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Abstract
Federated learning is a machine learning paradigm1

that enables decentralized clients to collaboratively2

learn a shared model while keeping all the train-3

ing data local. While considerable research has fo-4

cused on federated image generation, particularly5

Generative Adversarial Networks, Variational Au-6

toencoders have received less attention. In this7

paper, we address the challenges of non-IID (in-8

dependently and identically distributed) data envi-9

ronments featuring multiple groups of images of10

different types. Non-IID data distributions can11

lead to difficulties in maintaining a consistent la-12

tent space and can also result in local generators13

with disparate texture features being blended dur-14

ing aggregation. We thereby introduce FissionVAE15

that decouples the latent space and constructs de-16

coder branches tailored to individual client groups.17

This method allows for customized learning that18

aligns with the unique data distributions of each19

group. Additionally, we incorporate hierarchical20

VAEs and demonstrate the use of heterogeneous21

decoder architectures within FissionVAE. We also22

explore strategies for setting the latent prior dis-23

tributions to enhance the decoupling process. To24

evaluate our approach, we assemble two compos-25

ite datasets: the first combines MNIST and Fash-26

ionMNIST; the second comprises RGB datasets of27

cartoon and human faces, wild animals, marine28

vessels, and remote sensing images. Our exper-29

iments demonstrate that FissionVAE greatly im-30

proves generation quality on these datasets com-31

pared to baseline federated VAE models.32

1 Introduction33

Generative models have attracted increasing attention in re-34

cent years due to their impressive ability to generate new35

data across various modalities, including images [Ho et al.,36

2020], texts [Touvron et al., 2023], and audios [Borsos et al.,37

2023]. As these models, like other deep learning systems,38

require substantial amounts of data, concerns regarding data39
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privacy have elevated among regulatory authorities and the 40

public. Unlike the traditional centralized learning paradigm, 41

which collects all data on a single computer system for train- 42

ing, federated learning allows private data to remain on the 43

owner’s device. In this paradigm, local devices train mod- 44

els independently, and a central server aggregates these mod- 45

els without accessing the individual data directly. Although 46

this distributed approach enhances privacy protection, it also 47

introduces unique challenges not encountered in centralized 48

systems. Since data remains distributed across various client 49

devices, the training samples are not guaranteed to be identi- 50

cally distributed. This can lead to inconsistencies in learning 51

objectives among clients, resulting in degraded performance 52

when these models are aggregated on the server. 53

In the context of FL with non-IID data, generative mod- 54

els such as Generative Adversarial Networks (GANs) [Good- 55

fellow et al., 2014] and Variational Autoencoders (VAEs) 56

[Kingma and Welling, 2014] face additional challenges. 57

These models involve sampling from a latent distribution, and 58

the generator or decoder trained on client devices may de- 59

velop differing interpretations of the same latent space. This 60

discrepancy can lead to difficulties in maintaining a consistent 61

and unified latent space, resulting in ambiguous latent repre- 62

sentations. A further challenge arises from the role of the 63

generator or decoder, which are tasked with mapping latent 64

inputs to the sample space by synthesizing the shape, texture, 65

and colors of images. Aggregating generative models trained 66

on non-IID image data can produce artifacts that appear as a 67

blend of disparate image types, because generators trained on 68

non-IID local data capture the characteristics of varied visual 69

features. Specifically for GANs, another problem arises from 70

local discriminators, which may provide conflicting feedback 71

that hinders model convergence. With the limited data avail- 72

able in FL settings, discriminators can quickly overfit to the 73

training samples [Karras et al., 2020]. If an updated genera- 74

tor from the server produces images of classes not present in a 75

client’s local dataset, the local discriminator might incorrectly 76

label well-generated images as fake, simply because they do 77

not match the local data distribution. This mislabeling can 78

significantly impede the generator’s ability to synthesize re- 79

alistic images. 80

Existing research on generative models for non-IID data 81

in federated learning (FL) has primarily focused on GANs. 82

MDGAN [Hardy et al., 2019] proposes exchanging local dis- 83



criminators among clients during training. This strategy al-84

lows discriminators to access a broader spectrum of local85

data, thereby avoiding biased feedback to the generator. The86

authors of [Yonetani et al., 2019] uses the local discriminator87

that gives the highest score to a generated sample to update88

the global generator, promoting the idea that local discrimina-89

tors should only judge samples from familiar distributions. In90

[Xiong et al., 2023], the authors aggregate generators at the91

group level for client groups sharing similar data distributions92

before performing a global aggregation, then the global gen-93

erator is aggregated similar to [Yonetani et al., 2019]. Both94

[Yonetani et al., 2019] and [Xiong et al., 2023] involve send-95

ing synthesized samples back to local clients, which could96

potentially increase the risk of compromising client data pri-97

vacy.98

Studies employing VAEs solely for image generation pur-99

poses are less common. The works in [Chen and Vikalo,100

2023] and [Heinbaugh et al., 2023] utilize VAEs to produce101

synthetic images that assist in training global classifiers. In102

[Chen and Vikalo, 2023], the global decoder generates mi-103

nority samples for local classifiers by sampling from class104

means with added noise. The approach in [Heinbaugh et105

al., 2023] treats converged local decoders as teacher mod-106

els and uses knowledge distillation to train a global generator107

on the server side without further local updates. While this108

decoder can produce useful samples for classification tasks,109

it risks overfitting to the potentially flawed output from local110

decoders and lacks generative diversity, which is crucial for111

high-quality image generation. Recent studies [Bohacek and112

Farid, 2023] [Shumailov et al., 2024] have shown that gen-113

erative models trained on generated samples instead of real114

data are prone to collapsing. VAEs are also widely used in115

collaborative filtering tasks for recommendation systems [Po-116

lato, 2021; Zhang et al., 2024; Li et al., 2025]. These mod-117

els typically learn user embeddings from interaction vectors118

using a standard Gaussian prior, and decode into item-score119

distributions for ranking. In contrast, image generation tasks120

require decoding into high-dimensional pixel space, where is-121

sues such as latent space ambiguity and domain-specific tex-122

ture blending and arise, which are not present in collaborative123

filtering. As such, the architectural and modeling considera-124

tions in our work are fundamentally different.125

In response to the challenges posed by non-IID data in fed-126

erated image generation, we introduce a model named Fis-127

sionVAE. This model is specifically tailored to environments128

featuring multiple groups of images of different types. To129

mitigate the problem of mixed latent space interpretation, Fis-130

sionVAE decomposes the latent space into distinctive priors,131

hence adapting to the diverse data distributions across differ-132

ent image types. We further refine this approach by investi-133

gating strategies for encoding the prior Gaussians. Addition-134

ally, to prevent the blending of unrelated visual features in135

the generated outputs, FissionVAE employs specialized de-136

coder branches for each client group. This method not only137

accommodates the unique characteristics of each data sub-138

set but also enhances the model’s generative capabilities in139

highly heterogeneous environments. The primary contribu-140

tions of our research are detailed as follows:141

1. We introduce FissionVAE for federated non-IID image142

generation. In FissionVAE, we decompose the latent space 143

according to the distinct data distributions of client groups. 144

This approach ensures that each client’s data are mapped to 145

its corresponding latent distribution without the adverse ef- 146

fects of averaging dissimilar distributions during aggregation. 147

Moreover, by implementing separate decoder branches for 148

different groups of data, FissionVAE allows for specialized 149

generation tailored to different image types, which is crucial 150

for preserving the distinct visual features of different image 151

types during the generative process. 152

2. We explore various strategies for encoding Gaussian pri- 153

ors to enhance the effectiveness of latent space decomposi- 154

tion. We further extends FissionVAE by introducing the hi- 155

erarchical inference architecture. We demonstrate that with 156

the decomposed decoder branches, it is feasible to employ 157

heterogeneous decoder architectures in FissionVAE, allowing 158

for more flexible model deployment on clients. 159

3. We validate FissionVAE with extensive experiments on 160

two composite datasets combining MNIST with FashionM- 161

NIST, and a more diverse set comprising cartoon and human 162

faces, animals, marine vessels, and remote sensing images. 163

Our results demonstrate improvements in generation quality 164

over the existing baseline federated VAE. 165

The remainder of the paper is organized as follows: In 166

Section 2, we describe the baseline FedVAE model and the 167

FissionVAE variants we propose. Section 3 presents the ex- 168

perimental setup, including the configuration details and an 169

analysis of the results. Finally, we conclude the paper in Sec- 170

tion 4 with a summary of our findings and a discussion on 171

potential future directions. 172

2 Investigating Strategies for Non-IID Image 173

Generation with VAEs 174

In this section, we describe our methodology for exploring 175

VAE configurations tailored for generating images under non- 176

IID conditions in a federated learning framework. For back- 177

ground on FL and VAEs, please refer to the supplementary 178

material. We specifically address scenarios where clients are 179

categorized based on distinct data distributions. For illustra- 180

tive purposes, we consider the case where some clients ex- 181

clusively possess hand-written digit images from the MNIST 182

dataset, while others maintain only clothing images from the 183

FashionMNIST dataset. We follow to the standard federated 184

learning framework, wherein a central server is tasked with 185

aggregating updates from the clients and subsequently dis- 186

tributing the updated model back to them. FedAvg [McMa- 187

han et al., 2023] is employed for server-side aggregation. 188

Each client retains a subset of data representative of its re- 189

spective group and conducts local training independently. A 190

more practical scenario with RGB images and a larger num- 191

ber of client groups is explored and discussed in the experi- 192

ments section (Section 3). 193

2.1 FedVAE 194

A straightforward strategy for implementing VAEs in feder- 195

ated learning is using a unified encoder-decoder architecture. 196

In this configuration, all clients share a common latent space 197

(often predefined as the normal distribution N (0, 1)) and the 198



FissionVAE with 
Decoupled Latent Space and Branching Decoders

Vanilla FedVAE FissionVAE with 
Decoupled Latent Space

Figure 1: Qualitative results of the baseline FedVAE and proposed FissionVAEs. As we further decoupling the latent space and decoders in
the federated environment, the quality of generated images is improved.

central server indiscriminately aggregates client models at the199

end of each training round. This approach is named FedVAE200

in [Jiang et al., 2023] for trajectory data generation. Fig. 2201

illustrates this baseline training scheme.202

Client Group A

Central Server

FedAvg(A, B)FedAvg(A, B)

Encoder Decoder

Client Group B

Encoder Decoder

Encoder Decoder

Figure 2: An illustration of baseline FedVAE. The encoder and the
decoder of the VAE are aggregated through FedAvg regardless of
their client groups.

Despite the simplicity of this strategy, it present significant203

challenges in the non-IID scenario. Specifically, employing a204

single prior distribution for the latent space does not account205

for the distinct data distributions across different clients. En-206

coders from different client groups may map their uniquely207

distributed data into the same region of the latent space. Con-208

sequently, client decoders might interpret this shared latent209

space differently, leading to inconsistencies or even conflicts210

among client models during aggregation at the server. Figure211

1 shows randomly generated samples produced after training212

the federated Vanilla VAE on the combined dataset of MNIST213

and FashionMNIST. These samples clearly exhibit artifacts214

that appear to blend features of handwritten digits with cloth-215

ing items, indicating the aggregation conflicts inherent in this216

method.217

2.2 FissionVAE with Latent Space Decoupling218

To address the conflicting latent space issue identified above,219

we propose decomposing the latent space according to differ-220

ent data groups, while maintaining a unified architecture for221

the encoder and decoder. This approach corresponds to the222

architecture shown in Fig. 3. 223

Client Group A

Central Server

FedAvg(A, B)FedAvg(A, B)

Encoder Decoder

Client Group B

Encoder Decoder

Encoder Decoder

Figure 3: An illustration of FissionVAE with Latent Space Decou-
pling. The latent variables are forced to follow their respective group
prior distributions. The model is aggregated the same way as the
baseline FedVAE.

When decoupling the latent space, the encoder maps the in- 224

put data to different distributions based on the client’s group. 225

For instance, MNIST client may map to N (−1, 1) and Fash- 226

ionMNIST clients to N (1, 1). The KL divergence in the 227

ELBO for this model is given by: 228

DKL(N (µq,σq||N (±1, 1)) =
1

2
Σk

i=1[σi+µ2
i ∓2µi−log σi]

(1)
Here, µq and σq represent the encoder’s estimates for the 229

parameters of the latent code’s distribution, and k is the di- 230

mension of the latent code. 231

Figure 1 shows randomly generated amples produced af- 232

ter training the FissionVAE with latent space decoupling on 233

the Mixed MNIST dataset. While the quality of reconstructed 234

images are improved compared to the baseline FedVAE, the 235

generated images still exhibit a mixture of handwritten digits 236

and clothing items, even when explicitly sampling from their 237

respective latent distributions. This suggests that while de- 238

composing latent encoding helps improving reconstructions, 239
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Figure 4: An illustration of Hierarchical FissionVAE. This FissionVAE architecture extends to allow two levels of latent variables. The latent
variable z1 can be either learned or predefined. As input from different groups has been separated by z1, the latent variable z2 is set to follow
the standard normal distribution.

the unified decoder still blends features due to the aggregation240

of model weights from diverse visual domains. This observa-241

tion motivates the architecture described in the next section,242

where the decoder is also split based on client groups.243

2.3 FissionVAE with Group-specific Decoder244

Branches245

Non-Hierarchical FissionVAE Building on the concept in-246

troduced by FissionVAE with latent space decoupling, we247

further refines non-IID data generation by incorporating de-248

coder branches specific to each data group while maintaining249

a unified encoder. This design allows the central server to ag-250

gregate the encoder updates agnostically of the client groups,251

whereas decoder branches are aggregated specifically accord-252

ing to their corresponding groups. In addition, this approach253

also offers flexibility in the choice of the prior latent distribu-254

tion p(z) for each group to exert more explicit control over255

the data generation through the decoder. Figure 5 illustrates256

this branching architecture.257

FedAvg(A, B)

Client Group A

Central Server

FedAvg(A)

FedAvg(B)

Encoder

Decoder

Decoder

Client Group B

Encoder

Decoder

Decoder

Encoder

Decoder

Decoder

Figure 5: An illustration of FissionVAE with Decoder Branch De-
coupling. This FissionVAE creates decoders specific to client groups
and enforces constraints for latent variable priors. The encoder is
aggregated across groups while the group-specific decoder is only
aggregated from local models within the corresponding group.

Figure 1 also includes randomly generated samples pro- 258

duced after training the FissionVAE with decoder branches. 259

The results indicate a significant reduction in the blending 260

feature issue in previously discussed VAE architectures. 261

Hierachical FissionVAE Next, we show that the branching 262

architecture can be enhanced by integrating hierarchical in- 263

ference [Kingma et al., 2016] [Sønderby et al., 2016] to 264

the federated learning framework, which enables the use of 265

deeper network structures to capture more complex data dis- 266

tributions. Fig 4 depicts the FissionVAE with two levels of 267

hierarchical inference. In this architecture, the first encoder 268

module estimates q(z1|x) from the input data, then the sec- 269

ond encoder module estimates q(z2|z1) based on the first 270

level latent code. The decoder reverses the encoding process, 271

which estimates p(z1|z2) based on z2 to reconstruct z1, and 272

subsequently reconstructs the original input x by estimating 273

p(x|z1). 274

Following the convention in hierarchical VAEs, we assume 275

conditional independence among the latent codes.Then the 276

ELBO for this hierarchical VAE is expressed as (refer to sup- 277

plementary material for derivation), 278

ELBOH = Eqϕ(z1|x)[log pθ(x|z1)]
− Eqϕ(z1|x)[DKL(qϕ(z2|z1)||p(z2))]

− Eqϕ(z2|z1)[DKL(qϕ(z1|x)||pθ(z1|z2)] (2)

In the equation above, the first term is the reconstruction term 279

as it is the expectation of the log-likelihood for the input sam- 280

ples under the distribution estimated from the encoded z1, the 281

second term is the prior matching term which is enforcing the 282

encoded z2 to conform the prior distribution z2 ∼ N (0, 1), 283

and the last term is the consistency term which requires z1 284

from either the encoder or the decoder to be consistence. In 285

practice, we find that adding the reconstruction loss from z2 286

to x is also crucial for generating meaningful samples. Op- 287

tionally, perceptual losses such as the VGG loss [Ledig et 288

al., 2017] or the structural similarity index measure (SSIM) 289

[Wang et al., 2004] loss can be used to promote the fidelity of 290

reconstructed images. However, no significant improvement 291

is observed in our experiments. Therefore no perceptual loss 292



is included in our implementation. The final loss function for293

the hierarchical and branching FissionVAE then becomes,294

L = Eqϕ(z1|x)[DKL(qϕ(z1|zx)||p(z1))]
− Eqϕ(z2|z1)[log pθ(x|z1, z2)]− ELBOH (3)

Here we minimize the KL divergence for z1 only when the295

prior distribution for z1 is explicitly defined, otherwise the296

model learns the latent distribution by itself.297

The proposed hierarchical FissionVAE also allows hetero-298

geneous decoder architectures for each client groups, as each299

decoder branch is trained and aggregated independently. This300

flexibility is particularly advantageous in federated learning301

environments, where clients often possess varying computa-302

tional resources. Client groups with more resources can im-303

plement deeper and more complex network structures, while304

groups with limited computational capacity can utilize lighter305

models.306

Complexity of FissionVAE FissionVAE’s space complex-307

ity grows linearly with the number of clients, due to group-308

specific decoder branches. Time complexity per client fol-309

lows standard feedforward model training. While we use310

smaller batch sizes to encourage better latent space explo-311

ration, this does not change asymptotic complexity.312

3 Experiments313

3.1 Datasets and Evaluation Metrics314

We evaluated the proposed federated VAEs using two com-315

posite datasets. Mixed MNIST combines MNIST [LeCun316

and Cortes, 2010] and FashionMNIST [Xiao et al., 2017], di-317

viding samples into two client groups (one per dataset) with318

10 clients each. Training samples were evenly distributed319

within each group, and the default test sets served as evalua-320

tion benchmarks. An equal number of images were generated321

using the global model for comparison.322

CHARM is a more diverse dataset combining five domains:323

Cartoon faces [Churchill, 2019], Human faces [Karras et al.,324

2018], Animals [Xian et al., 2019], Remote sensing images325

[Helber et al., 2019], and Marine vessels [Gundogdu et al.,326

2016], using preprocessed square images from Meta-Album327

for AwA2 and MARVEL. Images were resized to 32 × 32,328

and each domain was represented by 20 clients, with 20,000329

images for training and 5,000 for evaluation. As with Mixed330

MNIST, the global model generated evaluation samples.331

For Mixed MNIST, encoders and decoders used Multi-332

Layer Perceptrons (MLPs). On CHARM, encoders q(z1|x)333

and decoders p(x|z1) were convolutional, while q(z2|z1)334

and p(z1|z2) used MLPs. Client participation followed335

a Bernoulli distribution: B(0.5) for Mixed MNIST and336

B(0.25) for CHARM. Hyperparameters included learning337

rates of 1× 10−3 (Mixed MNIST) and 1× 10−4 (CHARM),338

with 70 and 500 training rounds, respectively. Clients per-339

formed 5 local epochs per round with a batch size of 32. Cen-340

tralized settings used 70 epochs for Mixed MNIST and 250341

for CHARM.342

Evaluation metrics included Fréchet Inception Distance343

[Heusel et al., 2017] and Inception Score [Salimans et al.,344

2016] for generation quality, and the negative log-likelihood 345

(NLL) of the ELBO for reconstruction performance. IS 346

was computed using an ImageNet-pretrained Inception model 347

[Szegedy et al., 2016]. 348

3.2 Results and Analysis 349

Here we present the following experiments: we first evaluate 350

the overall generative performance of the proposed VAE ar- 351

chitectures in both federated and centralized settings, then we 352

explore strategies for encoding the prior distribution p(z1), 353

and lastly we showcase the use of heterogeneous decoder ar- 354

chitectures in our FissionVAEs. For experiments investigat- 355

ing different generation pathways of hierarchical VAEs and 356

the effect of reconstruction losses, please refer to our supple- 357

mentary material. 358

Overall Performance 359

The overall performance of the proposed FissionVAE mod- 360

els is summarized in Table 1, and generated examples are 361

shown in Fig. 6. In addition to the FedVAE baseline, a 362

Deep Convolutional GAN (DCGAN) [Radford et al., 2016] 363

trained via FedGAN [Rasouli et al., 2020] is used for com- 364

parison. Since GAN does not directly model the likelihood of 365

data, NLL is not evaluated for FedGAN. Also, FedGAN on 366

CHARM suffers from severe mode collapse, therefore per- 367

formance evaluation is not available on this dataset. Notably, 368

the performance of all models on the CHARM dataset is less 369

robust compared to the Mixed MNIST dataset. This discrep- 370

ancy arises because the CHARM dataset, encompassing RGB 371

images from diverse domains, presents a more complex and 372

realistic federated learning scenario. The dataset’s diversity, 373

coupled with a lower local data availability and participation 374

rate among clients, poses greater challenges to federated gen- 375

erative models. 376

Latent Space Decoupling vs Decoder Branches As shown 377

in Table 1, both latent space decoupling and group-specific 378

decoder branches improve image quality (lower FID, higher 379

IS). Decoder branches alone yield larger gains, highlighting 380

the negative impact of mixing decoders trained on non-IID 381

data. 382

FissionVAE+L moderately improves upon FedVAE by par- 383

titioning the latent space by client group, helping the decoder 384

better distinguish domain-specific features and reducing rep- 385

resentation overlap. Fig. 6 shows that while FissionVAE+L 386

enables group-specific sampling, shared decoder aggregation 387

still causes artifacts such as blended features. 388

FissionVAE+D, with a unified encoder and domain- 389

specific decoder branches, greatly reduces visual blending. 390

The encoder functions like a routing module akin to Mixture- 391

of-Experts, which directs inputs to group-specific latent dis- 392

tributions. As decoders remain distinct during aggregation, 393

texture mixing is avoided, producing cleaner outputs (Fig. 6). 394

FissionVAE+L+D combines both latent space decoupling 395

and decoder branches. As shown in Table 1, Fission- 396

VAE+L+D yields marginal gains on Mixed MNIST but out- 397

performs FissionVAE+D on CHARM. Enforcing latent space 398

decoupling yields different outcomes depending on the num- 399

ber of client groups. For Mixed MNIST (2 groups), the FID 400

is lowered due to the extra latent constraints. However, as the 401



Model
Mixed MNIST CHARM

Federated Centralized Federated Centralized
FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓

FedGAN 118.52 2.39 - 91.08 3.18 - - - - - - -
FedVAE 117.03 2.29 0.23 40.59 3.62 0.18 167.18 1.57 40.80 89.26 2.57 46.99

FissionVAE+L 64.99 2.83 0.22 39.27 3.03 0.18 155.81 1.73 43.49 86.19 2.53 51.45
FissionVAE+D 40.78 3.01 0.26 34.76 3.05 0.25 120.39 2.16 33.07 63.25 2.95 36.76

FissionVAE+L+D 42.11 3.04 0.25 34.39 3.08 0.20 109.10 2.27 33.29 50.30 2.89 40.14
FissionVAE+H+L+D 47.72 2.98 0.30 28.82 3.16 0.24 107.69 2.32 27.46 74.59 2.58 27.09

Table 1: Evaluation of proposed FissionVAEs on the Mixed MNIST and CHARM dataset. +L is for decoupled latent space. +D is for
branching decoders. +H is for the hierarchical architecture. Best results in are in bold. Second best results are underlined. ↑ denotes the
higher the better, while ↓ means the lower the better.

FedVAE 
(baseline federated VAE)

FissionVAE + L 
(FissionVAE with Decoupled Latent Space)

FissionVAE + D
(FissionVAE with Decoupled Decoder Branches)

FissionVAE + L + D
(FissionVAE with Decoupled Latent Space and Decoder Branches)

Figure 6: Qualitative results of image generation with FissionVAEs on the CHARM dataset. Best viewed in color.

number of client groups increases on CHARM (5 groups),402

explicit latent space decoupling provides more direct signal403

to the VAE to identify the intra-group difference, resulting an404

improved FID. In Fig. 6 it can be observed that images gener-405

ated by FissionVAE+L+D are sharper than the ones generated406

by FissionVAE+D.407

Hierarchical FissionVAE As discussed in Section 2, here we408

consider a hierarchical VAE with two levels of latent vari-409

able. In Table 1, the architecture FissionVAE+H+L+D per-410

forms the best on the CHARM dataset and falls behind its411

non-hierarchical counterpart on the Mixed MNIST dataset.412

The hierarchical VAE employs multiple levels of latent repre-413

sentations, which refines the model’s ability to capture and re-414

construct complex data distributions more faithfully. The per-415

formance degradation on simpler datasets like Mixed MNIST416

suggests that the hierarchical approach might introduce un-417

necessary redundancy without proportional gains in perfor-418

mance.419

Decoupling the Prior of z1420

Explicitly decoupling the latent space for different client421

groups improves the ability of VAEs to generate images that422

align with the true data distribution (Table 1). We explore sev-423

eral priors for the latent distribution, modeled as multivariate424

Gaussians with customizable means and identity covariance425

matrices and evaluate them in Table 2. Details regarding the426

Model Prior p(z1)
Mixed MNIST CHARM
FID ↓ IS ↑ FID ↓ IS ↑

FissionVAE+L+D

identical 40.78 3.01 120.39 2.16
one-hot 42.01 3.02 113.82 2.25

symmetrical 41.79 2.95 - -
random 43.26 3.00 111.77 2.47
wave 42.11 3.04 109.10 2.27

FissionVAE+H+L+D

identical 55.91 2.96 122.16 2.30
one-hot 53.22 2.97 121.33 2.29

symmetrical 58.21 3.03 - -
random 53.99 2.94 124.91 2.23
wave 53.68 2.94 118.56 2.24

learnable 47.72 2.98 107.69 2.32

Table 2: Evaluation of Generation Performance with z1 Priors

formal definition of priors can be found in the supplementary 427

material. 428

In non-hierarchical VAEs, z1 represents the sole latent 429

variable, while in hierarchical VAEs, z1 is controlled, with 430

z2 following a standard normal distribution N(0, 1). Base- 431

line priors are identical across client groups. Other prior 432

variations include one-hot encoding, symmetrical positive 433

and negative integers, random vectors, wave encodings (with 434

grouped 1’s in dimensions corresponding to client groups), 435

and a learnable approach unique to hierarchical VAEs. The 436

learnable approach dynamically aligns priors but sacrifices 437



Decoder Architecture
on the FashionMNIST Branch

MNIST FashionMNIST Overall
FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓

Homogeneous 46.73 2.41 0.38 61.81 2.92 0.61 47.72 2.98 0.30
Deeper MLP 49.54 2.38 0.33 60.95 2.90 0.78 48.79 2.95 0.39

Deeper MLP + Conv 48.21 2.38 0.38 65.82 2.99 0.60 50.16 3.00 0.30

Table 3: Evaluation of FissionVAE+H+L+D with Heterogeneous Decoder Architectures on the Mixed MNIST

direct sampling from p(z1).438

Hierarchical FissionVAE often underperforms non-439

hierarchical variants when predefined priors are used due to440

increased uncertainty from additional latent layers. How-441

ever, the learnable approach excels in capturing complex442

distributions dynamically. In simpler datasets like Mixed443

MNIST, identical priors suffice, but explicit latent encoding444

becomes crucial as client group diversity increases, as seen445

with CHARM.446

Among prior definitions, symmetrical priors often lead to447

divergence on CHARM, as their means may exceed neu-448

ral network initialization ranges. One-hot and random ap-449

proaches show comparable results but are less consistent450

than wave encoding, which clearly distinguishes group pri-451

ors without out-of-range values.452

Group-level Privacy453

In the presence of hierarchical VAEs, it is possible to incorpo-454

rate the encoder qϕ(z2|z1) into the generation process, that455

is, we can first sample the latent code z1 from its prior dis-456

tribution, then feed it to the subsequent encoder qϕ(z2|z1)457

and the decoders pθ(z1|z2) and pθ(x|z1) to obtain the syn-458

thesize a generated sample. On the Mixed MNIST dataset,459

we observe that swapping the prior distributions of the two460

client groups in the such a generation pathway leads to ev-461

ident mode collapse, shown in Figure 7. This suggests that462

the group-level privacy may be preserved by maintaining the463

confidentiality of prior distributions. This strategy ensures464

that high-quality samples are generated only when the cor-465

rect prior distribution is used, while mismatched distributions466

yield unrecognizable outputs. This phenomenon is more pro-467

nounced in both hierarchical and non-hierarchical Fission-468

VAEs on the Mixed MNIST dataset than on the CHARM469

dataset, likely due to the simpler, more uniform nature of the470

Mixed MNIST data compared to the diverse and colorful im-471

age types in CHARM, which pose greater challenges in sat-472

isfying complex latent distribution constraints. Evaluation on473

other generation pathways are presented in the supplementary474

material.475

Heterogeneous Decoders in FissionVAE476

As discussed in Section 2, the decoupling of decoders for477

client groups allow for the use of heterogeneous architectures478

in FissionVAE. The Mixed MNIST dataset, with its relatively479

simple and grayscale colors, can be generated from both fully480

connected (MLP) and convolutional layers. In contrast, the481

more complex and colorful images in the CHARM dataset482

predominantly require convolutional layers for effective gen-483

eration.484

Table 3 details the performance evaluation of various de-485

coder architectures. The term ’homogeneous’ refers to iden-486

Sampling z1 from

Corresponding Group Prior

Sampling z1 from

Swapped Group Prior

Figure 7: In hierarchical FissionVAE, when the prior distribu-
tion p(z1) of the MNIST and FashionMNIST groups are swapped,
the generation pathway q(z1) → qϕ(z2|z1) → pθ(z1|z2) →
pθ(x|z1) leads to sever mode collapse, suggesting potential group-
level privacy preserving through protected prior distribution.

tical architectural configurations across all decoder branches, 487

namely a three-layer MLP for each decoder modules. In the 488

‘Deeper MLP’ configuration, we add two additional fully 489

connected layers to both pθ(z1|z2) and pθ(x|z1). Mean- 490

while, we completely replace the decoder pθ(x|z1) from 491

MLP to a series of transpose convolution layers in the ‘Deeper 492

MLP + Conv’ configuration. The results indicate a gradual re- 493

duction in overall FID scores as the decoder architecture be- 494

comes more heterogeneous. However, the integration of con- 495

volutional layers does not improve generation performance 496

over the MLP models, underscoring that while heterogeneous 497

architectures are feasible, they can disrupt the convergence of 498

the VAE due to mismatches in architecture and the model’s 499

weight space. 500

4 Conclusion 501

We presented FissionVAE, a generative model for federated 502

image generation in non-IID data settings. By decoupling the 503

latent space and employing group-specific decoder branches, 504

FissionVAE enhances generation quality while preserving 505

the distinct features of diverse data subsets. Experiments 506

on Mixed MNIST and CHARM datasets demonstrated sig- 507

nificant improvements over baseline federated VAE models, 508

with heterogeneous decoder branches and wave-encoded pri- 509

ors proving particularly effective. Future work includes im- 510

proving the stability of heterogeneous decoder branches, en- 511

abling cross-modality data generation, and developing scal- 512

able strategies for handling an increasing number of client 513

groups in real-world federated learning scenarios. 514
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