the resolution of a query image. We realize
this idea by learning resolution-adaptive representations for
cross-resolution comparison. We propose two resolution-adaptive
mechanisms to achieve this. The first mechanism encodes the
resolution specifics into different subvectors in the penultimate
layer of the deep neural network, creating a varying-length
representation. To better extract resolution-dependent informa-
tion, we further propose to learn resolution-adaptive masks for
intermediate residual feature blocks. A novel progressive learning
strategy is proposed to train those masks properly. These two
mechanisms are combined to boost the performance of CRReID.
Experimental results show that the proposed method outperforms
existing approaches and achieves state-of-the-art performance on
multiple CRReID benchmarks.

Index Terms— Cross resolution person re-identification,
resolution-adaptive representations, resolution-adaptive masking.
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I. INTRODUCTION

PERSON re-identification (re-ID) is a critical task that
involves matching the image of the same person across

different images captured by various cameras. The task is
gaining increasing attention due to its wide range of appli-
cations in person tracking [1], surveillance, and forensics [2].
Existing works in re-ID focus on developing feature repre-
sentations or metrics that can handle image variations due
to illumination changes or occlusions [3], [4]. However, all
these methods assume that both the query and gallery images
have similar high resolutions. In real-world scenarios, this
assumption may not hold true, as image resolution may vary
due to different distances between cameras and the subject of
interest. For example, images captured by surveillance cameras
(i.e., the query image) are generally in low resolution (LR),
whereas the gallery images are typically in high resolution
(HR). Directly matching an LR query against an HR gallery
usually leads to inferior performance. This gives rise to the
problem of cross-resolution person re-identification (CRReID).

To address the CRReID problem, state-of-the-art (SOTA)
methods would employ either methods [5], [6], [7], [8], [9]
with super-resolution (SR) modules or methods [5], [6], [10]
that learn resolution-invariant features. The former first recov-
ers the missing details of LR queries before performing the
CRReID practice. The basic assumption is that by using the
prior knowledge learned from the training data, the missing
details of LR images can be recovered or at least be estimated
in a way that will benefit the cross-resolution comparison.
However, such a pipeline heavily depends on the recovery
outcome, and yet there is no guarantee that useful details
can be recovered. Moreover, if the input resolution is not
seen by the SR model, one cannot properly recover the HR
details for unseen resolution. The latter line of research on
resolution variance attempts to learn feature representation
that are invariant to resolutions so as to facilitate the cross-
resolution comparison. However, such a scheme might have
the risk of losing resolution specifics due to the invariant
enforcement.

This paper presents a novel approach to compare HR and
LR images without relying on super-resolution modules or
invariant features. The proposed method aims to build a metric
that is adaptive to the resolution of the query image, allowing
it to select the most appropriate distance metric to compare
with the HR gallery images. This is achieved through learning
resolution-adaptive representations, as illustrated in Fig. 1.
Specifically, the approach involves two mechanisms, both
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Fig. 1. The proposed method learns resolution-adaptive representations
for CRReID. Through a resolution-adaptive masking and a varying-length
representation, we can encode an HR image into the sub-vectors corresponding
to the shared information with its LR counterpart, and more sub-vectors
corresponding to the extra HR information.

of which are discussed in Section III-B and III-C. The first
mechanism is a varying-length image representation, where
the representation length is determined by the resolution of
the image. This encourages the explicit encoding of shared
features across resolution and HR-specific features. The rep-
resentation of an HR image is composed of sub-vectors
corresponding to its LR counterpart and extra dimensions
corresponding to the higher resolution part. This design cap-
tures the essential relationship between HR and LR images
and enables images with different resolutions to be com-
pared via their shared sub-vectors. The second mechanism
further enhances the resolution-adaptive capability by learn-
ing resolution-specific masks that are applied to the inter-
mediate activation of a neural network. Since there is a
resolution-dependent correlation between the feature blocks,
co-adaptation may occur if multiple masks are trained end-to-
end [11]. Therefore, we develop a progressive training strategy
that is demonstrated to be more effective than the standard end-
to-end training for these resolution-adaptive masks. Through
extensive experiments, we show that the two proposed mecha-
nisms are complementary to be combined to achieve superior
performance to state-of-the-art approaches that solely rely on
super-resolution techniques (see Section V).

Our contributions are summarized below.
• We propose a varying-length representation that can

adaptively encode the visual patterns of images from dif-
ferent resolutions. This enables convenient comparisons
between images at different resolutions.

• We design a resolution-adaptive mechanism by introduc-
ing resolution-adaptive masks for intermediate residual
feature blocks.

• We propose a novel progressive training strategy for
training a group of resolution-adaptive masks. This can
effectively combat the co-adaptation circumstance.

II. RELATED WORK

A. Standard Person Re-ID

Recent person re-ID methods provide person representations
that are robust to variations caused by various factors such

as human pose, occlusion, and background clutter [12], [13],
[14], [15]. For instance, part-based methods [16], [17], [18],
[19], [20], [21], [22], [23], [24] describe a person image as
a combination of body parts either explicitly or implicitly.
A number of explicit part-based methods use off-the-shelf pose
estimators to extract body parts (e.g., head, torso, legs) with
their corresponding features. Instead of explicitly estimating
the human pose, implicit part-based methods [16], [22], [25]
rather divide each person image into different horizontal
parts with multiple scales [26]. As such, they can exploit
the various partial information of the image, and provide a
feature representation that is robust to occlusion. Several other
approaches [21], [27], [28], [29] leverage attention mecha-
nisms to highlight the discriminative parts and remove the
background clutter. Other research directions focus on using
domain adaptation for person re-ID [30], [31], [32], [33]. For
instance, Zhong et al. [31] proposed to generalize the re-ID
model by considering the intra-domain variations of the target
domain. Bai et al. [33] improved unsupervised domain adap-
tation (UDA) for re-ID by identifying the domain-specific and
domain-fusion views. However, all aforementioned approaches
assume that both query and gallery images have similar (high)
resolutions, making them not suitable to real-world scenarios.

B. Cross-Resolution Person Re-ID (CRReID)

To address the practical challenge of CRReID, two main
categories of methods have been developed: 1) metric learning
or dictionary learning based approaches [34], [35], [36];
and 2) super-resolution (SR) based approaches [5], [6], [7],
[8], [9], [37], [38]. For instance, to overcome the resolution
mismatch, Jing et al. [34] developed a semi-coupled low-rank
dictionary learning method to associate the mapping between
the HR and LR images. Li et al. [35] introduced a method
to jointly perform the cross-scale image alignment and multi-
scale distance metric learning. However, all above methods are
inherently limited in their matching ability due to the missing
details in LR images.

Super-resolution based approaches cope with cross-
resolution re-ID via a recovery and re-ID process [39].
An early work presented by Jiao et al. [5] uses a set of
SR sub-networks to improve the compatibility between SR
and re-ID. CSR-Net [40] explores cascading multiple SR-
GANs [41] to progressively recover the details of LR images
for resolution alignment. However, these models adopt a
separate SR component in the recovery and re-ID pipeline.
Instead of applying separate SR models, a novel architecture
based on adversarial learning, called RAIN [10], was proposed
to align and extract the resolution-invariant features in an
end-to-end fashion. Inspired by RAIN [10], CAD-Net [6]
further improves the performance by aligning the distributions
between HR and LR images. More specifically, CAD-Net [6]
jointly considers the resolution-invariant representations and
the fine-grained detail recovery in LR input images. However,
an outstanding issue remains is that the resolution of the query
is unknown to us. To tackle this issue, Han et al. [7] proposed
a framework to adaptively predict the optimum scale factor for
the LR images so as to benefit the recovery for the CRReID.

Another recent work presented by Zhang et al. [8] explores
the influence of different resolutions on feature extraction.
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Fig. 2. The scheme of learning resolution-adaptive representations for person images with different resolutions. Given the query images x pi (i = 1, 2), and a
gallery image xg at different resolution levels, we propose two mechanisms to learn resolution-adaptive representations that are convenient for cross-resolution
comparison. Mechanism 1: the varying-length representation learning to produce a feature vector with varied dimensions, i.e., the gallery vector vg contains
all sub-vectors that the query vector v pi has, plus extra dimensions in the HR image. Mechanism 2: resolution-adaptive maskings (Ml ) are applied to the
l-th feature block Xl , yielding X̄l . The final resolution-adaptive metric is returned by calculating the distance: dis(x pi , xg).

They show that LR images can provide complementary infor-
mation to the HR images. Considering the complementary
information from the LR images, Zhang et al. [8] developed
a joint multi-resolution framework based on a reconstruction
network and a multi-branch feature fusion network. Following
that, multi-resolution features are fully utilized in feature
extraction by using channel-attention or residual Transformer
blocks [9], [42]. In contrast, this paper proposes a method
that has its own differences: first, our method does not need
excessive feature extraction for cross-resolution matching; and
second we directly learn resolution-adaptive representations
which are amenable for cross-resolution comparison.

III. PROPOSED METHOD

In this section, we first provide a problem statement and
an algorithmic overview of our approach, and then elaborate
on components of the proposed method. Central to our frame-
work are two mechanisms: (1) a varying-length representation
learning to encode the resolution-specific information into
different sub-vectors; and (2) a set of learnable resolution-
adaptive masks that are applied to intermediate feature blocks
at different residual convolutions.

A. Problem Statement and Framework Overview

We aim to learn a model M that can match a low-
resolution query image against the high-resolution gallery
images. We assume that the resolutions of both the query
and gallery images are provided. In practice, the resolution
could be estimated from the size (number of pixels) of images
or pedestrian bounding boxes since the height of people is
relatively fixed. Without loss of generality, we assume that
the resolution could be quantized into a set of discrete levels.
We denote the resolution with k, e.g., k ∈ {1, 1/2, 1/3, 1/4},
which is the proportion of the height/width dimension as
opposed to the highest resolution considered (k = 1 refers to
the highest resolution). For example, if the highest resolution
corresponds to 256 × 128 per person image, i.e., its resolu-
tion ratio k = 1, for a LR image of size 64×32, its resolution
ratio becomes k = 1/4. In our algorithm, we resize all the

images, whether LR or HR, to equal to the size of the highest
resolution images via bilinear up-sampling. Then, each full-
resolution image is down-sampled at different specified ratios
to form its LR alternations.

Specifically, following the setting of CRReID [5], we down-
sample the HR training images to form various LR images
to simulate the LR query images. The aim of our training
algorithm is to learn a resolution-adaptive metric, that is:

dist (x p, xg) = M(x p, xg, k), (1)

where dist (x p, xg) returns the distance between a query image
x p and a gallery xg . We implement this similarity measure
via a learnable model M . An important characteristic of this
model is that the resolution ratio of the query image k is the
input of M , and thus the metric is resolution adaptive. More
specifically, we implement M by learning resolution-adaptive
representations and we propose two resolution-adaptive mech-
anisms to realize that. The first is a varying-length repre-
sentation that uses varying dimensions to encode a query
image with different resolutions: the higher resolution, the
longer dimensionality of the representation. We hypothesize
that the representation of a higher resolution image should
contain the common fragmented dimension shared with a LR
image and additional dimensions which depict its own extra
information. To further extract resolution-specific information,
we propose the second mechanism, i.e., injecting resolution-
specific masks into the intermediate residual feature blocks.
This strongly enhances the resolution adaptive capability of the
network via resolution-dependent mask generation. We depict
the two mechanisms in Fig. 2, and details are presented in
Section III-B and III-C, respectively.

Discussions: Comparing with the resolution-adaptive met-
ric, the resolution-invariant metric or representation seems to
be a viable solution. However, since the resolution of the query
image is not fixed, learning resolution-invariant features will
identify discriminative information that are shared across all
resolutions. Consequently, the information specific to resolu-
tions higher than the lowest one will not be preserved. This
inevitably prevent the network from using more information
for matching a moderate LR query to HR gallery images.
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B. Mechanism 1: Learning Varying-Length
Resolution-Adaptive Representations

The varying-length resolution-adaptive representation is
motivated by the relationship between HR images and LR
images: a HR image should contain all the information
conveyed in the LR image, but also extra information from
the higher resolution. Therefore, when comparing a LR
image with a HR image, the comparison should adhere to
the information shared between them. Note that we do not
assume that the unobserved high-resolution information can be
recovered from a LR image by leveraging the object prior as
the most super-resolution-based CRReID methods. Applying
the above idea into representation learning, we propose to
encode the information shared across resolutions and the
information specific to HR into different dimensions of the
feature representation. For example, for a HR image and a
LR image, their shared part will be encoded into a sub-vector
of the feature representation and the HR-specific part should
be encoded into another sub-vector. When one compares a
HR image and a LR image, the comparison should only be
based on the shared part. In other words, for a fixed-size
representation, the LR image will be encoded into the bits
with lower dimensions (shorter length). In CRReID, a query
image could have different resolutions, thus the above strategy
will result in different representation lengths, i.e., the higher
resolution of the query is, the more information that can
be shared with the HR gallery images, and thus the longer
dimension of the representation is.

In our implementation, we define m sub-vectors {vk}, k =

1, · · · , m, with m corresponding to m different levels of
resolution. For images with the highest resolution, all m sub-
vectors will be concatenated as the final image representation.
For the lowest resolution, only the first sub-vector will be
activated. Formally, the representation of a query image that
corresponds to the k-th level resolution, (larger k, higher
resolution), is zp = cat (vp

1 , · · · , vp
k , vp

k+1:m), where where
cat (·) denotes concatenation. Since zp is at resolution k, the
sub-vectors vp

k+1:m are zeros. Thus, we have the truncated
ẑp = cat (vp

1:k) in short. For HR gallery images, their rep-
resentations are the concatenations of all m sub-vectors, that
is, zg = cat (vg

1, · · · , vg
k , . . . , vg

m). When a level-k-resolution
query image x p is compared against a HR gallery image xg ,
the distance is calculated via

dis(x p, xg) = ∥zp − zg∥
2
2 = ∥ẑp − ẑg∥

2
2, (2)

where ẑg = cat (vg
1:k). In other words, the comparison is

conducted by only comparing the top-k sub-vectors of zg when
we know the query image resolution is at level-k.

C. Mechanism 2: Resolution-Adaptive Masking

The above varying-length representation only adaptively
constructs the resolution-specific representation in the penulti-
mate layer of the neural network. To extract more resolution-
dependent features, we propose a mechanism to inject the
resolution characteristics into the earlier layers of a neural
network. More specifically, we build our network based on
a residual network [43] with learnable masks: one for a

resolution level to the activations after each residual block.
Each mask is a vector, with each dimension being a real value
between 0 and 1. The mask acts as a dimension-wise scaling

factor to the feature maps. Formally, let Xl
∈ Rdl

×H l
×W l

denote the feature maps after the l-th residual block. A set

of masks {Ml
k ∈ Rdl

}, k = 1, · · · , m, are applied to Xl

by X̄l
= Xl

⊙ Ml
k

1, where ⊙ denotes the element-wise
multiplication and k is the resolution-level of the input image.
For input images with varied resolutions, different masks will
be chosen to determine the final representation. The values of
Ml

k are parameters to be learned. In practice, we reformulate
those masks as an channel-wise scaling layer and learn the
layer parameters with the network:

X̄l
= Xl

⊙
( ∑

k

sl
kSigmoid(Ml

k)
)
, (3)

where sl
k = 1 if the input image is at resolution level k,

otherwise sl
k = 0. sl could be considered as an input to the

network. Sigmoid is the Sigmoid function converts the real-
valued layer parameters Ml

k into the range between 0 and 1.
Each column Ml

k[i] in the matrix Ml
k represents a mask

at each resolution level k. These masks are not binary, but
instead use real-valued scaling coefficients that are applied
to the feature tensor Xl at the l-the residual block. Being
masked with respect to a specific resolution, the network is
guided to producing more more resolution-adaptive features so
as to enrich the representation capacity. This operation incurs
no additional training cost. It is important to note that the
soft masks (i.e., Ml

k and Ml+1
k ) at different blocks are not

weight-shared. Each block-wise mask accounts for features
with increasing complexity and is trainable, making it possible
to jointly learn them end-to-end. We recall that developing
mask generators is equivalent to aligning person images with
occlusion, wherein visible patterns from non-occluded images
can be selected by corresponding masks to align and com-
pare with occluded regions [3], [4]. It is worth noting that
our proposed resolution-dependent masks are applied in a
channel-wise manner to reflect the resolution levels in feature
dimensions, making them suitable for CRReID.

D. Varying-Length Sub-Vectors With Resolution Variations

To enable direct comparison between images at different
resolutions, we propose a varying-length feature that reflects
the query resolution. Given a LR query image, it is encoded
into a feature vector with resolution-dependent dimension.
Since the LR image shares content with the original HR
image but also contains its own characteristics, the feature
vector of each image should be a combination of common-
ality and resolution-induced characteristics. However, a deep
feature representation outputted from neural networks has a
fixed-size dimension, making it challenging to define varied
feature dimension corresponding to different resolution levels.

1Please note that we DO NOT have any constraints on the structure of those
masks, e.g., requiring each dimension of an individual mask corresponding to
certain resolutions. For a given layer, we simply allocate one mask for each
level of resolution.
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Algorithm 1 Resolution Adaptive Representation Learning for
CRRe-ID.

To overcome this challenge, we propose to predict a set of
sub-vectors, where the number of sub-vectors corresponds to
the resolution. This induces the idea of varying-length feature.

Specifically, we train a classifier consisting of a set of
sub-classifiers, such that an image at a resolution looks up
the sub-classifiers to adaptively characterise its own features.
Consider an image x with its resolution indication k, its deep
feature vector v = [v1, . . . , vk, . . . , vm] ∈ Rd is outputted
from the last fully-connected layer of the network, with d
denoting the dimensionality and vk ∈ Rdk is a partition of v
with the dimensionality dk . We further define wi as a classifier
for one identity i , then for all identities (i = 1, . . . , C),
we have a set of classifiers W = [w1, . . . , wk, . . . , wC

] ∈

Rd×C , where wk
∈ Rdk×C is a prototype-based sub-classifier,

and C is the number of total identities. To perform the
prediction on the varying-length feature vector v, we calculate
the identity prediction logits across all identities via ek

=

(wk)T vk ∈ RC . Since the identity prediction classifies each
image by evaluating the classifier wk into the embedding
space, the classifier can be interpreted as the prototype closest
to the image in the feature space. An image is assigned to
the identity label of its nearest prototype. Thus, the prototype-
based classifier is effective for classifying images based on the
closest training prototypes wk in the feature space. Finally,
the learning objective yielded by the varying-length predic-
tion incrementally updates prototypes to better discriminate
the training images with identity labels. The computational
algorithm is illustrated in Algorithm 1.

E. Resolution-Adaptive Representation Training

Most of the state-of-the-art (SOTA) person re-ID methods
train the models with an identity classification loss Lcls
(namely ID loss) and a verification loss Lverif. We follow
this convention to adopt both losses to train the proposed
model. In traditional re-ID model training, the standard ID
loss is applied to the fixed-length representation. However, our

training set comprises HR images and multiple LR counter-
parts, which are created by down-sampling the HR images
with varied resolution levels. This leads to multiple repre-
sentations when applying the resolution-adaptive mechanisms.
To overcome this issue, we propose to apply zero-padding, i.e.,
concatenating “0” to the representation whose dimension is
less than the maximal dimension, to convert a varying-length
representation to a fixed-length representation. Then a normal
identity classification loss can be applied to learn the model.

The verification loss Lverif is applied to a binary classifier
that predicts whether two samples belong to the same class.
In our implementation, we start by padding zeros to the
varying-length representations of two images, and send their
feature vector difference to a multi-layer perceptron (MLP) to
make a binary prediction about whether those two samples are
from the same class. The loss function is

Lverif = −

N∑
n

yn log(p(yn = 1 | vi j ))

+ (1 − yn) log(1 − p(yn = 1 | vi j )), (4)

where vi j = vi −v j denotes the feature difference and p(yn =

1 | vi j ) is implemented with a MLP, e.g., p(yn = 1 | vi j ) =

Sigmoid( f (vi j )), where f is a MLP mapping vi j to a scalar.
We define yn = 1 if two images are from the same class,
otherwise yn = 0. Our final loss is the weighted summation
of both loss terms, that is, Lcls + λLverif, where λ is the
balance parameter.

1) Analysis of the Identity Classification Loss: The verifica-
tion loss takes inputs from two images from different or same
resolutions. It can learn a resolution-adaptive metric naturally.
However, the identity classification loss only uses one image
as input. One may wonder if it can also be beneficial for
resolution-adaptive metric learning? To answer this question,
we conduct an analysis in the following part. In the following
part, we present an analysis on the identity classification loss
to show why it can benefit the resolution-adaptive metric
learning. Note that the inner product between an identity
classifier and a zero-padded representation will only be deter-
mined by the inner product of the sub-vectors corresponding
to the non-zero parts of the representation. Formally, we could
consider that a classifier is constructed with m parts too, each
part corresponding to one sub-vector in the varying-length
representation. In other words, w = cat (w1, . . . , wm) ∈ Rd ,
where wk

∈ Rdk and cat (·) represents concatenation. As a
result, we have w⊤zk = cat (w1, . . . , wk)⊤zk , where zk is
an image representation with resolution level k. The ID loss
will encourage samples from the same identity class to move
closer to the corresponding classifier w and thus indirectly
pulling those features close to each other. Similarly, we could
expect our ID loss will pull zk and the first k-th sub-vectors
of zk′ k′ > k close to each other, which ensures that images of
the same identity but different resolutions become closer under
the proposed distance metric Eq. (2). This can be explained
by the following example.

In the ID loss, each identity classifier can be interpreted as
the prototype for each identity. When we take the inner product
between a prototype and a feature vector at the k-th level
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Fig. 3. By zero-padding, images with the same identity but different
resolutions will lookup the same classifier. This will encourage the shared parts
(denoted as the red and green blocks in different identities) of an HR-image
representation and an LR-image representation close to each other if they
belong to the same identity.

resolution, only the first k sub-vectors of the prototype are
used for comparison. By concatenating the first k sub-vectors,
we create a prototype for the images at resolution level k.
The ID loss encourages image representations from the same
identity class to move closer to the identity prototype, making
them more similar to each other. Similarly, training with
varying-length representations encourages a LR representation
to match the low resolution part of a higher resolution repre-
sentation, which is beneficial for cross-resolution comparison.
This can be seen in Example 1. Therefore, by training varying-
length classifiers with the ID loss, we achieve an equivalent
effect for learning representations at different resolutions.
Additionally, learning both varying-length representations and
classifiers encourages a LR representation to match the low
part of a higher resolution representation, further benefiting
cross-resolution comparison.

Example 1: Suppose an HR image and an LR image belong-
ing to the same identity. Based on the varying-length represen-
tation, the HR image produces a representation cat (v1

L , v1
H )

while the LR image produces a representation v2
L . Assume the

corresponding non-zero part of the classifier of this identity is
cat (wL , wH ), then the ID loss can make v2

L align with wL
and cat (v1

L , v1
H ) align with cat (wL , wH ). The latter usually

implies that v1
L should align with wL . Thus, this alignment

indirectly encourages v1
L to be aligned with v2

L through their
shared aligning target wL . This idea is illustrated in Fig.3.

2) Progressive Training for Resolution-Adaptive Masks:
We aim to jointly train the two mechanisms for optimizing
the performance at its best. While the most straightforward
way is to train them end-to-end via stochastic gradient descent
(SGD), we empirically find that this convention leads to com-
promised performance. This is partially ascribe to the difficulty
of optimization over non-shareable masks. Moreover, those
channel-wise masks at different layers are highly correlated,
and training those masks becomes nontrivial due to the co-
adaptation problem [11]. To combat this issue, we propose an
effective progressive training scheme. Alternatively, we pro-
pose to inject the masks at different layers sequentially and
train them progressively to avoid the co-adaptation of multiple
masks [11]. In our implementation, we first fabricate the masks
into the residual blocks closest to the classifier layer and
then gradually multiply more masks into the residual blocks
downwards to lower. Once new masks are weaved to the
residual block, the masks that have been trained with previous
higher-levels will be fixed and not updated anymore. Please
refer to the experimental section for more discussion on the

effect of this progressive training strategy. The whole training
process is shown in Algorithm 1.

IV. IMPLEMENTATION DETAILS

a) Backbone on ResNet-50: The model was implemented
using PyTorch. We built the network based on the ResNet-
50 architecture with four residual blocks. For all resolutions,
we resized each image to 256 × 128 × 3 and padded with
10 pixels with zero values. Then, we randomly cropped the
image into a 256 × 128 rectangular images. Each image was
flipped horizontally with 0.5 probability. The training batch
size was 32. The learning rate was set to be 0.00035 and
is decayed to 3.5 × 10−5 and 3.5 × 10−6 after 40 epochs
and 70 epochs, respectively. This warm-up learning rate is
shown to be effective to boostrap the network as suggested
by [44]. We trained the network using ADAM optimizer with
120 epochs in total. The masking mechanism was applied to
each residual block, which is a composition of two layers of
3 × 3 conv/batch norm/relu. The last stride of the residual
block was set to 1 to achieve a feature map with a higher
spatial size (16 × 8). For each block, we initialized a resolu-
tion mask matrix using Gaussian randomness, followed by a
sigmoid function. The sigmoid function restricts the real values
in the range of (0,1). The parameter λ was empirically set to
be 0.5. Empirically, we found that the sigmoid function should
be applied on the resolution masks after each updating of the
masking weights. This can effectively regularize the soft mask
learning to control the magnitude of masks. This was shown
to improve the learning capacity [45]. The whole network was
trained in end-to-end with Stochastic Gradient Descent (SGD).
We also performed a progressive training, in which the new
masks are sequentially injected into the residual blocks from
higher layers to lowers.

b) Backbone on transformer: Our network is also instan-
tiated with Transformer architecture [46], using both Swin-B
and Swin-L Transformer blocks with 4 stages, named Ours-
Swin-B and Ours-Swin-L respectively, in experiments. Note
that Swin-B has the model size and computation complexity
similar to Vision Transformer (ViT-base) [47]. These stages
jointly produce a hierarchical representation with the same
feature map resolutions as ResNet-50. To produce masking
generation, we apply channel-wise maskings for specific res-
olutions in the transformer blocks.

V. EXPERIMENTS

In this section, we evaluate the proposed method on several
benchmark datasets and compare against SOTA methods.
We report both quantitative and qualitative results as well as
ablation studies to thoroughly analyze our method.

A. Datasets

Following existing works [5], [6], [7], we adopt the multiple
low-resolution (MLR) person re-ID evaluation setting on four
datasets. The details of each dataset are described as follows.

• CAVIR [48] dataset is a real-world dataset composed
of 1,220 images of 72 identities and two camera views.
Following [5], [6], and [7], we discard 22 identities that
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only appear in the closer camera. The remaining images
of 50 identities are randomly and evenly divided into two
halves for training and test.

• MLR-CUHK03 [49] dataset contains over 14,000 images
of 1,467 identities captured by 5 pairs of cameras. Fol-
lowing [6] and [7], we adopt the 1,367/100 identities as
the training/test split.

• MLR-Market-1501 [50] dataset consists of 32,668 per-
son images of 1,501 identities observed under six differ-
ent camera views. The dataset is split into 12,936 training
images of 751 identities and 19,732 testing images of the
remaining 750 identities.

• MLR-DukeMTMC-reid [51]: This dataset was collected
with eight different cameras and was originally proposed
for video-based person tracking and re-identification.
It has a total of 1,404 identities and includes 16,522
training images of 702 identities, 2,228 query images of
the other 702 identities and 17,661 gallery images.

Note that the CAVIR is the only real-world dataset, while
MLR-CUHK03, MLR-Market-1501 and MLR-DukeMTMC-
reid are three synthetic benchmarks. To construct the synthetic
MLR datasets, that are, MLR-CUHK03, MLR-DukeMTMC-
reid, MLR-Market1501, we adopt the setting in [5], [6],
and [7] and down-sample HR images taken by one camera by
randomly choosing a down-sampling rate r ∈ {2, 3, 4}, while
the other images remain unchanged.

B. Training and Evaluation Protocols

To train a CRReID model, we constructed the training
set using the original HR images as well as the down-
sampled images with the down-sampling rate r ∈ {2, 3, 4}.
For evaluation, we followed the MLR evaluation protocol
suggested in [5], [6], and [7]. Specifically, for each HR image
from the test set, we randomly chose a down-sampling rate
r ∈ {2, 3, 4} and used the down-sampled images to construct
a query set. The gallery images are all HR images with
one randomly selected HR image per person. The random
data splits were repeated 10 times and the average value
was computed for every 10 trials. For the re-ID evaluation,
we used the average Cumulative Match Characteristic (CMC)
and reported the results at rank-1, 5 and 10. In Section V-F,
we also investigated the generalization of the proposed method
to unseen resolutions in the inference.

C. Comparison Methods

We compared the proposed method against three families
of SOTA approaches. The first family comprises a number of
CRReID methods based on resolution-invariant representation
including SING [5], RAIN [10], and CAD-Net [6]. The second
family is based on the super-resolution module, which is the
mainstream approach in CRReID. Methods like CRGAN [38],
PRI [7] and DGRL [42] fall into this category. The third family
aims for enhancing the discriminant ability of the deeply
embedded features for different resolution images. DGRL [42]
and PS-HRNet [9] belong to this category. The fourth family
comprises standard re-ID models including CamStyle [53],
FD-GAN [54], PCB [16], PyrNet [55] and DDGAN [37].

For those methods, we directly quote the results from PRI [7],
where the authors strictly reproduce the results by using the
same training set as our method. For standard re-ID methods,
the training set contains the HR images only.

D. Experimental Results

1) Main Quantitative Results: The comparison results of
our method against SOTA re-ID methods on four benchmark
datasets are reported in Table I. For a fair comparison,
we do not combine our method with any pre/post processing,
e.g., re-ranking [56] or part-pooling [16], even though these
operations can bootstrap the re-ID performance further. From
Table I, we can make the following observations:(1) Compar-
ing with resolution invariant representation learning methods,
i.e., SING [5], RAIN [10] and CAD-Net [6], our method
(Ours-ResNet-50) provides notable improvement across all
evaluation metrics. For instance, our method (Ours-ResNet-
50) outperforms CAD-Net [6] (a leading recovery and re-ID
method) by 20.8%, 7.1%, 6.4% and 6.3% at rank-1 on CAVIR,
MLR-CUHK03, MLR-Market-1501 and MLR-DukeMTMC-
reid, respectively. This clearly supports our claim on the
advantages of resolution-adaptive representations. (2) We
observe that our method (Ours-ResNet-50) can also achieve
superior performance over super-resolution based approaches,
as shown in the comparison against CRGAN [38] and PRI [7],
which are also SOTA methods in CRReID. Table I shows
that our method (Ours-ResNet-50) outperforms those com-
peting methods by a notable margin. This demonstrates that
adaptive representation learning is a promising paradigm to
solve the CRReID problem. The most competing method is
PS-HRNet [9], which challenges traditional super-resolution
restoration on low-resolution images. Instead, PS-HRNet [9]
flags the pathway of preserving multi-resolution features and
explicitly minimizes the impact between the feature distribu-
tion between LR and HR images. Our method coincides PS-
HRNet [9] in the senses of enhancing the semantic information
and reducing the impact of resolution difference in cross-
resolution scenario. In contrast to PS-HRNet [9], we learn
discriminant features for images at different resolution levels
via the proposed varying-length prediction based on pro-
totype classifiers (as described in Section III-D). And the
proposed masking mechanism can effectively alleviate the fea-
ture difference by learning resolution adaptive representations.
Table I shows that our method (Ours-Swin-L) outperforms
PS-HRNet [9] by 17.6%, 5.6%, 2.6% and 2.9% at rank-1
across four datasets. One possible reason is the end-to-end
training to learn discriminant and resolution-adaptive features,
whereas PS-HRNet [9] adopts a multi-stage training on seman-
tic extraction and cross-resolution difference mitigation. The
most possible reason for the exceptional performance of Ours-
Swin-L is that Swin-L transformer implements a hierarchical
representation that can merge the feature resolutions across
layers. This is especially advantageous to our framework in
the sense of learning to implant the various query resolutions
into feature hierarchy and then integrate these features. While
Ours-Swin-L performs exceptionally well across all datasets,
it is worth noting that the computational complexity of Swin-L
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART MODELS ON FOUR DATASETS (%). NOTE THAT “-” MEANS THAT THE RESULTS HAVE NOT BEEN

REPORTED. BEST RESULTS ARE IN BOLDFACE. OUR PROPOSED METHOD CONSISTENTLY OUTPERFORMS ALL EXISTING METHODS

is considerably high. To address this concern, we conducted
experiments using Ours-Swin-B, which has a model size that
is half that of Swin-L. The results presented in Table I demon-
strate that Ours-Swin-B outperforms all other competitors and
is surpassed only by Ours-Swin-L. These findings suggest
that Ours-Swin-B serves as a viable alternative to Swin-L,
especially when computational costs are a significant factor to
consider. (3) Comparing with standard re-ID methods, such as
CamStyle [53] and FD-GAN [54], which can also be applied in
CRReID, our method (e.g., Ours-ResNet-50) still outperforms
those competitors.

2) Length of Sub-Vectors: In this experiment, we investi-
gate the effect of the length of sub-vectors on the feature
representation. More specifically, for a predefined resolution,
i.e., k = 1/2, we vary the number of sub-vectors in the
query image feature vector as such the length of sub-vectors
is varying. As shown in Table II, our model encodes the query
resolution into the feature vector with its length portion len =

{1, 1
2 , 1

3 , 1
4 }, wherein len = 1 indicates the full-dimension

feature vector and len =
1
k indicates the proportionate length

of the feature vector. Our model variations, i.e., end-to-end
and progressive training, both reveal that encoding the query
resolution k = 1/2 into the appropriate length of sub-vectors,
i.e., len =

1
2 , enables the aligned comparison with the gallery

image at full resolution because the shared information is
reflected in the corresponding sub-vectors.

E. Ablation Studies

This section performs ablation studies to examine the effec-
tiveness of resolution adaptive representations and the impact
of various components of our method.

1) Comparison With A Naive Solution for CRReID: One
naive solution to realize query-adaptive metric is to build k
versions of gallery images, with each one corresponding to a

TABLE II
IMPACT OF THE VARIED LENGTH OF SUB-VECTORS WITH RESPECT TO

THE RANK-1 AND MAP VALUES ON MLR-CUHK03. THE QUERY
IMAGE IS DOWN-SAMPLED AT RESOLUTION k = 1/2, WHILE

THE ENCODING LENGTH len IS VARIED FROM 1 TO 4.
E2E AND PROG STAND FOR END-TO-END AND

PROGRESSIVE TRAINING, RESPECTIVELY

possible level of image resolution. Based on the query image
resolution (unseen query resolution could be assigned to one
of the nearest resolutions), one can pick the corresponding
version of gallery images to make comparison.

To handle the resolution mismatch, a trivial solution is to
simply down-sample the HR images such that the resolution
is compatible to the LR query. As such, it is intriguing to
know whether it is necessary to perform resolution-adaptive
representation learning. To verify this, we train several naive
baselines on the three datasets. Specifically, for both MLR-
CUHK03 and MLR-Market-1501, we first down-sampled the
HR training images at different resolutions {1/2,1/3,1/4}
to match the query at the corresponding resolution. Then,
using the two losses (i.e., identity loss and verification loss),
we trained a naive baseline with a group of LR query and
LR gallery images under obtain a resolution specific matching
model, e.g., k = 1/2 for each query-gallery pair. The matching
results from different resolutions were averaged to form the
reported final values. Since CAVIR is the only real cross-
resolution dataset and its query presumably shows k = 1/2,
we down-sampled the HR training images to form the LR
counterpart. For a fair comparison, we also trained our model
with the proposed two mechanisms in an end-to-end manner
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TABLE III
COMPARISON AGAINST A NAIVE SOLUTION: TRAINING k RETRIEVAL MODELS, ONE CORRESPONDING TO A POSSIBLE QUERY RESOLUTION. GIVEN A

QUERY IMAGE WITH RESOLUTION LEVEL k , ITS CORRESPONDING MODEL IS PICKED TO PERFORM RETRIEVAL. OUR RESULTS SHOW THAT OUR
METHOD OUTPERFORMS THIS NAIVE SOLUTION SIGNIFICANTLY. NOTE THAT ALL OF OUR MODELS USE RESNET-50 AS BACKBONE

TABLE IV
INVESTIGATION ON DIFFERENT COMPONENTS OF THE PROPOSED METHOD (BACKBONE ON RESNET-50). IDE+VERIF IS THE BASELINE WITH BOTH

IDENTITY CLASSIFICATION LOSS AND VERIFICATION LOSS. OURS (W/O X) MEANS REMOVING THE COMPONENT X FROM OUR APPROACH.
OURS (W/O VAL)* DENOTES THAT OUR MODEL WITH BLOCK-WISE MASKS IS TRAINED IN AN END-TO-END FASHION.

ALSO NOTE THAT “VAL” DENOTES THE VARYING-LENGTH REPRESENTATION

(ResNet-50 was used as backbone). All the comparison results
are reported in Table III. This could be because our model can
use the training samples from multiple-resolutions. We can see
that the proposed model (trained in end-to-end or progressive)
has an obvious advantage over the baseline on the three
datasets. Interestingly, we find that the progressive training
method consistently performs better than end-to-end training,
with an improvement ranging from 2%-5%.

2) Study of Two Resolution-Adaptive Mechanisms: One
may wonder the relative contribution of the proposed two
resolution-adaptive mechanisms, i.e., a varying-length feature
representation learning and learnable masks for intermediate
activations, to the performance of CRReID. To study the
impact of each component, we created four variants of our
method: (1) Ours (w/o mask), which removes the learnable
masks and only uses the varying-length feature representa-
tions. (2) Ours (w/o val), which does not use the varying-length
feature representations but with the learnable masks. (3) Ours
(w/o val)*, which also only uses the learnable masks, but trains
in an end-to-end fashion rather than adopting the progressive
training strategy. (4) A baseline termed IDE+Verif was trained
using the proposed framework without the learnable masks and
varying-length representations. In IDE+Verif, a LR query is
directly compared with a HR gallery without any resolution
down/up-sampling. This baseline is trained in end-to-end. The
obtained experimental results are shown in Table IV. We can
see that each component, i.e., the learnable masks, varying-
length feature representations and the progressive training,
plays a critical role, and removing any of them will lead to
degraded performance. Their combination leads to the best
accuracy. Also, by comparing against the baseline approach,
i.e., IDE+Verif, we observe that using either mechanism
alone leads to a significant improvement. This illustrates the
effectiveness of both mechanisms.

3) Study of Loss Functions: Our network is trained with two
types of loss functions, i.e., the identification loss (Lcls) and
the verification loss (Lverif). Thus, it is important to analyze

TABLE V
STUDY OF LOSS FUNCTIONS ON MLR-CUHK03.

BEST RESULTS ARE IN BOLDFACE

the impact of different loss functions on network training.
To this end, we ablate the two loss functions by comparing
2 variants of our model on the MLR-CUHK03 dataset. Table V
reports the ablation study on the loss functions. When the
loss Lcls is turned off, our method sees its rank-1 value drop
from 89.2% (with two loss functions) to 77.4%. Without the
loss of Lverif, our model only achieves 76.3% at rank-1.
This demonstrates that both loss functions are crucial in our
method. This is consistent with observations in the existing
literature [57]. This suggests that the Lcls plays an important
role in cross-resolution re-ID by separating the identities in the
feature space. Without loss Lverif, our model only achieves
76.3% at rank-1. This demonstrates that the verification loss is
also crucial to our model. The loss Lverif is able to regularize
the feature embeddings of different resolutions with intra-class
compactness. We conclude that the combination of two loss
functions can achieve the superb evaluation results in terms of
rank-1, -5, -10, -20 and mAP on MLR-CUHK03.

4) Top-Ranked Gallery w.r.t Varied-Resolution Queries:
Given a query at different resolutions, we present the first top-
15 ranked gallery images from MLR-Market-1501 in Fig. 4.
The green and red rectangles indicate the correct and incorrect
matches, respectively. The first row of Fig. 4 shows the ranking
results using the query with its original resolution and matched
against HR gallery. When the query has lower resolution, e.g.,
k = 1/3 or 1/4, corresponding to the third and fourth rows
of Fig. 4, our method can still achieve 13 correct matches
out of 15 candidate images for the low-quality queries.
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Fig. 4. The top-15 ranked gallery images w.r.t the HR query and its down-sampled LR queries with down-sampling rates r ∈ {2, 3, 4}. The ranking evaluation
is performed on MLR-Market-1501 dataset. The correct and incorrect matching gallery images are displayed in green and red rectangles, respectively.

Fig. 5. The t-SNE visualization of the learned resolution-adaptive features
on the MLR-CUHK03 test split. (a) The embedding of identity features. Each
color corresponds to one identity. (b) The same data which is colorized to show
resolution specifics with four colors corresponding to four down-sampling
rates.

This demonstrates the effectiveness of our method in address-
ing the resolution mismatch between the query and the gallery.

5) Embedding of Query-Adaptive Features: To demonstrate
the effectiveness of our method in deriving resolution-adaptive
features for different resolutions, we visualize the feature vec-
tors of images from the MLR-CUHK03 test set in Fig. 5. More
specifically, we select 15 different identities, each of which is
described by a specific color, and we project the feature vectors
in 2D feature space using t-SNE. The projection is shown in
Fig. 5 (a). We observe that our model can establish a well-
separated feature space for re-ID. To close up the distribution
of different resolutions, we colorize each resolution with a
different color in each identity cluster, i.e., four different
colors for four resolutions r ∈ {1, 2, 3, 4}, and project features
vectors via t-SNE. The results are shown in Fig. 5 (b). Again
we observe that the projected feature vectors of the same
identity but different down-sampling rates are well separated.
The visualization results demonstrate that our method learns
resolution-adaptive representations that are effective for cross-
resolution person re-ID.

F. Generalization to Unseen Resolutions

In the standard setting for cross-resolution person re-ID, the
resolutions or down-sampling rates at the test time are seen

during training. In practice, we may encounter the scenario
that the test image has a resolution that is not seen during
training. It is important that our algorithm could handle this
case. To this end, we propose the following scheme: (1) we
train our model with a set of fixed down-sampling rates, e.g.,
r = {2, 4, 6, 8}. (2) for a test image with unseen down-
sampling rate, say r = 3, we simply assign the test image
to the nearest down-sampling rate seen during training and
process it as the assigned down-sampling rate. For example,
if the resolution of a test image is equivalent to down-sampling
the HR image 3 times, we treat the test image as if its ratio
is 2 or 4 and run our algorithm. Note that r = 8 indicates a
very low resolution.

To evaluate the effectiveness of the above scheme, we con-
duct the following experiment, in which we construct a new
MLR dataset on CUHK03 by using the down-sampling rates
r ∈ {2, 4, 8}, and then train the model with the progressive
and end-to-end mask learning schemes. At the test stage,
we consider the query with two unseen resolutions/down-
sampling rates, i.e., r = 3 and r = 6, denoted as x L

1/3 and x L
1/6,

respectively. Following the principle aforementioned, we can
assign it to r = 2, 4 or r = 4, 8, respectively. We evaluate their
performance against baselines that are trained with r = 3 and
r = 6 images. The results are presented in Table VI. We can
observe that assigning an unseen resolution to the nearest
training resolution leads to reasonably good performance.
In comparison to the baseline which makes unseen resolution
seen during training (i.e., we train a new model with the down-
sampling rates r ∈ {2, 3, 6}), the performance drop is around
2% for k = 1/3 and is around 4% for k = 1/6 in rank-1. The
performance difference becomes much smaller from rank-5
to -20. This suggests that this proposed simple solution is
sufficient to handle unseen resolutions at test time. Also,
we observe that assigning the unseen resolution to its higher
or lower resolution proxy does not make much difference. The
performance is largely comparable in most cases.

When the unseen resolution, e.g., x L
1/3 is issued in test,

we can approximate the feature vector for x L
1/3 by using a

nearby seen resolution, i.e., x L
1/3 → x L

1/2 and x L
1/3 → x L

1/4.
We can see that approximating the unseen resolution using a
lower down-sampling rate achieves better results than using
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TABLE VI
STUDY OF unseen DOWN-SAMPLED RESOLUTIONS ON MLR-CUHK03. THE VALUES IN BRACKETS INDICATE THE VALUES OBTAINED BY TURNING THE

UNSEEN RESOLUTION INTO SEEN RESOLUTION FOR TRAINING. x L
1/3 → x L

1/2 MEANS ASSIGNING THE UNSEEN x L
1/3 TO THE DOWN-SAMPLING

RATE x l
1/4 WHICH IS SEEN DURING TRAINING. NOTE THAT “PROG” DENOTES PROGRESSIVE

TRAINING AND “E-E” DENOTES END-TO-END

TABLE VII
STUDY OF FEATURE DIMENSION DIVISION ON MLR-CUHK03

a higher rate. For instance, in the case of matching a very
low resolution query, i.e., x L

1/6 using x L
1/6 → x L

1/8 outperforms
using x L

1/6 → x L
1/4 in both continual and end-to-end training.

In comparison, we turn the unseen resolutions into seen
resolutions by re-training the model with down-sampling rates
r ∈ {2, 3, 6} and report the results in the brackets of Table VI.
Our method is seen to achieve results similar to the case
of training the model with a seen resolution, For example,
for the unseen x L

1/3 → x L
1/2 it only drops the rank-1 by

2.2% compared with the training with the specific resolution
(rank-1 = 83.4% v.s rank-1 = 85.6% for turning the unseen
into a seen resolution in training).

G. Division on Sub-Feature Dimension for Resolutions

Our method hypothesizes that the length of a feature vector
corresponds to its resolution, which can be implemented by
discretisizing the resolution. Thus, one may wonder if there
is a viable approach to automate the feature vector division
and allows for automating continuous sub-feature dimension.
In this experiment, we employ the Gumbel-Softmax [58],
where a resolution variable Z2 is parameterised as the resolu-
tion distribution π1, . . . , πx and πi is the resolution possibility
to be learned by the neural network. Experimental results are
reported in Table VII. One primary reason is that the re-
parameterisation on the continuous sampling for Z may not
effectively differentiate the resolution differences, leading to
performance drop.

VI. CONCLUSION

In this paper, we present a novel approach to produce
resolution-adaptive representations for cross-resolution per-
son re-identification (CRReID). Specifically, we propose two
novel adaptation mechanisms: a varying-length representation
learning to produce the feature vector with varied dimensions
corresponding to resolution levels, and a set of resolution-
adaptive masks applied to intermediate feature blocks to

2 Z is an one-hot vector that determines the resolution of an image.

further enhance the resolution disentanglement. The two strate-
gies are slotted together to achieve the SOTA performance
on multiple CRReID benchmarks, especially the merits of
addressing the resolution mismatch issue. Future work could
explore generative models [59] to reconstruct resolutions for
the proposed method.
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