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Geometrically Induced Force Interaction for
Three-Dimensional Deformable Models
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Abstract—In this paper, we propose a novel 3-D deformable
model that is based upon a geometrically induced external force
field which can be conveniently generalized to arbitrary di-
mensions. This external force field is based upon hypothesized
interactions between the relative geometries of the deformable
model and the object boundary characterized by image gradient.
The evolution of the deformable model is solved using the level set
method so that topological changes are handled automatically. The
relative geometrical configurations between the deformable model
and the object boundaries contribute to a dynamic vector force
field that changes accordingly as the deformable model evolves.
The geometrically induced dynamic interaction force has been
shown to greatly improve the deformable model performance in
acquiring complex geometries and highly concave boundaries, and
it gives the deformable model a high invariancy in initialization
configurations. The voxel interactions across the whole image do-
main provide a global view of the object boundary representation,
giving the external force a long attraction range. The bidirection-
ality of the external force field allows the new deformable model to
deal with arbitrary cross-boundary initializations, and facilitates
the handling of weak edges and broken boundaries. In addition,
we show that by enhancing the geometrical interaction field with
a nonlocal edge-preserving algorithm, the new deformable model
can effectively overcome image noise. We provide a comparative
study on the segmentation of various geometries with different
topologies from both synthetic and real images, and show that
the proposed method achieves significant improvements against
existing image gradient techniques.

Index Terms— Deformable model, geometric potential field, level
set method, object localization, 3-D segmentation.

I. INTRODUCTION

S HAPE segmentation from volumetric data has an important
role in applications such as medical image analysis. Volu-

metric image segmentation remains an intricate process, due to
the complexity and variability of image data and shapes (i.e.,
anatomical structures).

There have been applications of simple techniques such as
thresholding and region growing in the extraction of 3-D objects
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from volumetric images [1], [2]. However, these techniques are
very sensitive to noise and intensity inhomogeneities which
exist in real images, and often produce leakages and regions
which are not contiguous. Statistical approaches [3], [4] are also
used to identify different tissue structures from medical images.
It usually involves manual interaction to segment images in
order to obtain a sufficiently large set of training samples. Such
strategies are often restricted to problems where there is suffi-
cient prior knowledge about the shape or appearance variations
of the relevant structures. Also, the use of the same training set
for a large number of image scans may lead to biased results
that do not take sufficient consideration of the variability within
individuals. Atlas based approaches perform segmentation
based upon image registration techniques [5], whereby an
image can be segmented by finding a transformation that maps
a template image to the target image. It is, however, generally
difficult for atlas based techniques to accurately extract com-
plex geometries such as those from volumetric medical images
due to the variability of anatomical structures.

Another class of segmentation methods partitions an image
into different regions based upon energy minimization. These
energy based segmentation methods can usually be distin-
guished as combinatorial methods and variational methods.
Graph cuts such as [6]–[8] which are based upon combinatorial
optimizations can be used to minimize a cost function defined
on a discrete set of variables. In this approach, a graph is com-
posed of vertices representing image pixels or voxels, and edges
that connect the vertices. The graph edges are assigned some
nonnegative weights or costs, and a cut is a subset of edges that
partition the vertices into disjoint sets. The cost function which
can consist of boundary and regional information has to be well
defined for graph cuts to provide a globally optimal solution. In
addition, the discrete representation of the graphs may produce
geometric artifacts.

Deformable modeling can be an effective alternative ap-
proach. They are usually based upon a variational framework to
minimize an energy functional defined on a continuous contour
or surface. They have the ability to adapt to complex shape
variations and to incorporate priors to regularize segmentation.
They have been widely used in applications such as shape
extraction [9]–[12] and object tracking [13]–[16]. In these
models, curves or surfaces evolve under the influence of both
internal and external forces to extract the image object bound-
aries. Explicit models [17] represent contours and surfaces in
their parametric form during deformation. This allows explicit
models to track the points on the curves and surfaces across
time, and is well suited for real-time applications due to smaller
CPU-time requirement. However, explicit models generally
have difficulties in dealing with topological changes due to
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the parameterization of the curves and surfaces. McInerney
and Terzopoulos [18] designed topology adaptive, explicit
deformable models to handle topological changes that often
exist in medical image volumes. This explicit model requires a
periodic reparameterization mechanism to deal with complex
shapes and changes in topology. This technique, however,
works well only when the model is required to inflate or deflate
everywhere, which considerably limits its applications. Several
authors [19]–[21] have also come up with different techniques
to handle topological changes. However, these approaches
usually involve a set of heuristic algorithms to detect self-in-
tersections and handle splitting and merging of the deforming
grid, which can be computationally expensive. Also, these
strategies may not work well on structures that consist of com-
plex topologies. Implicit deformable models [9], [10] based
upon the theory of curve evolution and the level set method
[22], [23] are introduced to address some of these limitations.
In these approaches, the evolution of curves and surfaces are
represented implicitly as a level set of a higher dimensional
scalar function and the deformation of the model is based upon
geometric measures such as the unit normal and curvature.
Thus, the evolution is independent of the parameterization, and
topological changes such as splitting and merging can be han-
dled automatically. In recent years, implicit deformable models
have been widely applied in the segmentation of anatomical
structures from 3-D medical images [24]–[26].

The design of deformable models often varies in the repre-
sentation of the object boundary and external force field used.
There have been numerous publications on deformable models
and improvement of the underlying techniques. These usually
take the form of image gradient based approaches, e.g., [10],
[27]–[30], region based approaches, e.g., [31] snd [32] and
hybrid approaches, e.g., [33] and [34]. Image gradient based
techniques have been found useful when there is limited prior
knowledge and image gradients are reasonable indications of
object boundaries. However, the extension from 2-D to 3-D
is not trivial. Conventional image gradient based approaches,
such as [10], require careful initialization even in 2-D [32].
Although several improvements have been developed, e.g.,
[27] and [28], it remains a great challenge for image gradient
based models to achieve initialization invariancy and robust
convergence. This is especially true when segmenting objects
with complex geometries and shapes in 3-D, where delicate
manual initialization is even more difficult than in 2-D.

Region based methods [31], [32], [35]–[37] have also been
widely applied to image segmentation. The Chan–Vese model
[31] which is based upon the Mumford–Shah functional [38]
is considered as one of the most popular region based tech-
niques. In this approach, the image is assumed to be composed
of regions of approximately piecewise-constant intensities. The
Chan–Vese model then extracts the image object based upon the
average intensities inside and outside the contour. Although the
Chan–Vese model can be used to extract objects with smoothly
varying boundaries, it has difficulties dealing with image re-
gions with intensity inhomogeneity. Other region based models
such as [36], [37] also assume that image objects consist of dis-
tinct regional features, which is often not true for real image
dataset due to intensity inhomogeneity and multimodal nature.

In this paper, a novel deformable model with an external force
field based upon the relative position and orientation of the de-
formable model and object boundaries is proposed. A prelim-
inary study on this force interaction has appeared in [39]. The
external force field is called the geometric potential force (GPF)
field as it is based upon the hypothesized interactions between
the relative geometries of the deforming surface and the object
boundaries (characterized by image gradients). The evolution
of the deformable model is solved using the level set method so
as to facilitate topological changes. The proposed external force
field can attract the deformable model to object boundaries with
arbitrary initialization, and it allows the deformable model to
reach highly concave regions which are generally difficult for
other methods. The vector force field introduced can be viewed
as a generalized version of the magnetic force field described
in the recent MAC model [30]. However, the proposed method
can be conveniently extended to higher dimensions, unlike for
the MAC model, which cannot be directly applied to 3-D image
dataset.

The rest of the paper is organized as follows. In Section II,
we review several image gradient based methods, particularly
some physics-inspired approaches, which are closely related
to our method. The proposed method is then described in
Section III. The results and comparative studies appear in
Section IV. Section V concludes the paper.

II. PREVIOUS WORK

In image gradient based deformable models, it is assumed that
object boundaries collocate with image intensity discontinuities.
Conventional image gradient based methods, e.g., geometric ac-
tive contour model [9], [10] and subsequent geodesic models
[40], [41] generally have difficulties in dealing with boundary
concavities, weak edges, image noise and difficult initializations
as they are generally prone to local minima that often appear in
real images. Numerous research works have been performed in
order to improve the initialization and convergence capabilities
of the gradient based approaches.

The gradient vector flow (GVF) and its generalized version
GGVF [11], [27] have shown significant improvements over
those conventional external force field such as geodesic [40] and
have been widely used in deformable models, e.g., [14]. It uses
a vector diffusion equation that diffuses the gradient of an edge
map to regions distant from the object boundary. The GGVF
model may be defined as

(1)

where is the deformable contour, denotes the artificial time
component, is the stopping function, is the curvature, is the
unit normal, and is a real constant to balance the contribution
of the curvature term; is the flow component normal to
the contour. Let denote an image and be the image
gradient magnitude. The diffused GVF field is given as the
equilibrium solution to the following PDE:

(2)
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where and are weighting functions which control
the amount of diffusion according to the gradient of the edge
map. Although the GGVF has been shown to improve the cap-
ture range and boundary concavities tracking ability, it still has
convergence issues caused by saddle or stationary points in its
force field, i.e., when the contour is tangent to the force vector
[28], [30], [42].

Recently, there have been several research works on physics-
based deformable models such as [30], [43], [44]. In [43], a
charged-particle model (CPM) based upon electrostatics was
applied to attract particles toward object boundaries. The au-
thors in [43] hypothesized a set of freely moving particles
with the same positive charge in an external electrostatic field,
generated by fixed negative charges proportional to the image
gradient at point . The positively charged particles
are attracted towards the fixed negative charges under the in-
fluence of the external particle-mesh force and repelled by
each other by the particle-particle force . These forces acting
on a moving particle at position can be computed as the sums

(3)

where is the permittivity, is the unit vector pointed from
to , is the distance between these two points.
The total force acting on a particle is given by

where , and are weighting parame-
ters for the attraction force , repulsion force and damping
force , respectively. When the particles attain a stable equi-
librium state due to the viscous effect of , contour reconstruc-
tion is required to obtain the object boundary representation.
Although this approach can resolve the previously mentioned
convergence issues, the fact that particles on weak edges may
be attracted to nearby strong edges often causes broken con-
tours to be formed. In addition, the method requires frequent
particle insertion and deletion, which is computationally expen-
sive. This makes it impractical in 3-D. In [45], the authors incor-
porated the particle model [43] into a contour model and showed
subsequent improvements on the CPM. However, the dominant
external force field is static and its dynamic behavior due to
repulsion force can be difficult to predict. Park and Chung in
[46] also considered the pixels in the image edge map as static
electric charges and used an external force equivalent to in
(3) in their parametric model. Similar to [43], their parametric
model based upon hypothesized electric field computed from
the edge map cannot deal with leakage at weak edges when
strong nearby edges are present. Zhu et al. in [47] incorporated
tangent direction of the image map to compute a modified ver-
sion of the electric potential force field. The tangent direction
information is obtained by a 90 rotation of the gradient vectors
of the smoothed image, and is coupled with a new parameter
that controls the influence of the rotated vectors and the corre-
sponding force field. This enhances the intensity of the hypoth-
esized electric potential along the image edge and allows the
active contour to better handle weak edge. However, the perfor-
mance of the modified external force field in preventing leakage
at weak edges is greatly determined by the value of the new
parameter, which also affects the noise sensitivity of the active

contour. In other words, the noise sensitivity of the modified
electric field active contour increases together with its perfor-
mance in handling weak image edges.

In [30] and [48], Xie and Mirmehdi introduced an external
force field that is based upon the hypothesized magnetic force
between the active contour and object boundaries. This formu-
lation has been applied directly in the magnetostatic active con-
tour (MAC) to compute the magnetic field and force required
to draw the active contour towards object boundaries in 2-D
images. This image gradient based method showed significant
improvements on convergence issues, e.g., reaching deep con-
cavities, and in handling weak edges and broken boundaries.
When applying the analogy directly to deformable modeling, it
requires estimation of tangent vectors for the deformable con-
tours, which is convenient in 2-D case, however, not possible
in 3-D. Xiang et al. [49] derived an external force for the ac-
tive contour based upon the elastic interaction (EI) between line
defects in solids [50], [51], with its long range attraction force
similar to the magnetic force used in MAC [30], [48]. One of
the unique properties of MAC and EI is that they take into ac-
count the orientation of image gradient vectors in deriving the
external force fields, unlike other edge based approaches where
only image gradient magnitude are used. We will show later that
the MAC model is in fact a special case of our proposed method
in 2-D. The new method does not rely on specific initialization
as required in the EI model and handles noise interference much
better.

Kimmel in [33] also explicitly used image gradient vector di-
rections as an alignment measure in a hybrid approach, coupled
with the geodesic active contour and minimal variance criterion
suggested by [31]. Given a contour of length , and in a para-
metric form where is an arc length parameter,
the alignment measure used in [33] is given as

(4)

where is the unit normal to contour at , is the
image gradient at . The alignment measure is used to optimize
the orientation of the curve with respect to the image gradients.
This measure, together with the gradient-based geodesic mea-
sure and the region-based minimal variance criterion is then
used to push or pull the contour towards the image boundary.
This hybrid approach, however, requires careful tuning of the
different parameters associated with various measures in order
to efficiently bridge the image gradient and regional informa-
tion. In addition, only local edge information are used in the
alignment measure, while edge information of pixels located
away from the contour are not considered in this technique.

III. PROPOSED METHOD

Our approach is to define a novel external force field that is
based upon hypothesized geometrically induced interactions be-
tween the relative geometries of the deformable model and the
object boundaries (characterized by image gradients). In other
words, the magnitude and direction of the interaction forces are
based upon the relative position and orientation between the ge-
ometries of the deformable model and image object boundaries,
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Fig. 1. Relative position and orientation between geometries in 2-D and 3-D.

and hence, it is called the GPF field. The bidirectionality of the
new external force field can facilitate arbitrary cross-boundary
initialization, which is a very useful feature to have, especially
in the segmentation of complex geometries in 3-D. It also im-
proves the performance of the deformable model in handling
weak edges. In addition, the proposed external force field is dy-
namic in nature as it changes according to the relative position
and orientation between the evolving deformable model and ob-
ject boundary.

A. GPF

In order to first deduce the geometric interaction force in 2-D,
consider a deformable contour and an ideal object boundary

in the image plane (see Fig. 1). Let and denote the
infinitesimal elements of contour and object boundary ,
respectively. In the existing force field based models such as
[44], [45], the interaction between and is inversely pro-
portional to the distance separating these two elements and the
derived force lies in a straight line between them. They do not
take into account the local geometry of the deformable contour

or object boundary . We propose to incorporate the mutual
location and orientation of these elements.

Let and denote the positions of elements and , re-
spectively. Thus, is their mutual location of those
two elements, is the distance between them, and

is the unit vector pointing from .
The directions of these elements can be represented by their unit
tangent vectors and . However, a unique tangent vector is no
longer available for infinitesimal surface elements in 3-D. Thus,
we use unit outward normal vectors and to characterize the
orientations of these elements instead (see Fig. 1). In 2-D, they
are simply 90 rotated tangent vectors.

We are now ready to introduce the hypothesized interaction
force which acts on element by virtue of the hypoth-
esized force field induced by element . It is desirable to
combine the element orientation vectors and distance vector in
deriving the force. We propose a simple but effective combi-
nation of these three vectors as , unlike CPM [43]
as an example where only the distance vector is used. The
multiplication of contour normal ensures that the force is
always imposed in the normal direction so that the deformable
model does not suffer from convergence issues (i.e., stationary
points, saddle points and extreme boundary concavities), which
are often associated with other vector force field based methods
such as GVF [27]. The dot product of the object boundary

element normal with the distance vector allows the force on
the contour in the normal direction to diminish as the contour
reaches the object boundary. Similar to other physics-inspired
force field, it is also desirable to decay the force interaction with
the increase of distance between the elements, i.e., the force is
designed proportional to where . Thus,
the contribution of element of object boundary to the
total force acting on in accordance with their distance and
mutual orientation can be formulated as

(5)

where is defined as force per unit length, is the con-
tribution of element of object boundary into the scalar
field , which can be considered as an intermediate poten-
tial field, and is a positive constant that affects the magnitude
of the interaction force based upon the distance between the el-
ements. In our study, we obtained the best results when co-
incides with the dimension of the image data, i.e., in
the 2-D case. Furthermore, we show later that when coincides
with data dimension in 2-D, the proposed force interaction has
an explicit link to the magnetostatics theory and, thus, the spa-
tial decay of the magnitude of the interaction force is analogous
to that of the magnetic field.

As shown in (5), the computation of the new force field only
requires unit normal vectors and relative position of the two ele-
ments, which is convenient to acquire. Thus, this new force field
can be easily extended to higher dimensions, e.g., 3-D. Let
belong to the deformable surface whereas belongs to the
object boundary (see Fig. 1). The generalized 3-D version
of force acting between these two area elements can be
readily given as

(6)

where is defined as force per unit area, is the corresponding
3-D potential field, and are unit surface normals of the
deformable model and object boundary, respectively, and

. Again, the magnitude and direction of the induced force
is handled intrinsically by the relative position and orientation
between the geometries of the deformable model determined by
the evolving surface and object boundary determined by .
Since the force is derived geometrically and its interaction is a
function of inverse distance, we name it GPF.

B. GPF Deformable Model

The GPF force in (6) is derived using geometrical information
from ideal object boundaries. Next, we extend this to deal with
real image data and formulate it in 3-D deformable modelling. In
this work, we adopt an edge based approach, that is using image
intensity discontinuity to estimate the presence and strength of
object boundaries.

Let denote the 3-D image, where is a voxel location in
the image domain. Temporarily, we consider as a continuously
varying point. One may treat this as an interpolation between
voxel grid points to obtain a continuous image . To compute
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the force acting on , we first compute the total potential field
for an arbitrary point

(7)

where is a weighting function that is defined later, and
means ‘Principal Value’: the contribution of infinitesimal

circular vicinity of singular point into the integral is
disregarded, which occurs when surfaces and intersect.

First, we consider the case, in which can be defined rigor-
ously on an ideal object , i.e., . The object can be
specified by a binary image

(8)

where is a nonzero constant. For such an image, is infinite
on and can be represented through the 3-D Dirac’s delta as

(9)

where is the jump in function at the boundary of ;
and is the unit normal vector to the surface .

Setting equal to the jump of at the boundary, i.e., ,
we can rewrite (7) as a volume integral

(10)
Here, is the integration variable and denotes a volume
element. The Dirac’s delta is used to obtain the area element
from the volume element, i.e., .

Taking into account (9) and , we can replace the
product in the integral of (10) by

. Thus, (10) can be reformulated as

(11)

It is now readily generalizable to real 3-D data.
In real images, is a smooth function reaching max-

imum magnitude in the vicinity of the object boundary.
The natural generalization of (11) is to substitute Dirac’s
delta by this smoothed function analog into (11), i.e.,

, where denotes a
real image. The geometric potential field in a continuous form
can then be formulated as

(12)

Note, due to the substitution of by
, the defined on the ideal surface is no longer

needed. Hence, the notation is simplified by replacing the

integral variable with . Finally, its discrete form can be
written as

(13)

This can be considered as a convolution of the image gradient
with the vector kernel

(14)

which can be computed efficiently using the fast Fourier trans-
form (FFT). Note that the potential field is computed as a
convolution of two vector functions.

The total force acting on the unit area element of the de-
formable surface is, thus, given as . where is
the outward unit normal of level set surface. Note, an inward
normal can also be used, i.e., , which will result in
opposite deformable model propagation since the force field is
exactly in the opposite direction. An example is given in Fig. 3.
Hence, the force can be rewritten in a generalized form

(15)

where is a constant taking values of 1. Note this is different
from the constant force in the geodesic model, where the force is
monotonically expanding or shrinking. The sign convention is
merely used to determine whether outward and inward normals
of the deformable surface are considered.

The general contrast consistency along the object boundaries,
however, is important to the model. Large contrast variation can
disrupt the force field, e.g., half of the object appears brighter
than background and the other half appears to be darker. How-
ever, this does not mean that the entire object has to be brighter
or darker than background. Those regions away from object
boundary can be continuously varying in intensity (see Fig. 2
as an example).

Once the force field is derived from the hypothesized in-
teractions based upon the relative geometries of the deformable
model and object boundary is determined, the evolution of the
deformable model under this GPF field can be given as

(16)

Since surface smoothing is usually desirable, the mean curva-
ture flow can be incorporated and the complete GPF deformable
model evolution can be formulated as

(17)

where is the edge stopping function. Note
that in our case, the flow of is directed by definition normal
to surface , therefore . Notation is
inherited from the traditional methods [cf. (1)]. The level set



1378 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 5, MAY 2011

Fig. 2. GPF: first row from left to right—input image and initial deformable
model, corresponding edge map and computed geometric potential field, second
row—initial and evolving deformable models, and the third row—associated
GPF vector field.

Fig. 3. Direction of propagation of the GPF deformable model. First
row—� � �. Second row—� � ��.

representation of the proposed deformable model based upon
GPF can then be written as

(18)

where is the level set function, such that the deformable
surface is defined as . Note, the GPF force field
is defined on the deformable surface, which is implicitly em-
bedded in the level set function, i.e., the force field computed at
the propagating front needs to be extended across the computa-
tional domain so that the full level set function can be continu-
ously evolved. Although direct force extension method such as
[52] can be used, we can conveniently compute the GPF forces
for each level set so that this external force is extended to the
entire level set function.

The GPF deformable model differs from conventional edge
based models by utilizing edge voxel interactions across the
whole image, thus, providing a more global view of the object
boundary. The magnitude of the potential field strength at each
image location is based upon the relative position of with
all other voxels in the image. Therefore, voxels at homogeneous

regions will also have a nonzero potential field strength. In this
way, surfaces which are initialized far away from object bound-
aries can propagate towards the image edges and converge.

As shown in (6), the dot product can be both positive
and negative, depending upon the relative configurations of
the geometries between the deformable model and the image
boundaries, thus, giving a bidirectional vector force field.
This useful bidirectionality facilitates arbitrary cross boundary
initializations, as its force vectors point towards the object
boundary from both ways. This also allows the model to sta-
bilize the deformable surfaces at weak edges, thus, preventing
leakage. The first row of Fig. 2 shows a substantially blurred
image with linearly varying intensity, and the corresponding
edge map and computed geometric potential field. In addi-
tion, as the deformable model evolves, the unit vector
changes accordingly based upon the relative geometries. This
contributes to a vector force field that changes dynamically
as the deformable model evolves, as depicted in the second
row of Fig. 2. Therefore, the proposed model has much better
invariance to its initial position and can deal with complex
geometries and extreme boundary concavities.

The physics-based deformable models described in [43]–[47]
and reviewed in Section II all use a kernel based function to
compute the external force field with kernels being decreasing
functions of distance from the origin. They are in effect equiva-
lent to the external force derived in [44] based upon convolving
a vector field with the edge map. For example, forces (3) can be
represented as a convolution with the same kernel (14) with

(19)

where is a function equal to 1 when and 0 oth-
erwise. The repelling force is largely imposed in the tangential
direction, which has very limited effect on changing the shape
or topology of the deformable model. Thus, it is not necessary
in our model. In order to compare with the dominant attraction
force , we combine (14) and (15) and rewrite the GPF force
as

(20)

It is clear that the GPF force is directed by the normal of the
deformable model, i.e., it does not contain the tangential ‘para-
sitic’ component in contrast to the force. Moreover, the pro-
posed GPF takes into account edge orientations, as well as edge
strength (the convolution in (19) is based upon a convolution of
a vector function on a scalar field; whereas in (20) it is carried
out on a vector field).

C. Edge-Preserving Enhancement of Geometric Potential
Field Using a Nonlocal Method

Although the GPF deformable model can reduce its noise
sensitivity to a certain extent by modeling gradient vector in-
teractions across the image domain, deformable models based
upon image gradients are in general susceptible to heavy noise
interference. Note, the GPF force is determined by its po-
tential , see (15), and can be precomputed before evolving
the deformable model. Thus, we can improve its performance
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towards image noise by refining the potential . Here, we en-
hance it using nonlocal methods [53], [54], so as to increase
its robustness even in the presence of a large amount of image
noise. One main advantage in choosing nonlocal methods over
local diffusion or averaging methods [55], [56] is the ability to
preserve fine structures. Moreover, the potential field has zero
or close to zero magnitude in the middle of object boundaries,
with positive and negative potential values immediately on ei-
ther side. Using local methods to carry out smoothing, there is
a risk of canceling out on object boundaries, which is not de-
sirable. In nonlocal methods [53], [54], similarity is not mea-
sured based upon a single pixel/voxel value but is measured
based upon the neighborhood of the pixel/voxel. In particular,
nonlocal methods not only compares the intensity value in a
single pixel/voxel, but also the geometrical configuration in its
neighborhood. This gives a more robust performance than local
smoothing filters. In a standard nonlocal denoising algorithm
[53], an image pixel/voxel is restored using the weighted av-
erage of all the pixels/voxels in the image. This algorithm, how-
ever, cannot be applied directly to the denoising of the geometri-
cally induced potential field . This is because edge information
in the geometric potential field is represented differently from
that of the original image. For instance, the gray level values of
the original image on the same side of object edges can be quite
similar, thus, giving a large weight for similarity measure. On
the other hand, the difference in magnitudes of the geometric po-
tential field at these regions can, however, be very large, giving a
small weight for similarity measure, causing similar structures
to be considered as different. Therefore, instead of comparing
voxel neighborhood from the geometric potential field to re-
fine itself, we measure voxel similarity from the original image
and use the computed similarity weights to refine the geometric
potential.

Given the noisy image and its corresponding geometric
potential field , this nonlocal smoothing of the geometric
potential field is carried out by computing a weighted average
at each voxel position according to

(21)

where is a search window centered around . Following the
approach in Buades et al. [53], we measure the similarity be-
tween two square (2-D) or cube (3-D) regions centered at lo-
cation and , and determine the similarity weight from the
image as

(22)

where is a Gaussian kernel with standard deviation ,
denotes the region containing the pixels/voxels location , is
the parameter that controls the amount of filtering, and is
a normalization constant given by .
The force acting due to the enhanced geometrical potential field
on the deformable surface described in (15) can then be given
as

(23)

Fig. 4. Edge-preserving nonlocal enhancement of geometric potential field:
from left—example image with noise, geometric potential field ������ and the
enhanced � �����. The potential fields shown as 3-D surface plots.

Fig. 5. Comparative results of concentric rings segmentation from noisy image.
First row: EI model. Second row: proposed GPF model.

By comparing regional similarity instead of single pixel/
voxel similarity from the noisy image, a more reliable geometric
potential field is achieved. Moreover, oscillations at flat or ho-
mogeneous regions are readily smoothed and edge information
at object boundaries are enhanced in the denoised geometric po-
tential field. Fig. 4 shows a 2-D image with 70% added Gaussian
noise, the computed geometric potential field and the en-
hanced using nonlocal filtering. It is evident that this non-
local method can efficiently remove noise interference and pre-
serves edge information in the geometric potential field. This
greatly enhances the performance of the deformable model in
handling image noise. The second row of Fig. 5 provides the
segmentation result on this substantially noise corrupted image
using the enhanced geometric potential field.

D. Relationship With MAC and Comparison With EI Models

In the MAC models [30], [48], the external force field is based
upon the hypothesized magnetic force between the active con-
tour and object edge . Interaction between two elements

and of contours and , respectively, is described in
accordance with the Biot-Savart law

(24)

where and are electric currents in contours and , re-
spectively; and are unit tangent vectors to elements and

, respectively; is the distance between and ,
is the unit vector pointing from to ; is the permeability
constant. The current directions represented by the tangent vec-
tors and have to be known in advance before computing
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the magnetic field and force. To deal with this requirement, the
authors in [30] and [48] compute the direction of the imposed
currents for the active contour and object boundary by rotating
the respective gradient vectors in a clockwise or anti-clockwise
manner such that a current loop is formed on both the active
contour and object boundary.

As shown in [30] and [48], the MAC method has many advan-
tages when dealing with objects of complicated topology, with
noise, and weak edges. However, it is difficult to extend MAC
to handle 3-D images directly as it is not apparent how the hy-
pothesized current direction is to be estimated and set on a 3-D
object. Here we show that the MAC model is a particular case
of the proposed method in 2-D.

Notice that tangent vectors and can be represented as
a cross-product of normals and and the unit vector

normal to the image plane: and
(see Fig. 1). Then applying Lagrange’s formula for the vector
triple product we obtain

(25)

(26)

Now we can rewrite (24) in the following form (ignoring
constants)

(27)

Note that the magnetic field in the 2-D model has only a vertical
component: where .
Hence, by setting , and and also taking
into account that and , it will lead us
to the 2-D GPF model as in (5) with . If we set and

, this will show that the image gradient based MAC
model is equivalent to the proposed image gradient weighted
GPF in 2-D as given in (13) and (15), again with . Thus,
we can consider the proposed method as a generalization of the
MAC method [30] to higher dimensions or, in other words, the
MAC method is a special case of GPF in 2-D.

The force field used in the EI model [49], [57] is defined based
upon the EI between line defects and can be given as

(28)

where and are points on the moving contour and on the ob-
ject boundary, respectively, is a Gaussian kernel with stan-
dard deviation , is an adjustable coefficient, and is a
smoothed Heaviside function. The EI force in (28) consists of
an image based interaction force and a contour based interaction
force. The image based interaction is given by the dot product

and takes a similar form to the proposed
geometric interactions. The term rep-
resents the contour based interaction within the moving contour.

The EI model initializes the contour using the zero-crossing
of the image based interaction force, which sets the initial con-
tour near the object boundary. This also generates many false

contours caused by spurious edges. It is assumed that the force
generated by the noise is relatively small as compared to the in-
teraction force at the object boundary. The EI model then uses
the contour based interaction force within the evolving contour
to overcome the interaction between the noise and the contour.
The parameter , thus, needs to be sufficiently large in order to
shrink the spurious edges caused by the noise. This initialization
strategy, however, is only suitable when the user intends to ex-
tract all the objects in the image. It is therefore not appropriate
to use this initialization technique to extract a single object from
multiple objects that exist in the image. For example, in order to
segment the aorta and the femoral bone from the medical images
shown in Figs. 12 and 15, respectively, the user should be able
to place the initial contour or surface inside, outside or across
the feature of interest. However, with a user-defined initializa-
tion, it is difficult to select the parameter , since a small may
not be able to handle the image noise, and a large may over-
whelm weak edges and the deformable model may not be able to
propagate through boundary concavities as an example. It is also
noted that the curvature flow used in the formulation of the EI
model is not coupled with an edge stopping function which gen-
erally exists in geometric deformable models. The weighting for
the curvature term in the EI model can be set to a large value, so
as to have significant influence on the contour evolution and to
overcome the noise. However, without the edge stopping func-
tion, a large curvature force may easily overwhelm weak edges
or even shrink the correct contour at the object boundary. More-
over, the computation of the contour based interaction force is
required at every time step during the contour evolution. Al-
though this can be accelerated by using FFT, it is still requires
a significant amount of computational effort, especially when
dealing with 3-D images.

The proposed method, however, does not rely on any specific
initialization strategy. The deformable model can be placed to
localize single or multiple regions of interest with arbitrary cross
boundary initializations. Compared to EI, it is more effective
in removing noise interference and more efficient in evolving
the deformable model. Fig. 5 gives such an example. A heavily
noise corrupted image containing concentric rings with a cross
boundary initialization is used for the test. The EI model was
found struggling to find the right balance in overcoming image
noise and propagating the contour further. The proposed method
evolves much more efficiently and achieved a much better result.

E. Implementation and Setting of Parameters

The image object boundary description used in the computa-
tion of can be acquired from the derivatives of the image
intensity using central difference, or standard edge detection
methods such as the Sobel filter as used here. Some erroneous
edges with very small magnitude were removed, i.e., 5%–10%
of the maximum magnitude. The curvature flow term used in the
level set formulation is calculated using central difference, and
the force term is computed based upon an upwind scheme. The
Narrow Band approach described in [23] is used to update the
level set function so as to reduce the computational cost of em-
bedding the contour or surface in a higher dimensional function.

As mentioned in Section III-B, can be used to deter-
mine the direction of propagation of the deformable model. In
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particular, the deformable model will extract relatively brighter
voxels from an image region when , and extract the darker
voxels when as shown in Fig. 3. is used for all
other examples in the paper. However, as shown earlier in Fig. 3,
a cross boundary initialization often results in the same result.

The enhancement of the geometric potential field using
nonlocal method can be computationally expensive if we use
a search window of size similar to that of the image. For
computational purposes, a search window of 21 21 pixels for
2-D images as suggested in [53] and for 3-D
images are generally sufficient for most images, and a square
or cube similarity neighborhood region of length 7 for 2-D
and 3-D images is usually large enough for noise robustness
and small enough to preserve fine structures and details [53].
In addition, the nonlocal filtering can be accelerated using
efficient algorithms such as the combination of summed square
image scheme and FFT used in [58], and the vectorization and
parallelization strategy described in [54]. The parameter in
(22) controls the amount of filtering which depends upon the
amount of noise present in the image. Note that refining of
the geometric potential field is only necessary when the noise
presence is significant. The proposed GPF model can handle
considerable amount of image noise as the geometric potential
field is computed using edge pixel or voxel interactions across
the whole image.

IV. RESULTS AND DISCUSSION

In this section, we present experimental results on both syn-
thetic and real 3-D image data. The algorithms are implemented
in C++, and the computations are performed on an Intel Core
2 Duo 3.00 GHz processor with 4 GB RAM. The comparative
analysis is performed using several classical and state-of-the-art
methods which consists of image gradient based and region
based methods. In particular, the geodesic model is included as
a representative of conventional local edge fitting based method
which is based upon monotonically expanding or shrinking
force. The various vector field based models, such as [43]–[47],
have very similar convergence and initialization dependence
behavior to the GVF or GGVF, since their dominant external
forces are static as discussed earlier. Thus, the GGVF model is
used as a representative of vector force field based approaches.
In addition, the Chan–Vese model with its region based for-
mulation, and the more recent EI model which uses a dynamic
vector force, are also included in the analysis.

A. Multiple Objects

The first column in Fig. 6 shows the shape extraction re-
sults for the six-ellipsoids problem. Given an arbitrary initial-
ization across all the ellipsoids, only GPF could accurately re-
cover the shapes. The geodesic model, given the same initializa-
tion configuration, simply expanded outwards and reached the
image borders. This is due to the fact that the geodesic model
cannot handle cross-boundary initialization as the constant pres-
sure term can only monotonically shrink or expand the contour.
Although the bidirectionality of the GGVF model enables it to
handle cross-boundary initialization, the saddle and stationary

Fig. 6. Shape recovery from synthetic images. (a) Isosurfaces of various shapes
to be recovered from synthetic images �������������. (b) Initial deformable
models (yellow) with input shapes (blue, semitransparent). (c) Recovered shape
using geodesic. (d) GGVF. (e) Proposed GPF.

points in this example prevented GGVF from extracting the
ellipsoids.

B. Convergence to Boundary Concavities

Next, we compare the ability of the deformable models to deal
with highly concave boundaries. As shown in the second and
third columns in Fig. 6, the geometrical object to be recovered
consists of two flattened ellipsoids connected by a narrowing
tube with a constriction in the middle. With the deformable
models initialized inside one of the ellipsoid, only GPF could
propagate through the narrowing tube to accurately extract the
shape. Also, with a more arbitrary cross-boundary initialization,
GPF was the only successful model to extract the exact shape.
The other two methods could neither handle the arbitrary ini-
tialization nor propagate through deep concavities. Note that
the bottleneck between the two ellipsoids is extremely narrow,
which makes it particularly difficult for geodesic model to prop-
agate through without stepping through the object boundary due
to the large expansion force.

C. Handling Complex Geometries and Topologies

The fourth and fifth columns in Fig. 6 compares the shape
extraction results on a complex geometry with different initial-
ization configurations. When the initial surface is placed inside
one of the sphere of the molecular structure, GPF is the only
model that managed to extract the geometry successfully. The
other two models were not able to propagate through the long
narrow tubes connecting the spheres. With a cross-boundary ini-
tialization, the geodesic model only recovered part of the geom-
etry with a negative pressure force, while GGVF converges to
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TABLE I
COMPARATIVE RESULTS ON THE SEGMENTATION OF VARIOUS SHAPES

FROM SYNTHETIC IMAGES: FOREGROUND (FG), BACKGROUND (BG)
AND OVERALL ACCURACY MEASURED IN %

the wrong shape due to the saddle and stationary regions in the
complex geometry.

The previous examples demonstrate the superior performance
of the GPF deformable model in resolving deep concavities and
handling complex geometries and topologies. This is mainly due
to the dynamic nature of the vector force field. In addition, we
show that the bidirectionality of the new force field gives GPF
the flexibility to deal with arbitrary cross-initializations.

Table I presents the comparative results for the recovery of
various shapes shown in Fig. 6. The foreground (FG) and back-
ground (BG) accuracy of the extracted shapes were measured
as the percentages of true foreground and background voxels
which were actually segmented as foreground and background,
respectively. Note that each of the synthetic images used in the
examples shown in Fig. 6 has an image size of , and con-
tains a relatively large number of background voxels compared
to the foreground voxels, e.g., the percentages of foreground and
background voxels in the six-ellipsoids images are 7.60% and
92.4%, respectively. Therefore, we use a normalized overall ac-
curacy given as the average of FG and BG to measure the accu-
racy of correctly extracted voxels from the image, so as to pre-
vent measurement bias towards the large number of background
voxels. The geodesic model is shown to give an average FG and
BG accuracy of 31.2% and 80.0%, respectively, and an average
overall accuracy of 55.6%. The GGVF model provides an av-
erage FG accuracy of 22.7%, an average BG accuracy of 99.0%
and an overall average of 60.8%. The GPF model clearly outper-
forms the others with a significantly higher FG and BG average
accuracy of 99.8% and 99.9%, respectively, and an overall av-
erage of 99.8%.

D. Recovery of Weak Object Boundaries

Fig. 7 shows a harmonic shape with smoothly varying image
intensity and substantially diffused or blurred boundary seg-
ment. The geodesic model with the initial surface placed in-
side the object as shown in the first row, leaks through the weak
edge. The GGVF model, due to the bidirectionality of its force
field, can converge to the weak edge with careful initialization.

Fig. 7. Shape recovery from weak edges. First row: geodesic. Second row:
GGVF. Third row: Chan–Vese. Fourth row: proposed GPF.

However, a more arbitrary cross-boundary initialization causes
the deformable model to collapse as shown in the second row.
The Chan–Vese model has difficulties propagating across the
image due to intensity inhomogeneity as shown in the third row
of Fig. 7. GPF, on the other hand, can efficiently localize the
object despite the weak boundary, intensity inhomogeneity, and
cross-boundary initialization, as shown in the last row.

E. Initialization Invariancy

The bidirectional and dynamic force field gives the GPF
model a high invariance to various arbitrary initializations,
therefore providing a high consistency in segmentation results.
For example in Fig. 6, the geodesic and GGVF models both
give very different segmentation results when the models are
initialized differently. Conversely, the GPF model converged
to the correct object boundaries given different initializations.
More arbitrary initializations are used in the complex geome-
tries in Fig. 8 to further illustrate the initialization invariancy of
the GPF model. In the first and third rows of Fig. 8, the initial
surface is placed across one end of the double helix shape
and molecular structure, respectively. In the second and fourth
rows of Fig. 8, a uniformly distributed initialization is used to
segment the complex geometries. No discernable difference is
found in the results produced through different initializations.

F. Robustness to Image Noise

As the geometric potential field is computed using edge voxel
interactions across the whole image, it provides a more global
view of the object boundary representation. This makes the GPF
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Fig. 8. Arbitrary initialization using GPF (yellow—deformable surfaces, semi-
transparent blue—isosurfaces from synthetic images): First and second rows:
double helix shape segmentation using different initializations. Third and fourth
rows: molecular shape segmentation using different initializations.

model more robust to image noise compared to other models
which use only local image gradient information. In addition,
the edge-preserving denoising of the geometric potential field
described in Section III-C can significantly reduce its sensitivity
to noise.

Fig. 9 shows the robustness of the GPF model on image
noise, using the geometric potential field computed directly
from the noisy image (i.e., without denoising). It accurately
extracted the shape from the noisy image. Note the substantial
amount of noise made it difficult for the marching cubes based
algorithm to render the target object (cf. Fig. 6). Fig. 10 illus-
trates the increase in noise robustness of the GPF model, using
the nonlocal denoising algorithm on the geometric potential
field. In this particular example, a considerable amount of
nonuniform noise was further added to the noisy image from
Fig. 9. As depicted in Fig. 10, the substantial amount of noise
added produces some localized noise concentration or artifacts.
Although the EI model with its contour based interaction force
can shrink the spurious edges caused by the large amount of
noise, it prevented the deformable model from propagating
across the image object. A smaller weight for the contour
based force will result in numerous erroneous regions. The
deformable model using the potential field computed directly
from the noisy image managed to extract the foreground ob-

Fig. 9. Shape recovery from noisy image—from left: noisy image, isosurface
with initialization (yellow), and recovered shape using the GPF model.

Fig. 10. Shape recovery using edge-preserving nonlocal enhancement of geo-
metric potential field—first row: noisy image ���� � ���� ����, isosurface
with initialization (yellow), and denoised geometric potential field using non-
local method; second row: evolving deformable surfaces using the EI model
(CPU-time, 109590 s); third row: evolving deformable surfaces using the GPF
model with original geometric potential field from noisy image (CPU-time,
1846 s); fourth row: evolving deformable surfaces using the GPF model with
denoised geometric potential field using nonlocal method (CPU-time, 932 s).

ject, but it also produced some erroneous edges. On the other
hand, an enhanced geometric potential field using the nonlocal
method greatly increases the accuracy of the deformable model
in segmenting the object from the noisy image. Note that no fil-
tering such as Gaussian or anisotropic smoothing was applied.
The EI model took 109590 s to converge in this example due
to the high computation cost of its contour based interaction
force at each iteration, while the GPF model achieve a much
faster convergence using 1846 s and 932 s with the original
and denoised geometric potential field, respectively. Fig. 11
compares the profiles of the geometric potential field before
and after nonlocal denoising. The noise fluctuation shown in
the original profile of geometric potential field can introduce
some false edges to the segmentation. However, the nonlocal
denoising method described previously can remove the noise
interference and enhance the true object boundary information.

G. Segmentation of Real Images

Real images often contain complex geometries and topolo-
gies, image noise and weak edges. Here, we show some compar-
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Fig. 11. Edge-preserving nonlocal denoising of geometric potential field—left:
geometric potential field (normalized) of noisy image before nonlocal de-
noising; right: geometric potential field (normalized) of noisy image with
nonlocal denoising.

Fig. 12. Segmentation of human aorta from CT image dataset �����������
using different deformable models—first row: geodesic (CPU-time, 2416 s);
second row: GGVF (CPU-time, 104 s); third row: proposed GPF (CPU-time,
1388 s). The last column shows the comparison of segmented geometries (or-
ange) with manual segmentation (blue).

ative results on the segmentation of 3-D medical data. Fig. 12
shows the segmentation of a human aorta from computed to-
mography (CT) images. In this example, a simple global image
thresholding was applied to remove the dark regions which rep-
resent air cavity in the image. This preprocessing was applied so
as to minimize the interference in segmenting the aorta. As the
geodesic model cannot handle cross-boundary initialization, the
initial surface is placed within the image structure as shown in
the first row. The constant pressure term of the geodesic model
easily overwhelms the weak edges and causes some leakage
which expands towards the image boundary. A more arbitrary
initialization is used for GGVF and GPF as shown in the second
and third rows, respectively. The GGVF model did not propa-
gate through the main aortic structure and collapsed to nearby
edges, while the GPF model accurately converged to the ge-
ometry of the aorta. Note that in order for GGVF to converge
properly, the initial surface needs to be placed very close to the
aorta boundaries, which is impractical in 3-D. The last column

Fig. 13. Segmentation of cerebral arterial structure from MR image dataset
���� � ��� � ���� using different deformable models—first row: geodesic
(CPU-time, 5073 s); second row: GGVF (CPU-time, 215 s); third row:
Chan–Vese (CPU-time, 6963 s); fourth row: proposed GPF (CPU-time,
2614 s).

compares the segmentation results with the geometry recon-
structed from manual segmentation (shown in blue). It is found
that although the geodesic model acquired a FG accuracy of
97.4% for this example, the corresponding BG accuracy ac-
quired is less than 50% due to the leakage through weak edges.
The GGVF model had difficulties propagating through the long
narrow structure and only provided a FG accuracy of 7.3%,
while the GPF model acquired a FG, BG, and overall accuracy
of 99.8%, 98.7%, and 99.2%, respectively.

Fig. 13 shows comparative results on the segmentation
of cerebral arterial structure from magnetic resonance (MR)
imaging. Two initial surfaces are placed inside the object of
interest for the geodesic model, and across the object bound-
aries for GGVF, Chan–Vese and GPF. The geodesic model
cannot propagate through the narrow tubular structures, and
leaks out at weak object boundaries during the evolution. The
GGVF model collapsed to the nearby object edges due to the
saddle or stationary points inside the narrow image structures.
In contrast, the Chan–Vese and GPF models are able to propa-
gate through the long tubular structures to extract the cerebral
arterial geometry. The EI model can be initialized near the
boundary of the cerebral structure using the zero-crossing of
the image based interaction force, and the image noise can be
subsequently removed with its contour based interaction force
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Fig. 14. Different views of the segmented cerebral arterial model using the GPF
deformable model.

Fig. 15. Segmentation of femur from CT image dataset ���� � ���� ����
using different deformable models—first row: geodesic (CPU-time, 4176 s);
second row: GGVF (CPU-time, 1250 s); third row: Chan–Vese (CPU-time,
10060 s); fourth row: EI (CPU-time, 163520 s); fifth row: proposed GPF
(CPU-time, 2423 s).

to extract the geometry. However, this specific initialization
strategy cannot be applied to segment the aorta and the femoral
bone from the medical images with multiple objects shown
in Fig. 12 and Fig. 15, respectively. Various views of the
segmented cerebral arterial model using GPF is depicted in
Fig. 14. Fig. 15 presents another example whereby a femur is
segmented from CT images using the different methods. In

Fig. 16. Different views of the segmented femoral model using the GPF de-
formable model.

Fig. 17. Segmentation of multiple branches of the carotid from CT image
dataset ����� ���� ��� using GPF (CPU-time, 2581 s).

this example, the geodesic model and the Chan–Vese model
leaked due to the weak image edges and varying intensities,
respectively, while the GGVF and EI models had difficulties in
propagating across the image object. The GPF model, however,
can effectively extract the image object despite the image noise,
weak edges and inhomogeneous intensities. Fig. 16 shows the
various views of the femoral model segmented using the GPF
model. Fig. 17 depicts the segmentation of multiple branches of
the carotid using GPF. The previous examples have shown that
the GPF deformable model can efficiently segment thin and
complex structures, and can handle inhomogeneity in image
intensities, noises and weak edges, which are often present
in real images. The improvements achieved by the proposed
method, as demonstrated extensively in various examples, are
significant and consistent.

V. CONCLUSION

We have presented a novel deformable model that uses an ex-
ternal force field known as the GPF, which is computed based
upon the relative geometrical configurations between the de-
formable model and image object. The proposed method uti-
lizes pixel or voxel interactions across the whole image, which
effectively provides a global representation of the image ob-
ject. The derived geometric potential field is, thus, more in-
formative and exhibits spatial and structural characteristics of
image objects which are more coherent than image cues that are
based solely on local edge or regional information. This makes
the new model more robust towards image noise and weak ob-
ject edges. The relativity between geometries gives the pro-
posed deformable model its distinctive bidirectionality, which
facilitates the handling of arbitrary cross-boundary initializa-
tions. In addition, the new framework is equipped with a dy-
namic vector force field that adapts appropriately to the rela-
tive position and orientation between the geometries as the de-
formable model evolves. This allows the proposed deformable
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model to seamlessly handle complex geometries and topolo-
gies efficiently. The dynamic vector force can easily attract the
deformable model into highly concave regions, and propagate
the contour or surface through long thin structures. The en-
hancement of the geometric potential field based upon regional
similarity measure, can effectively remove noise interference,
and yet preserve object edge information and fine details. We
provided several comparative examples against existing edge
based and region based techniques using various geometries and
topologies from both synthetic and real images. The compara-
tive study clearly showed that the proposed method achieved
significant improvements in convergence capability and initial-
ization flexibility and outperformed many competing methods.
The straightforward generalization of the proposed model to
higher dimensions allows the framework to be applied on N-di-
mensional images, and opens up to a wide range of potential
applications.
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