
3D Mesh Segmentation via Multi-branch 1D Convolutional Neural Networks

David George, Xianghua Xie, Gary KL Tam

Swansea University, United Kingdom

Abstract

There is an increasing interest in applying deep learning to 3D mesh segmentation. We observe that 1) existing
feature-based techniques are often slow or sensitive to feature resizing, 2) there are minimal comparative studies
and 3) techniques often suffer from reproducibility issue. This study contributes in two ways. First, we propose
a novel convolutional neural network (CNN) for mesh segmentation. It uses 1D data, filters and a multi-branch
architecture for separate training of multi-scale features. Together with a novel way of computing conformal factor
(CF), our technique clearly out-performs existing work. Secondly, we publicly provide implementations of several
deep learning techniques, namely, neural networks (NNs), autoencoders (AEs) and CNNs, whose architectures are at
least two layers deep. The significance of this study is that it proposes a robust form of CF, offers a novel and accurate
CNN technique, and a comprehensive study of several deep learning techniques for baseline comparison.

Keywords: Mesh Segmentation, Mesh Processing, Deep Learning

1. Introduction

Automatic mesh segmentation is the decomposition
of a 3D mesh into meaningful parts. It aims to produce
results as similar to those produced by humans. The
ability to properly segment a 3D mesh is important to
many downstream applications, such as shape retrieval
[1], matching [2], editing [3, 4], deformation [5] and
modelling [6]. Many of these applications require well-
defined mesh segments, making a robust and accurate
segmentation algorithm essential.

From a machine learning point of view, mesh seg-
mentation can be broadly categorised as unsupervised
and supervised segmentation. Earlier techniques fo-
cused on segmenting a single mesh in an unsupervised
manner. They first compute features (e.g. shape diam-
eter function [7], approximate convexity [8] and cur-
vature [9]) for the faces of the meshes, and uses an
optimisation technique to produce the segmentation re-
sults. Notable techniques include k-means [10], mean-
shift clustering [11] and normalized and randomized
cuts [12]. A detailed survey can be found in [13, 14].
Given the large shape variability of segments, more re-
cent approaches consider consistent co-segmentation of
a collection of shapes, where class labels are consistent
throughout the set [15, 16].

Segmentation often requires a higher level under-
standing of the 3D shapes, as composition of an ob-

ject often relates to shapes and functionality of its parts
[17] . Supervised techniques treat segmentation as a la-
belling problem and use machine learning to optimise
the mapping from features to labels. It requires exten-
sive manual effort to label all data properly for training.
With the recent effort from the community (e.g. shape
benchmarks [14]), supervised techniques are gaining fo-
cus. The work by [18] pioneered to apply joint boosting
on a large set of shape features for effective labelling.
Recently, [19] used an extreme learning machine (a sin-
gle layer wide neural network), then later expanded it
to a two-layer network [20], however the performance
is marginally better than traditional shallow classifiers
[21]. Later [22] applied Convolutional Neural Networks
(CNNs) to mesh segmentation.

Despite these research efforts, there are still many re-
search questions unexplored. First, it is generally un-
clear which deep learning techniques work and which
do not for mesh segmentation, and what features work
best. To the best of our knowledge, most supervised
feature-based mesh segmentation techniques use geo-
metric features derived mostly from one face (except
[18] which also computes a few geometric features cur-
vatures, PCAs with different radii). As such, spatial
scale information is mostly not considered in their learn-
ing architecture. A feature-based deep learning network
architecture for segmentation that considers multi-scale

Preprint submitted to Graphical Models September 28, 2017

geometric features derived from a set of local faces has
not been fully explored. Also, there has been no com-
parative analysis of a broader spectrum of deep learning
techniques. Second, the reproducibility of these tech-
niques depends on the architecture, exact implementa-
tion and the set of training datasets used. This informa-
tion and along with complete source code is largely un-
available. Coupled with these, there are also challenges
in training the networks properly due to the variability
in CNN architectures, large number of samples (200K-
2M samples per set) and lengthy training time (in terms
of months). All these elements hinder the development
of supervised 3D segmentation techniques.

In this paper, we try to address several research ques-
tions. (i) Compared to existing learning techniques that
use features mostly defined per face, can a deep learn-
ing architecture, considering multi-scale features de-
rived from a set of faces, be useful? (ii) Compared to
[22] that reshapes features into 2D images and applies
a basic image-based CNN pipeline for shape segmen-
tation, can we treat input features as a single 1D fea-
ture vector? This would avoid the tuning of image size,
and improve efficiency and performance of CNNs. (iii)
Finally, how much improvement can CNNs have over
existing deep learning techniques. Our contributions of
this paper are four-fold:

• First, we introduce a novel and accurate CNN tech-
nique for 3D mesh segmentation. We introduce
a multi-branch network architecture that separately
trains features of three different scales. These multi-
scale features are derived from features that asso-
ciates to an increasing local neighbourhood of faces.
The use of 1D feature vectors also remove most of the
assumed feature relationships that are imposed by an
image-based CNN when reshaping the feature vector
into a 2D image. Our novel technique clearly out-
performs existing feature-based CNN technique [22].

• Second, we propose a novel feature vector of confor-
mal factor (CF) which is computed from incremen-
tal smoothing of geometry. It is less sensitive to high
curvature noise, and consistently provides higher seg-
mentation accuracy than [23] alone.

• Third, we perform a comprehensive comparison of
deep learning techniques (at least two layers deep)
for supervised mesh segmentation, specifically Neu-
ral Networks (NNs), Autoencoders (AEs) and CNNs
[22], showing the strengths and limitations of each
technique by comparing their accuracies.

• Finally, data and our implementations of all the com-
pared techniques are made publicly available for the
research community.

GC
CF
PC
PCA
SDF
DMS
AGD
SC
SI
SIHKS
HKS

Feature
Extraction

Pre-
Processing

PCA Feature
Reduction

AE Feature
Encoding

CNN Filter
Generation

Neural
Network

Learning and
Classification

Random
Forest

Convolutional
Neural

Network

Post-Processing
Refinement

Graph Cut
Multi-Label

Alpha-
Expansion

Figure 1: An overview of the stages involved in each of the
techniques. Each technique includes all four stages: feature
extraction, pre-processing (by encoding or reduction), deep
learning and classification, and graph-cut post-processing
stage.

The rest of the paper is structured as follows: Sec-
tion 2 provides a more detailed summary of both super-
vised and unsupervised mesh segmentation techniques.
Section 3 discusses different methods we compared, and
our proposed technique using multi-branch 1D CNN
and multi-scale features for 3D segmentation. Section 4
discussed our experiments and the results of all methods
tested. Finally, Section 5 concludes this paper.

2. Related Work

This section first surveys existing techniques, with an
emphasis on supervised segmentation. We then discuss
the problems of existing supervised techniques, leading
to our contributions.

Unsupervised Segmentation. Early work focused on
simple, yet effective ideas for segmenting a single mesh
[10, 7]. They often performed clustering on geomet-
ric features (e.g. shape diameter function [7], geodesic
distances [24], curvature [25]) or partitioned based on
properties that can be derived from the mesh itself
(e.g. skeleton [7], convexity [8], fitting primitive shapes
[26]). Many of these ideas have been shown effective,
giving rise to a wide range of shape descriptors, and seg-
mentation techniques, supporting many downstream ap-
plications [13, 14]. However, segmenting a single mesh
using a few features is often difficult due to the large
variations in terms of shape and topology, even within
the same class of objects. Recent research has adopted
the co-analysis framework to investigate consistent seg-
mentation of a collection of shapes from a single object
class [15, 27, 28, 29, 30]. For example, all legs in a
chair set should be labelled the same. Such constraint is

2

Figure 2: Example of a 30x20 image produced by reshaping
the 600 features in [22]. Each colour represents a distinct fea-
ture (PC, PCA, SDF, DMS, AGD, SC, SI from top to bottom)
and the white boarders outline the 6 different SC histograms.
The black rectangles are examples of 7x5 convolutional fil-
ters being passed over the image. In the examples, the filters
would infer relationships between 4 different features or arbi-
trary bins in 4 different SC histograms, which in both cases
have no correlation.

powerful yet requires less human effort. However, these
methods rely on consistent geometric similarity within
the set and a reliable shape/part matching algorithm in
order to perform well. The large variations between dif-
ferent shapes in the same set and the sparse number of
shapes in the set often cause problems in the final seg-
mentation [31]. More importantly, segments of a shape
are often associated to its functionality - a high-level
understanding of shapes [17]. Therefore, there is an in-
creasing interest in supervised segmentation techniques,
trying to learn a high-level mapping directly from fea-
ture to segment.

Supervised Segmentation. These techniques treat 3D
mesh segmentation as a labelling problem and use ma-
chine learning to optimise the mapping from features to
labels. It requires extensive manual effort to label all
data. The recent effort from the community contributed
to a large set of segmentation benchmarks (e.g. [14]).

Existing supervised techniques rely on local features.
The work by [18] proposed a method for mesh seg-
mentation where a large pool of geometric features are
ranked using JointBoost so that the best features are
used to describe specific segments. Similarly, the work
by [32] ranks a large pool of features in order to de-
tect the optimal segment boundaries for a given mesh,
and an extreme learning machine was trained to classify
labels using one [19] and two layers [20]. However, su-
pervised methods can perform poorly on very complex
meshes, due to insufficient training data or large varia-
tions within label classes [19, 22].

Recently, [22] extended the CNN idea to 3D segmen-
tation. They reshape a large pool of geometric features

(a) (b) (c) (d)

Figure 3: Visual comparison of conformal factor (CF) fea-
tures. Columns (a) and (b) are the original CF, columns (c)
and (d) are CF after one stage of Laplacian-smoothing. CF
is sensitive and can be easily distorted by small regions of
large curvature (propeller tips of the plane, noise on shoul-
der of teddy and wing tips of the bird in column (a)). Non-
shrinking Laplacian-smoothing can alleviate the geometry is-
sues, making the computed CF much more consistent across
similar meshes (columns (c) and (d))

into a matrix resembling that of a 2D image, fitting the
2D image-based CNN pipeline, and then train a CNN on
these “images” using the ground truth labels. The tech-
nique shows good performance, however, the reshaping
and the use of 2D filters may infer relationships between
adjacent rows of features that may have no correlation.
As Figure 2 shows, passing a convolutional filter over
such an “image” would unavoidably infer relationships
between (up to 5) unrelated features regardless of the
position of the filter.

From the literature, we have two further observations.
First, existing feature driven techniques use local fea-
tures developed by the influential work [18]. These
features are mostly defined per face (a few are nor-
malized by different geodesic radii for smoothing pur-
poses), as such, there is no spatial scale information in-
cluded in the architecture. To the best of our knowledge,
a feature-based deep learning network architecture that
considers multi-scale geometric features derived from a
set of local faces has not been fully explored in super-
vised mesh segmentation. We hypothesise that multi-
scale features would be useful because face-based [15]
and patch-based techniques [29] have both shown good
performance in co-segmentation. Second, whilst deep
learning is useful, there is not much analysis as how
CNNs perform compared to other techniques in the deep
learning family.

In this paper, we show that by using multi-scale fea-
tures, treating them as separate 1D vectors per scale,
and applying multi-branch 1D CNN filters through the
network, we avoid the parameter tuning problem of re-

3

Airplane Ant Armadillo Bird Chair Cup Fish Fourleg2 Glasses Hand Human Octopus Plier Table Teddy Vase Bearing Mech Bust
0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

CF0
CF1
CF0+1
CF1:5
CF0:5

Figure 4: Accuracies of running leave-one-out cross validation on all sets using Random Forest classifier. CF0, CF1, CF0+1,
CF1:5 and CF0:5 respectively denote the original CF [23], CF after one stage of Laplacian-smoothing, combination of CF0 and
CF1, combination of all smoothed CF features, and combination of all CF (including CF0). The chart shows that the new smoothed
CF features improve upon the original in most cases, and also further improves when they are combined with the original CF.

shaping a 2D matrix. Our method clearly out-performs
existing work [22] in accuracy. Further, we provide
comprehensive evaluation of various deep learning tech-
niques, and show how CNNs, though more complex,
can improve performance over simpler architectures
(NNs, AEs). It is worth noting that we have found ex-
isting methods lack reproducibility. Some existing work
have not provided any or complete experimental code.
Despite using the exact architecture and settings stated,
some high performing results are hard to reproduce.

Concurrent to our work, there are recent efforts fo-
cusing on different kind of inputs, such as point clouds
[33, 34], octrees [35], multiple projected images [21],
graphs [36] or geometry images [37]. Differing from
these, our study focuses on feature-based approach, and
investigates how deep learning can improve 3D segmen-
tation using insightful geometry features that are devel-
oped in the past decade.

3. Methodology

This section discusses the deep learning techniques
proposed and evaluated. Section 3.1 discusses geomet-
ric features used. We then summarise several tech-
niques, Fully Connected Neural Networks (NNs), Au-
toencoders (AEs) + Random Forests (RFs), and Convo-
lutional Neural Networks (CNNs), in Sections 3.2-3.4,
focusing on models which are at least two layers deep.
Each technique is broken down into stages, namely, fea-
ture extraction, pre-processing, learning and classifica-
tion, and post-processing (Figure 1). Section 3.5 de-
scribes the use of graph-cut [38] for final refinement.

3.1. Feature Extraction

To obtain a good feature representation of the meshes,
we compute 11 types of geometric features, namely,
the Gaussian curvature (GC) [9], conformal factor (CF)
[23], principal curvature (PC) [25], principal component
analysis (PCA) of local face centres [18], shape diam-
eter function (SDF) [7], distance from medial surface

(DMS) [39], average geodesic distance (AGD) [24],
shape context (SC) [40], spin images (SI) [41], heat
kernel Signature (HKS) [42], and scale invariant HKS
(SIHKS) [43]. They are calculated with different scales
and normalisations. Most of these have been shown use-
ful in earlier studies [18, 22].

HKS and SIHKS have not yet been used in supervised
mesh segmentation. They are effective point descrip-
tors, designed for shape retrieval and correspondence
[43]. As they are shown consistent in similar local re-
gions, we hypothesise that they may be useful and in-
clude them in the feature set.

CF has been used in unsupervised techniques (e.g.
[29]) and been shown to be highly useful, but has not
been used in supervised segmentation. When CF is
computed on meshes in small regions with large cur-
vatures (e.g. the propeller of the left plane or wing tip
of the bird in Figure 3), CF is seriously distorted. To
resolve this issue, we introduce a multi-resolution ver-
sion of CF. We generate meshes with increasing num-
ber of smoothing iterations, using non-shrinking Lapla-
cian smoothing [44], and compute CF on these meshes.
These new CFs alleviate the distortion and are more
consistent (Figure 3).

Let M = {F,V} be a mesh, where F and V are the
faces and vertices of the mesh. We first compute 5 itera-
tions of non-shrinking Laplacian smoothing, where the
input of the next iteration is the output of the previous.
This gives us Ms

i = {F s
i ,V

s
i } for iterations i = 1, . . . , 5.

To compute the conformal factor (CF) (Φ) on the un-
smoothed meshes we follow [23], by solving:

LΦ = KT − Korig

where L is the Laplace-Beltrami operator, Korig is the
GC of the mesh [9] and KT is the target GC, which is
the uniform curvature given by:

kT
v =

∑
j∈V

κ j

∑

f∈Fv

1
3 area(f)∑

f∈F
area(f)

4

where kT
v is the target GC of vertex v, κ j is the jth ele-

ment of Korig, Fv the set of faces that share vertex v and
area(f) the surface area of face f ∈ F. With a smoothed
mesh Ms

i , the smoothed CF Φs
i is computed by solving:

LΦs
i = K sT

i − KT

where Φs
i is the desired CF and K sT

i is the target GC
for the smoothed mesh Ms

i , and KT is the target GC of
the original mesh M. The rationale of using KT in our
formula (instead of Korig of the smoothed mesh Ms

i) is
that we would like the new CF to model the changes due
to geometry smoothing alone. We do not want it to be
affected by the underlying tessellation as in the original
CF formula, making our CF more robust.

To show the impact of the proposed CF features we
ran several experiments on the Princeton Segmentation
Benchmark (PSB) [14]. Each experiment used one or
many of the CF features to train a RF classifier for mesh
segmentation. Leave-one-out cross validation was per-
formed on each set, with 3 replicates ran per tested
mesh. The results for each experiment for each set is
shown in Figure 4. This shows that, in the majority of
cases, the proposed CF features have a large positive
impact on the performance for classification, and also
in some cases, just using a single smoothed CF feature
is better than using the original CF feature.

In total, we obtain an 800-component feature vector
for each face. The vector consists of 593 features from
[18], 1 original + 5 new CF features, 1 GC feature, 100
HKS features and 100 SIHKS features. They are used
in all our techniques.

3.2. Fully Connected Neural Network

The first deep learning technique we analysed for
mesh segmentation was conventional Fully Connected
NN. NNs consist of several fully connected layers fol-
lowed by a classification layer to produce prediction
probabilities. Each layer consists of a set of neurons,
each with a weight and a bias. Each feature is passed to
every neuron, which is activated based on the output of
an activation function. The output from each neuron is
then fed to every neuron in the next layer.

NNs iterates between two stages, a feed-forward and
a back-propagation pass. The feed-forward pass is an
unsupervised stage where all input feature is passed
through the network. The neurons and their internal pa-
rameters across all layers determine the response. The
back-propagation pass is supervised and minimizes the
errors between the ground truth and the predicted labels.
Error values are passed back through the network in or-
der to tweak all the internal parameters. This process

is repeated (typically several hundred times) in order to
fine tune all parameters such that the network best de-
scribes the mapping between features and labels [45].

We perform PCA to select the most important 50
principal components as features. This significantly re-
duces training time but does not affect the accuracy em-
pirically. The reduced features are used to train a three-
layer NN. The first layer has the same number of neu-
rons as input features (50 neurons), and each subsequent
layer reduces the number of neurons by half (25 and 12
neurons). The third layer is then fed into a softmax layer
to compute an error cost. This then propagates back
through the network to optimise the parameters. Once
the network is trained, a new mesh is fed through for
testing. The network returns a set of probabilities, spec-
ifying a class that a face may belong to, and allowing
further refinement via graph-cut (Section 3.5). Results
are reported in Table 1, PCA & NN column.

3.3. Autoencoder and Random Forest

Next, we analyse the use of AEs for feature reduction
and a RFs for classification. An AE is a type of artificial
NN, which aims to encode features for dimensionality
reduction. The idea of AE is to learn the optimal repre-
sentation of the original features through a network by
recovering the original data through encoding and de-
coding [45]. It is powerful for its ability to non-linear di-
mension reduction. AEs can be stacked and optimised,
so that the encoded features from one AE can be fed to
another for further reduction. Once trained, the encoded
features are used to train a classifier.

In our technique, we pre-trained two AE layers sepa-
rately. The first layer takes 800 features and reduces it
to 400. The second layer takes the 400 encoded features
and reduces it to 200. These encoded features are then
used to train a softmax layer. Once it is trained, all three
(two AEs and a softmax) layers are stacked together and
re-trained. The model can then be used for testing. Re-
sults are reported in Table 1, AE & NN column.

The encoded features from the stacked AEs can also
be used to train a RF classifier. A RF classifier is a learn-
ing technique that takes a large set of random decision
trees (we used 100 trees) and averages their prediction.
It offers high performance in accuracy and speed whilst
avoids overfitting. Results are reported in Table 1, AE
& RF column. For both AE & NN and AE & RF, a
graph-cut post-refinement (Section 3.5) is applied.

3.4. Multi-scale 1D Convolutional Neural Network

Here we discuss our new CNN mesh segmentation
technique. We first outline the proposed multi-scale fea-

5

Input
Features

Multi Scale
Features

800 x 1

Neighbourhood
Feature

Smoothing

800 x 1

800 x 1

800 x 1

Conv
15 x 1 (16)

Pad 7
Stride 1

Max Pool
2 x 1
Pad 0

Stride 2

Conv
15 x 1 (16)

Pad 7
Stride 1

Conv
11 x 1 (32)

Pad 5
Stride 1

800 x 1 x 16 400 x 1 x 16 400 x 1 x 32 200 x 1 x 32

800 x 1 x 16 400 x 1 x 16 400 x 1 x 32 200 x 1 x 32

800 x 1 x 16 400 x 1 x 16 400 x 1 x 32 200 x 1 x 32

Depth
Concat

200 x 1 x 96

Fully
Connected

1 x 1 x 172

Fully
Connected

1 x 1 x nLabel

Softmax
Loss

nLabel x 1

CNN Layers

Conv
15 x 1 (16)

Pad 7
Stride 1

Max Pool
2 x 1
Pad 0

Stride 2

Max Pool
2 x 1
Pad 0

Stride 2

Max Pool
2 x 1
Pad 0

Stride 2

Max Pool
2 x 1
Pad 0

Stride 2

Max Pool
2 x 1
Pad 0

Stride 2

Conv
11 x 1 (32)

Pad 5
Stride 1

Conv
11 x 1 (32)

Pad 5
Stride 1

X1

X2

X3

Dropout

Figure 5: The architecture of our multi-scale 1D CNN. Given an 800-dimension feature vector X1 of a face u, we compute a set
of surrounding faces N k(u) that are k − 1 steps away (k = 2, 3). We average all features of all faces in N k(u) leading two extra
feature vectors X2,3. These multi-scale features X1...3 are used in the CNN, and trained separately through the network. They are
then concatenated by the depth concatenation layer before reaching the fully connected and classification layers. Each conv layer
is followed by a batch normalization and a leaky ReLU layer, and the first fully connected layer is followed by a leaky ReLU layer.

tures, then describe the types of layers we use, and fi-
nally the CNN architecture (Figure 5).

Multi-scale feature extraction. Existing techniques ex-
tract features mostly per face [18]. It has been shown in
co-segmentation and relevant studies [16, 29] that patch
would also be useful for segmentation. We thus hy-
pothesise that multi-scale features derived from a set of
neighbouring faces would be useful, and should be con-
sidered in a network architecture. Given a face u, we
define a set of surrounding faces Nk(u) of u as the sur-
rounding faces that are at most k−1 step away. We then
compute two extra feature vectors Xk where k = 2, 3
by averaging feature values of all faces in Nk(u). This
leads to three feature vectors Xk where k = 1...3 and X1

is the original feature (Section 3.1). Each of these fea-
ture vectors Xk are trained separately by the proposed
CNN network, and then merged before classification.

Network layers. We now discussed all network layers
used in our CNN architecture, and their functions.

• Convolutional layers simulate the organisation of
humans’ visual cortex, and the neurons responses of
local receptive field. They consist of filters, which
are convolved over the input to produce new feature
maps as outputs, one for each filter.

• Batch normalization layers typically follow conv
layers to normalise the output. It allows much higher
learning rates, and makes the network less sensitive
to the initialisation [46].

• Leaky ReLU layers A Rectified Linear Unit (ReLU)
layer simulates the firing of a neuron by means of an

activation function. We use the leaky ReLU varia-
tion [47] instead of a regular ReLU as having a small
negative gradient will stop cases where all inputs are
negative and the activation produces zero. We set the
slope to be 0.2 in our experiments.

• Max pooling layers Pooling layers are used to down-
sample the output features of the previous layer to
better manage the high feature size, these typically
performs after the conv layers.

• Depth concatenation layers To merge feature maps
from different branches into a single feature map, we
use a concatenation layer to concatenate via the depth
dimension. This is pioneered in [48] to provide a
mechanism for separate learning of features and later
merging for classification.

• Fully connected layers (like NNs) have full connec-
tions to all activations in the previous layers, and act
as the function approximators to learn the non-linear
mapping.

• Dropout layers are included in to regularise the net-
work to reduce overfitting [49]. It works by randomly
selecting neurons to be ignored during this pass of
the training. This is done by ignoring the weights
assigned to them during the forward pass and not up-
dating their weights on the back pass. We set 50% of
neurons to be randomly ignored in our experiments.

• Softmax layers are activation functions typically
used for classification. The function computes the ex-
ponential of the input and divide them by the sum of
all exponential values, giving prediction probabilities
as output. Coupled with a loss function, they penalise
differences between the predicted and true labels, and

6

update the network parameters in back propagation.

Architecture& Rationale. The architecture of our CNN
(Figure 5) allows the three multi-scale feature vectors to
be trained independently before being merged back for
the fully connected layers and classification. Each fea-
ture vector undergoes the same training process, with
their own distinct layers and parameters. In our imple-
mentation, each conv layer is followed by a batch nor-
malisation and a leaky ReLU layer. For clarity, these
two layers are not shown in Figure 5.

The rationale behind our architecture design stems
from several research questions:

Q1 Can we reduce the unnecessary inference between
unrelated features and improve performance?

Q2 How can we make good use of multi-scale features
in a deep learning architecture?

Q3 How can we train such a network in a practical time
frame given the increased features and branches?

One possible answer to eliminate inference between
unrelated features (Q1) is a fully connected NN. How-
ever, such a network would lead to impractical train-
ing times (due to the increased feature sizes and num-
ber of scales). Our compromise is to use a 1D net-
work instead. Though it does not fully resolve the is-
sue in [22], it avoids guessing the parameter for image
resizing, and alleviates unnecessary inference between
number of unrelated features from (at most) 5 to 2 per
each filter. Further, because both face-level [18, 22]
and patch-level features [28, 30] have been shown use-
ful alone, we hypothesise that features from different
scales can be trained and analysed independently (Q2).
Inspired by GoogLeNet [48], we separate and train fea-
tures of each scale in individual branch, formulate our
architecture as a multi-branch network and concatenate
them through the depth channel. This also reduces train-
ing time (Q3). Fully connected layers are used to get
the final predictions. We introduce a second fully con-
nected layer due to the increased amount of data from
all 3 branches. Finally the addition of batch normal-
ization layers and a dropout layer allows the network to
better generalize and reduce overfitting. We opted to use
3 branches as it shows highest accuracy with the quick-
est training time empirically (Q3). An evaluation on the
use of 1-4 branches can be found in Section 4.

Training. First, each feature vector Xk is separately
passed through a conv layer to extract some low-level
features. Sixteen 15 × 1 filters are used to produce six-
teen new feature vectors, and padding is used to ensure
the vectors remain a constant length. Once the output

is normalised and passed through a leaky ReLU layer, it
is then max-pooled to reduce the size in half (400 com-
ponents, 16 channels). This process is repeated with a
conv layer with thirty-two 11 × 1 filters. After the fi-
nal pooling stage, each of the three branches provides
thirty-two 200 component feature vectors.

The three branches are then merged, via a depth con-
catenation layer, producing ninety-six 200 component
feature vectors. These are then passed through a fully
connected layer with 172 neurons, and then through a
dropout layer with a 50% dropout. Finally, a fully con-
nected layer with the number of neurons equal to the
number of classes in the set is used, with a softmax ac-
tivation function. The output of the softmax layer can
then be used to compute the loss (we use categorical
cross entropy) in order to back-propagate through the
network to update parameters.

Similar to a NN, there are two learning passes. The
feed-forward pass produce a label prediction, and the
back-propagation updates parameters to reduce the pre-
diction error. These passes are repeated for a set number
of iterations (set to 50, using a learning rate in the log-
space between -2 and -4 and a momentum of 0.9). The
label probabilities that are produced after training are
subsequently used for graph-cut post-refinement. Re-
sults are reported in 1D CNN column, Table 1.

3.5. Graph-Cut Refinement

A trained model (NN, RF, CNN) can predict a label
for a face with a set of probabilities. The probability
indicates how likely a face belongs to a particular class.
However, inconsistencies of predicted labels can arise
between adjacent faces on the mesh because the classi-
fication does not take face adjacency into account. This
causes incorrect segmentations and reduced accuracies.
Here, we utilise the multi-label alpha-expansion graph-
cut technique [38] to refine the segmentation results.

Let u, v ∈ T be two faces in a mesh, where T is the
set of all faces. Let Nu be the set of neighbouring faces
of u. We can optimise the labels of all u ∈ T by solving:

min
lu,u∈T

∑
u∈T

ξD(u, lu) + λ
∑

u∈T,v∈Nu

ξS (u, v, lu, lv, fu, fv)

where λ is a non-negative constant used to balance the
influence of the two terms and ξD(u, lu) = − log(pu(lu))
is a data term that penalises low probability of assigning
a label lu. The second term ξS incurs a large penalty
when the dihedral angle between two adjacent faces is
small (i.e. the faces cause a concavity) or the distance

7

(a) psbTeddy (b) psbOctopus (c) psbGlasses (d) cosegGuitars

(e) psbFish (f) psbChair (g) psbAirplane (h) cosegGoblets

Figure 6: Visualisation of some results of our 1D CNN technique on the PSB and Coseg datasets, with an accuracy of over 95%.

between two features is high, and is given by:

ξS (u, v, lu, lv) =

0, if lu = lv
− log(θuv/π)ϕuv, otherwise

where the cost is based on the dihedral angle (θuv) and
edge length (ϕuv) between faces u and v. This formula-
tion has been applied commonly in [22, 15, 28].

Here, we propose to modify ξS :

ξS (u, v, lu, lv, fu, fv) = − log(θuv/π) − ω|| fu − fv||2

by replacing the distance term ϕuv with a geometric fea-
ture term ω|| fu − fv||2. It promotes similar classification
label if the Euclidean distance between features fu, fv of
face u and v is small. A constant (ω), is used to balance
the weight of the concavity and feature terms. We use
AGD (Section 3.1) as the feature f as it helps to smooth
out inconsistent labels, and improves the refinement ac-
curacy (Section 4).

4. Experiments and Results

In this section, we outline the experiments and accu-
racy measure used to evaluate each deep learning tech-
nique on mesh segmentation. Then we discuss the re-
sults and put forward our observations.

All experiments were conducted on the PSB [14] and
Coseg [15] datasets, which are widely used datasets for
evaluating mesh segmentation techniques [18, 22]. The
PSB dataset contains 19 sets with 20 meshes per set.
Similar to [30], we omit three sets (Bust, Bearing and
Mech) from our results in Table 1, because these sets

are either inconsistently labelled or contain meshes with
too much variance within the set (Further discussion is
provided at the end of this section). The Coseg dataset
has 8 sets with between 12 and 44 meshes per set. The
dataset also includes 3 large sets with 200 to 400 meshes
per set. We ran 3 different types of experiments:
• Leave-one-out cross validation - a single mesh is re-

moved from the training set and used exclusively for
testing. This is repeated for all meshes in the set.

• 5-fold cross validation - the set is split into 5 equal (or
close to equal) subsets. In each run, a single subset is
left out of the training set and used for testing. This is
repeated for all 5 folds. The training & testing splits
used will be publicly available.

• Fixed training/testing split - we run experiment using
the training/testing splits defined in [21] for each set.

The PSB dataset was used in all experiments. The
Coseg dataset was only used in the 5-fold and fixed
training/testing split experiments [21] as running leave-
one-out cross validation is a lengthy process.

For all experiments we use the accuracy measure:

Accuracy(l, gt) =

∑
t∈T atδ(lt = gti)∑

t∈T ai

where at, lt and gtt are respectively the area, the pre-
dicted label and the ground truth label of triangle t.
δ(li = gti) is assigned to 1, if the predicted label is the
same as the ground truth; otherwise 0. This is similar to
[18, 22, 15]

Finally, as pointed out by Kalogerakis et al [21], there
is no publicly available implementation for Guo et al’s

8

(a) Hand (b) Plier (c) Ant

Figure 7: Visual comparison of our 1D CNN (bottom row) and TOG15 [22] (top row). Our method performs better on certain
meshes (see arrows on the figures)

architecture [22]. Similarly, we use our own faithful
reimplementation of Guo et al’s architecture, closely
following the details in the paper. We tried Matlab (Mat-
ConvNet) and Python (TensorFlow) implementations,
and both show similar results. We reported Python’s
results as they are marginally better. Both reimplemen-
tations are internally validated by three independent re-
searchers from two research teams at Swansea Univer-
sity. Both source codes are available for external vali-
dation. Though the reported accuracy of [22] is lower
than that reported in the original paper, the reproduced
accuracy is still higher than the results reported in [21].
We believe that our reimplementation is faithful.

Leave-one-out Cross Validation. Experimental results
for Leave-one-out cross validation are shown in Table 1,
where the columns PCA & NN, AE & RF, AE & NN
and 1D CNN correspond to the techniques discussed in
Sections 3.2-3.4 and column TOG15 shows the results
using [22]. Some visual results of our 1D CNN tech-
nique are shown in Figure 6.

A direct comparison of our 1D CNN and [22] shows
that our method achieves higher accuracies on all of the
sets. The majority of the sets see a large improvement in
accuracy, especially some of the harder sets (Armadillo,
Hand, Vase). Five sets (Fish, Glasses, Octopus, Table,
Teddy), which have very high accuracies (> 96%) in
[22], also show slight improvement. Figure 6 and 7
show some visual comparisons of the results.

We further investigate the sets with poorer results (<
90%) and observe several problems.

• First, the Human set (Figure 8, column (a)) is badly
and non-consistently labelled in general, and there is
insufficient support to train a proper model (see ar-
rows). This is challenging for any machine learning

PCA AE AE ToG15 1D
& NN & RF & NN [22] CNN

Airplane 92.97 92.62 92.53 94.56 96.52

Ant 95.15 95.17 95.15 97.55 98.75

Armadillo 88.21 88.43 87.79 90.90 93.74

Bird 85.14 88.93 88.20 86.20 91.67

Chair 95.55 95.69 95.61 97.07 98.41

Cup 95.09 97.95 97.82 98.95 99.73

Fish 94.41 96.21 95.31 96.16 96.44

Fourleg 83.61 83.99 82.32 81.91 86.74

Glasses 94.22 96.57 96.42 96.95 97.09

Hand 78.33 73.76 70.49 82.47 89.81

Human 87.03 86.69 81.45 88.90 89.81

Octopus 96.93 96.99 96.52 98.50 98.63

Plier 93.75 92.59 91.53 94.54 95.61

Table 99.22 99.18 99.17 99.29 99.55

Teddy 98.07 98.24 98.20 98.18 98.49

Vase 79.73 82.07 80.24 82.81 85.75

Average 91.09 91.57 90.61 92.79 94.80

Table 1: Experimental results for leave-one-out cross valida-
tion on the PSB dataset [14]. Bold: highest accuracy.

9

(a) Human (b) Vase (c) Fourleg

Figure 8: Visualisation of sets where our method achieved sub 90% accuracy. Top row shows ground truth, bottom row shows our
1D CNN results. (a) shows where poor ground truth (arrows) resulted in loss in accuracy. (b) shows where inconsistent ground
truths and large variations (arrows) resulted in poor results. (c) shows where outliers in the set (back row left 3) and inconsistencies
in the ground truths (arrows) caused a loss in accuracy

technique, making all techniques fail to achieve high
accuracies (> 90%).

• Second, the Vase set (Figure 8, column (b)) contains
meshes that are significantly different from the rest.
As indicated by arrows, there is a mesh (back row,
second from right) that contains a segment usually
defined as the base of a vase (purple segment), in
place of the part which is typically on the top of the
vase (blue segment in other meshes). Also there are
two meshes that are almost identical (middle row),
but the label is very different (e.g. blue segment).

• Third, the Fourleg set (Figure 8, column (c)) contains
three meshes that are very different from all other
meshes in the set (back row, left most 3). Label in-
consistencies are also present where the majority of
meshes contain a neck segment (purple), but some
meshes do not (see arrows).

• Finally, each of the fingers in the Hand set (Figure 7)
are considered separate segments in the ground truth.
It is very hard to achieve good results using features
alone for such set. We believe the result can be im-
proved with a correspondence matching technique.

For completeness, the results for the sets we omit-
ted from Table 1 are as follows. Accuracies of 88.67%,
70.06% and 88.53% [22], and 89.69%, 61.97% and
88.14% (our 1D CNN) were achieved for the Bearing,
Bust and Mech sets respectively. Following [30], these
sets were omitted due to ground truth inconsistencies
(Figure 9) and lack of sufficient training data. These are

reflected in the lower accuracies of both methods.
Next we analyse the performance of our other deep

learning techniques, PCA & NN, AE & RF, and AE &
NN. We note that, although they perform worse than
CNN techniques, in general, their performance is only
marginally worse. In sets that have consistent and well-
defined labels (Fish and Teddy), AE & RF performs
better than the 2D CNN technique. This is interesting
as these NN models consists of 2-3 layers, and require
much shorter training time than CNN techniques.

Finally we compare the use of two different classifiers
AE & RF and AE & NN on the same set of encoded fea-
tures. As shown in Table 1, the results from using an RF
classifier are almost exclusively better than using only
the NN model alone. This may be explained by the fact
that both the AE network and the RF classifier are two
different techniques, and are separately trained. It sug-
gests that there is complementary improvement overall.

Our conclusion is that, compared to [22], if there is
a sufficiently large number of good meshes with consis-
tent labels across the set, the new features and 1D CNN
architecture can improve performance. Our technique
also does not require parameter tuning for features re-
shaping or sampling to 2D images.

5 Fold Cross Validation. The experimental results in
Table 2 show a comparison of running our 1D CNN
architecture with different numbers of branches on the
PSB dataset. As shown in the table (Columns 1B, 2B,
3B, 4B), performance steadily increases as the number

10

(a) Mech (b) Bearing (c) Bust

Figure 9: Ground truth examples from the 3 omitted sets (Mech, Bearing, Bust). Label inconsistencies can be seen throughout.
Mech (a) shows segment inconsistencies where cylindrical shapes are labelled both purple and green (front row, centre and back
row). Also, the blue segments shown on the two meshes are the only blue segments in the set, and are both topologically dissimilar.
Bearing (b) shows segment inconsistencies where similar shaped regions (threaded parts) have several different labels. Bust (c)
shows poor segment boundaries where the neck extends on to the clothing (front row, centre). Additionally, it contains inconsistent
segments where the hats and hair are one segment but back left has a clothing segment over the top of the head. Finally, a few
labels are missing throughout. For example, not all lips, noses and eyes are properly and consistent labelled. Some models are
missing some of these segments and others are missing them all from the ground truth (e.g. nose of back right, eyes of 4 of the
shown models, lips of front left and back right). Arrows show examples of badly or inconsistent ground truth labelling.

1D CNN ToG15

1B 2B 3B 4B 1B 3B [22](600) (600)

Airplane 94.93 95.57 95.65 95.60 94.24 94.31 93.43

Ant 98.24 98.75 98.82 98.75 97.15 97.23 96.91

Armadillo 93.08 93.29 93.47 93.56 91.02 92.17 87.05

Bird 90.86 91.14 91.34 91.82 90.69 90.80 90.00

Chair 97.72 98.03 98.14 98.39 96.57 97.10 96.43

Cup 99.62 99.65 99.69 99.65 99.45 99.65 99.13

Fish 96.47 96.69 96.75 96.82 96.39 96.68 95.99

Fourleg 87.10 87.78 88.23 88.43 86.38 87.50 84.92

Glasses 96.68 96.72 96.89 96.94 96.25 96.61 96.31

Hand 88.86 89.33 89.66 89.64 87.40 88.45 80.31

Human 87.50 88.81 89.02 88.85 87.34 88.49 82.51

Octopus 98.54 98.67 98.71 98.75 98.51 98.61 98.39

Plier 95.41 95.36 95.52 95.59 95.29 95.34 95.23

Table 99.61 99.62 99.62 99.62 99.59 99.62 99.08

Teddy 98.39 98.37 98.35 98.40 96.67 97.06 95.90

Vase 84.43 86.35 87.10 86.11 84.06 84.66 81.08

Average 94.22 94.63 94.81 94.81 93.57 94.02 92.04

Table 2: 5-fold cross validation labeling accuracies for the
PSB dataset [14]. Results of our 1D CNN with differing num-
ber of branches are shown (1B, 2B, 3B, 4B), as well as using
the same features as ToG15 [22] (1B (600), 3B (600))

of branches increase, up until it plateaus at 3-4 branches.
A direct comparison to the result of 2D CNN (ToG15
[22]) shows that our method outperforms the 2D archi-
tecture for all sets, even using a single branch network.
It also supports empirically our choice of using a 3-
branch network as it is faster to train whilst reaching
similar performance as compared to that of 4-branch.

Table 2 also shows that, when using the same set of
features in [22], whether it is one (Column 1B (600))
or three branches (Column 3B (600)), our architecture
can still outperform, with the latter giving better results.
These results show that the use of 1D data and filters
is useful, and that the multi-branch architecture (with
multi-scale features) and the addition of new features
(including our proposed more robust conformal factors)
all separately contribute to the improvement.

We further show experimental results using the Coseg
dataset [15] in Table 3 and Figure 6. We see a large
improvement over the 2D CNN [22] for the smaller
datasets (over 4% on average, Table 3 left), and notice
a larger improvement when the datasets have hundreds
of meshes (over 6% on average, Table 3 right). This
shows that our model can generalize well when suffi-
cient training data is provided, even if there are large
variations in the meshes in the sets (e.g. VasesLarge,
AliensLarge). This supports our earlier conclusion that,
given a large set of well labelled meshes, our method
can be effectively trained for good performance, and can
handle largely varying meshes in the set.

11

Fixed training/testing splits. A final set of experiments
use the training/testing splits defined in the concurrent
work [21], and use the PSB and Coseg datasets. Ta-
ble 4 shows the results of these experiments for 2D CNN
[22], Projective CNN [21], and our 1D CNN. (The re-
sults for 2D CNN [22] and Projective CNN [21] are
copied from [21] for direct comparison). It shows that
our 1D CNN technique clearly outperforms the existing
2D CNN architecture [22], and also performs compara-
bly with the concurrent work Projective CNN architec-
ture [21]. Note however that these experiments do not
fully evaluate the method for each set because not all
meshes are used at least once for testing. We include
these results for completeness.

5. Conclusion

In this paper, we have shown a novel way of using
CNNs on the geometric feature space to perform auto-
matic mesh segmentation. Instead of casting 3D geo-
metric features into 2D images and using 2D filters to
fit an image-based CNN pipeline, we show that the use
of 1D data and filters can alleviate unnecessary infer-
ence of unrelated features. It also avoids the problem of
parameter tuning for reshaping and re-sampling of fea-
tures, and achieves better performance. Our novel tech-
nique clearly out-performs existing work [22] in terms
of accuracy and can support more features and a more
complex and deeper network. We have further shown
a novel way of computing more consistent and robust
conformal factor which is less sensitive to small areas
of large curvature.

We additionally performed a comprehensive and
comparative study of several deep learning techniques
for mesh segmentation. We showed that simpler net-
work architectures (e.g. AEs, NNs and RFs) can still
perform reasonably well using the same set of geometric
features when compared to more complex CNN mod-
els. Their training time is also significantly shorter. This
suggests that if only a reasonable (not perfect) segmen-
tation is required for downstream application, AE, NN
and RF would be a good choice.

We have also shown some labelling problems in the
PSB dataset which is commonly used as a segmenta-
tion benchmark. For example, there is an insufficient
number of meshes in certain sets to cover a large vari-
ation of shape and topology and some of the segmenta-
tion boundaries in the ground truth labels are not well-
defined or consistent (e.g. Human, Bearing, Bust).

Finally, we release the data and code of all techniques
discussed in this paper, helping the research of super-
vised mesh segmentation in the community.

SmallSet 1D CNN ToG15[22]

Candelabra 93.58 91.55

Chairs 97.75 93.48

Fourleg 94.12 90.75

Goblets 97.80 92.79

Guitars 98.03 97.04

Irons 89.89 80.90

Lamps 86.74 81.52

Vases 92.47 89.42

Average 93.80 89.68

LargeSet 1D CNN ToG15[22]

Vases 95.88 87.57

Chairs 97.71 92.68

Aliens 97.84 91.93

Average 97.14 90.73

Table 3: 5-fold cross validation labelling accuracies for the
Coseg dataset [15].

Testing 1D ToG15 ShapePFCN
Meshes CNN [22] [21]

psbAirplane 8 95.92 91.60 93.00

psbAnt 8 98.72 97.60 98.60

psbArmadillo 8 93.31 85.00 92.80

psbBird 8 91.04 83.10 92.30

psbChair 8 97.67 96.70 98.50

psbCup 8 94.45 92.10 93.80

psbFish 8 96.48 94.50 96.00

psbFourleg 8 87.71 82.40 85.00

psbGlasses 8 96.31 95.30 96.60

psbHand 8 91.70 73.80 84.80

psbHuman 8 90.58 85.60 94.50

psbOctopus 8 98.48 97.40 98.30

psbPlier 8 95.81 95.20 95.50

psbTable 8 99.57 98.50 99.50

psbTeddy 8 88.27 97.30 97.70

psbVase 8 81.94 77.80 86.80

psbAverage - 93.62 90.24 93.98

cosegCandelabra 16 94.39 85.90 95.40

cosegChairs 8 96.02 93.80 96.10

cosegFourleg 8 93.64 88.20 90.40

cosegGoblets 6 99.46 86.10 97.20

cosegGuitars 35 98.43 97.70 98.00

cosegIrons 6 84.75 79.70 88.00

cosegLamps 8 84.04 78.00 93.00

cosegVases 16 87.55 84.40 84.80

cosegAverage - 92.29 86.73 92.86

Total Average - 93.18 89.07 93.61

Table 4: Fixed training/testing split results for PSB [14] and
Coseg [15] datasets. Training/testing splits are the same as
[21], all sets use 12 training meshes (except cosegGoblets
which uses 6)

12

Acknowledgements
David George is fully-funded by a PhD Studentship
(DTG) from the UK Engineering and Physical Sciences
Research Council.

References
[1] L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, H. Zhang, Con-

textual part analogies in 3d objects, Int. J. Comput. Vis. 89 (2-3)
(2010) 309–326.

[2] Y. Kleiman, O. van Kaick, O. Sorkine-Hornung, D. Cohen-
Or, Shed: Shape edit distance for fine-grained shape similarity,
ACM Trans. on Graphics 34 (6) (2015) 235:1–235:11.

[3] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H.-Y. Shum,
Mesh editing with poisson-based gradient field manipulation,
ACM Trans. on Graphics 23 (3) (2004) 644–651.

[4] X. Chen, J. Li, Q. Li, B. Gao, D. Zou, Q. Zhao, Image2scene:
Transforming style of 3d room, in: Proc ACM Int. Conf on Mul-
timedia, 2015, pp. 321–330.

[5] Y. Yang, W. Xu, X. Guo, K. Zhou, B. Guo, Boundary-aware
multidomain subspace deformation, IEEE Trans. Vis. & Com-
put. Graphics 19 (10) (2013) 1633–1645.

[6] X. Chen, B. Zhou, F. Lu, L. Wang, L. Bi, P. Tan, Garment
modeling with a depth camera, ACM Trans. on Graphics 34 (6)
(2015) 203.

[7] L. Shapira, A. Shamir, D. Cohen-Or, Consistent mesh partition-
ing and skeletonisation using the shape diameter function, Vis.
Comput. 24 (4) (2008) 249–259.

[8] O. V. Kaick, N. Fish, Y. Kleiman, S. Asafi, D. Cohen-OR, Shape
segmentation by approximate convexity analysis, ACM Trans.
on Graphics 34 (1) (2014) 4:1–4:11.

[9] M. Meyer, M. Desbrun, P. Schröder, A. H. Barr, et al., Discrete
differential-geometry operators for triangulated 2-manifolds,
Vis. & Math. 3 (2) (2002) 52–58.

[10] S. Shlafman, A. Tal, S. Katz, Metamorphosis of polyhedral sur-
faces using decomposition., Comput. Graphics Forum 21 (3)
(2002) 219–228.

[11] D. Comaniciu, P. Meer, Mean shift: A robust approach toward
feature space analysis, IEEE Trans. Pat. Anal. & Mach. Intell.
24 (5) (2002) 603–619.

[12] A. Golovinskiy, T. Funkhouser, Randomized cuts for 3D mesh
analysis, ACM Trans. on Graphics 27 (5) (2008) 145:1–145:12.

[13] A. Shamir, A survey on mesh segmentation techniques, Comput.
Graphics Forum 27 (6) (2008) 1539–1556.

[14] X. Chen, A. Golovinskiy, T. Funkhouser, A benchmark for 3D
mesh segmentation, ACM Trans. on Graphics 28 (3) (2009)
73:1–73:12.

[15] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, D. Cohen-Or,
Unsupervised co-segmentation of a set of shapes via descriptor-
space spectral clustering, in: Proc. ACM SIGGRAPH ASIA,
Vol. 30, 2011.

[16] Q. Huang, V. Koltun, L. Guibas, Joint shape segmentation with
linear programming, ACM Trans. on Graphics 30 (6) (2011)
125.

[17] R. Hu, C. Zhu, O. van Kaick, L. Liu, A. Shamir, H. Zhang,
Interaction context (icon): Towards a geometric functionality
descriptor, in: Proc. ACM SIGGRAPH ASIA, Vol. 34, 2015,
pp. 83:1–83:12.

[18] E. Kalogerakis, A. Hertzmann, K. Singh, Learning 3D mesh
segmentation and labeling, ACM Trans. on Graphics 29 (3)
(2010) 102:1–102:12.

[19] Z. Xie, K. Xu, L. Liu, Y. Xiong, 3d shape segmentation and la-
beling via extreme learning machine, Comput. Graphics Forum
33 (5) (2014) 85–95.

[20] Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, H. Huang, Projective
feature learning for 3d shapes with multi-view depth images,
Comput. Graphics Forum 34 (6) (2015) to appear.

[21] E. Kalogerakis, M. Averkiou, S. Maji, S. Chaudhuri, 3D shape
segmentation with projective convolutional networks, in: Proc.
IEEE Conf. CVPR, 2017.

[22] K. Guo, D. Zou, X. Chen, 3d mesh labeling via deep convolu-
tional neural networks, ACM Trans. on Graphics 35 (1) (2015)
3:1–3:12.

[23] M. Ben-Chen, C. Gotsman, Characterizing shape using confor-
mal factors, in: 3D Obj. Retrieval, 2008, pp. 1–8.

[24] M. Hilaga, Y. Shinagawa, T. Kohmura, T. L. Kunii, Topology
matching for fully automatic similarity estimation of 3D shapes,
in: Proc. ACM SIGGRAPH, 2001, pp. 203–212.

[25] R. Gal, D. Cohen-Or, Salient geometric features for partial
shape matching and similarity, ACM Trans. on Graphics 25 (1)
(2006) 130–150.

[26] M. Attene, B. Falcidieno, M. Spagnuolo, Hierarchical mesh
segmentation based on fitting primitives, Vis. Comput. 22 (3)
(2006) 181–193.

[27] R. Hu, L. Fan, L. Liu, Co-segmentation of 3d shapes via sub-
space clustering, Comput. Graphics Forum 31 (5) (2012) 1703–
1713.

[28] M. Meng, J. Xia, J. Luo, Y. He, Unsupervised co-segmentation
for 3D shapes using iterative multi-label optimization, Comput.
Aided Des. 45 (2) (2013) 312–320.

[29] Z. Wu, Y. Wang, R. Shou, B. Chen, X. Liu, Unsupervised co-
segmentation of 3D shapes via affinity aggregation spectral clus-
tering, Comput. & Graphics 37 (6) (2013) 628–637.

[30] Z. Shu, C. Qi, S. Xin, C. Hu, L. Wang, Y. Zhang, L. Liu, Unsu-
pervised 3d shape segmentation and co-segmentation via deep
learning, Comput. Aided Geom. Des. 43 (2016) 39–52.

[31] P. Theologou, I. Pratikakis, T. Theoharis, A comprehensive
overview of methodologies and performance evaluation frame-
works in 3d mesh segmentation, Comput. Vis. and Image Un-
derstanding 135 (2015) 49–82.

[32] H. Benhabiles, G. Lavoué, J.-P. Vandeborre, M. Daoudi, Learn-
ing Boundary Edges for 3D-Mesh Segmentation, Comput.
Graphics Forum 30 (8) (2011) 2170–2182.

[33] C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on
point sets for 3d classification and segmentation, arXiv preprint.

[34] C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hier-
archical feature learning on point sets in a metric space, arXiv
preprint.

[35] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, X. Tong, O-cnn:
Octree-based convolutional neural networks for 3d shape analy-
sis, ACM Trans. on Graphics 36 (4).

[36] L. Yi, H. Su, X. Guo, L. Guibas, Syncspeccnn: Synchronized
spectral cnn for 3d shape segmentation, arXiv preprint.

[37] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,
E. Yumer, V. G. Kim, Y. Lipman, Convolutional neural net-
works on surfaces via seamless toric covers, in: Proc. ACM
SIGGRAPH, 2017.

[38] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy mini-
mization via graph cuts, IEEE Trans. Pat. Anal. & Mach. Intell.
23 (11) (2001) 1222–1239.

[39] R. Liu, H. Zhang, A. Shamir, D. Cohen-Or, A part-aware sur-
face metric for shape analysis, Comput. Graphics Forum 28 (2)
(2009) 397–406.

[40] S. Belongie, J. Malik, J. Puzicha, Shape matching and object
recognition using shape contexts, IEEE Trans. Pat. Anal. &
Mach. Intell. 24 (4) (2002) 509–522.

[41] A. E. Johnson, M. Hebert, Using spin images for efficient object
recognition in cluttered 3d scenes, IEEE Trans. Pat. Anal. &
Mach. Intell. 21 (5) (1999) 433–449.

13

[42] J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably infor-
mative multi-scale signature based on heat diffusion, Comput.
Graphics Forum 28 (5) (2009) 1383–1392.

[43] M. M. Bronstein, I. Kokkinos, Scale-invariant heat kernel sig-
natures for non-rigid shape recognition, in: Proc. IEEE Conf.
CVPR, 2010, pp. 1704–1711.

[44] G. Taubin, A signal processing approach to fair surface design,
in: Proc. ACM SIGGRAPH, ACM, 1995, pp. 351–358.

[45] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F. E. Alsaadi, A sur-
vey of deep neural network architectures and their applications,
Neurocomputing 234 (2016) 11–26.

[46] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Proc.
Int. Conf. Mach. Learn., 2015, pp. 448–456.

[47] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of recti-
fied activations in convolutional network, ICML Deep Learning
Workshop.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with con-
volutions, in: Proc. IEEE Conf. CVPR, 2015, pp. 1–9.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: A simple way to prevent neural net-
works from overfitting, Journal of Machine Learning Research
15 (2014) 1929–1958.

14

